HOMEWORK 5

1. Determine the Galois group of the extension $K=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) / \mathbb{Q}$ and all subfields of K.
2. Determine the Galois group of the extension $\mathbb{Q}\left({ }^{8} \sqrt{2}, i\right) / \mathbb{Q}(\sqrt{-2})$.
3. Determine the splitting field of the polynomial $X^{4}-2 X^{2}-2$ over \mathbb{Q} and its Galois group.
4. Determine the splitting field of the polynomial $X^{6}+3$ over \mathbb{Q} and its Galois group.
5. Let F be a field. Prove that $F(X, Y) / F(X Y, X+Y)$ is a Galois extension and determine its Galois group.
6. Let F be a field of characteristic different from 2. Prove that $F(X, Y) / F\left(X^{2}, X Y, Y^{2}\right)$ is a Galois extension and determine its Galois group. 7. Let K / F be a Galois extension of degree p^{n} (p is prime, $n>0$). Show that there is a subfield $L \subset K$ such that L / F is a cyclic extension of degree p.
7. Let K / F be a Galois extension with $G a l(K / F)=G$. For any $\alpha \in K$ define the norm of α to be

$$
N(\alpha)=\prod_{\sigma \in G} \sigma(\alpha) .
$$

a) Prove that $N(\alpha) \in F$.
b) Prove that $N(\alpha \beta)=N(\alpha) N(\beta)$ for all $\alpha, \beta \in K$.
c) Find the norm of $\alpha=a+b \sqrt{d}$ for the quadratic extension $\mathbb{Q}(\sqrt{d}) / \mathbb{Q}$.
9. Let K / F be a Galois quadratic extension, $\alpha \in K$. Prove that the following two conditions are equivalent:
(1) $N(\alpha)=1$.
(2) There exists $\beta \in K$ such that

$$
\alpha=\frac{\beta}{\sigma(\beta)}
$$

where σ is the nontrivial element in $\operatorname{Gal}(K / F)$.
(Hint: Consider $\beta=1+\alpha$.)
10. Let p be a prime integer. Let F be a field having no nontrivial extensions of degree prime to p. Prove that every separable extension K / F of degree p is Galois.

