HOMEWORK 4

1. Prove that $X^{p-1}-1=(X-1)(X-2) \cdots \cdot(X-p+1)$ over \mathbb{F}_{p}. Derive Wilson's theorem: $(p-1)!\equiv-1(\bmod p)$.
2. Prove that $f(X)^{p}=f\left(X^{p}\right)$ for every polynomial $f \in \mathbb{F}_{p}[X]$.
3. Let E / F be a field extension of a field F of characteristic $p>0$. Prove that for every $\alpha \in E$ separable over F, we have $F(\alpha)=F\left(\alpha^{p}\right)$.
4. Prove that a field F is perfect if and only if every finite extension of F is separable.
5. Prove that every finite extension of a perfect field is also perfect.
6. For a prime p and nonzero $a \in \mathbb{F}_{p}$, prove that $X^{p}-X+a$ is irreducible and separable over \mathbb{F}_{p}. (Hint: observe that if α is a root of $X^{p}-X+a$ then $\alpha+1$ is also a root.)
7. Let F be a field of characteristic p. Prove that for every $a \in F \backslash F^{p}$ the polynomial $X^{p}-a$ is irreducible over F.
8. a) Let E / F be a finite field extension of a field F of characteristic $p>0$. An element $a \in E$ is called purely inseparable over F if $a^{p^{n}} \in F$ for some $n \geq 0$. Show that if $a \in E$ is separable and purely inseparable over F, then $a \in F$.
b) A finite extension E / F is called purely inseparable if all elements in E are purely inseparable over F. Show that if E / F is a finite field extension, then E is purely inseparable over the maximal separable subextension in E / F.
9. Prove that a finite field extension E / F is purely inseparable if and only if every field homomorphism $\sigma: F \rightarrow L$ has at most one extension $E \rightarrow L$.
10. Let F be a field of characteristic $p>0$. Show that there are infinitely many fields K such that $F\left(X^{p}, Y^{p}\right) \subset K \subset F(X, Y)$. (Hint: Consider fields $F(X+f \cdot Y)$ for different polynomials $f \in F\left[X^{p}, Y^{p}\right]$.)
