HOMEWORK 3

1. Find an isomorphism between two finite fields $\mathbb{F}_{2}[X] /\left(X^{3}+X+1\right) \mathbb{F}_{2}[X]$ and $\mathbb{F}_{2}[X] /\left(X^{3}+X^{2}+1\right) \mathbb{F}_{2}[X]$.
2. Prove that $\mathbb{Q}(\sqrt{2+\sqrt{2}}) / \mathbb{Q}$ is a normal extension.
3. Find a normal closure of the extension $\mathbb{Q}\left(2^{1 / 4}\right) / \mathbb{Q}$ and its degree over \mathbb{Q}.
4. Find a normal closure of the extension $\mathbb{Q}\left(3^{1 / 3}, 3^{1 / 4}\right) / \mathbb{Q}$ and its degree over \mathbb{Q}.
5. Let $f \in \mathbb{Q}[X]$ be an irreducible polynomial of degree 3. Assume that f has a unique real root α. Show that the extension $\mathbb{Q}(\alpha) / \mathbb{Q}$ is not normal.
6. Let F be a field of characteristic p. Show that the rational function field $F(X)$ is a normal extension of $F\left(X^{p}\right)$.
7. Let f be a nonzero polynomial over a field F and g the greatest common divisor of f and its derivative f^{\prime}. Prove that the polynomial f / g is either separable or constant.
8. Let F be a field of characteristic $p>0$ and E / F an extension of degree relatively prime to p. Show that E / F is a separable extension.
9. a) Let E / F be a finite field extension. Show that the set of all elements in E that are separable over F, is a subfield in E containing F. It is called the maximal separable subextension in E / F.
b) Let F be a field of characteristic 2. Find the maximal separable subextension in $F(X) / F\left(X^{4}+X^{2}\right)$.
10. Let F be a field of characteristic p which is not a perfect field (i.e. $F^{p} \neq F$). Show that F has a finite extension which is not separable.
