## HOMEWORK 2

1. Determine the degree of the extension $\mathbb{Q}\left(\sqrt{2},{ }^{3} \sqrt{3}\right)$ over $\mathbb{Q}$.
2. Let $F=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Prove that ${ }^{3} \sqrt{2} \notin F$.
(Hint: Show that the degree $[F(\sqrt{2}): \mathbb{Q}]$ is divisible by 3.)
3. Determine the degree of the extension $\mathbb{Q}(\sqrt{3+2 \sqrt{2}})$ over $\mathbb{Q}$.
4. Determine the splitting field of $X^{4}-2$ and its degree over $\mathbb{Q}$.
5. Determine the splitting field of $X^{6}-4$ and its degree over $\mathbb{Q}$.
6. Prove that an algebraically closed field is infinite.
7. Construct a field of 9 elements and give its addition and multiplication tables. Find a generator of the multiplicative group. How many generators are there?
8. Factor $X^{8}-X$ into a product of irreducibles in $\mathbb{Z}[X]$ and $\mathbb{F}_{2}[X]$.
9. Let $f$ be an irreducible polynomial of degree $n$ over a finite field $\mathbb{F}_{q}$. Prove that $f$ divides $X^{q^{n}}-X$.
10. Determine all $q$ such that -1 is a square in $\mathbb{F}_{q}$.
