HOMEWORK 1

1. Prove that the subring

$$
F=\{a+b \sqrt{2} ; a, b \in \mathbb{Q}\} \subset \mathbb{R}
$$

is a field.
2. Find the characteristic of F and the degree $[F: \mathbb{Q}]$, where F is a field in Problem 1.
3. Define the characteristic of an arbitrary commutative ring. Show that any non-negative integer can be the characteristic of some ring.
4. Show that $f=X^{3}+9 X+6$ is irreducible in $\mathbb{Q}[X]$. Let α be a real root of f. Compute $(1+\alpha)^{-1}$ as a linear combination of $1, \alpha, \alpha^{2}$ with rational coefficients.
5. Show that $f=X^{3}+X+1$ is irreducible in $F=(\mathbb{Z} / 2 \mathbb{Z})[X]$. Let α be a root of f in some field extension of F. Compute all powers $\alpha^{n}, n \geq 0$, as linear combinations of $1, \alpha, \alpha^{2}$.
6. Let F be a finite field. Prove that the characteristic p of F is positive. Prove that $|F|=p^{n}$ for some positive integer n.
7. Determine the minimal polynomial over \mathbb{Q} of $1+i$.
8. Determine the minimal polynomial over \mathbb{Q} of $\sqrt{2}+\sqrt{3}$.
9. Let X be a variable over a field $F, Y=\frac{X^{2}}{X-1}$. Find $[F(X): F(Y)]$.
10. Let K / F be a field extension, $\alpha, \beta \in K$. Prove that the extension $F(\alpha, \beta) / F(\alpha+\beta, \alpha \beta)$ is algebraic.

