HOMEWORK 8

- 1. Determine the Galois group of the polynomial X^4+1 over \mathbb{Q} .
- 2. Determine the Galois group of the polynomial $X^4 + 4$ over \mathbb{Q} .
- 3. Let p be a prime integer, F a field, $a \in F^{\times}$. Prove that the polynomial $X^p a$ is either split over F or irreducible.
- 4. Let $F(\alpha)/F$ be a field extension of prime degree p. Suppose that the minimal polynomial f of α over F has at least two roots in $F(\alpha)$. Prove that f is split over $F(\alpha)$.
- 5. Determine the Galois group of $\mathbb{Q}(\sqrt{6}, \sqrt{10}, \sqrt{14}, \sqrt{15}, \sqrt{21}, \sqrt{35})/\mathbb{Q}$.
- 6. Let K/F be a field extension of prime degree p and L/F a normal closure of K/F. Prove that [L:K] is not divisible by p.
- 7. Let f and g be nonconstant polynomials over a field F. Prove that Gal(fg) is isomorphic to a subgroup of $Gal(f) \times Gal(g)$.
- 8. Let f be a polynomial solvable by radicals. Show that the polynomial $g(X) = f(X^2)$ is also solvable by radicals.
- 9. Prove that there is a cyclic field extension of \mathbb{Q} of degree 1000.
- 10. Determine all prime integers p such that the congruence class [3] is a square in $\mathbb{Z}/p\mathbb{Z}$.