HOMEWORK 2

1. Determine the degree of the extension $\mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$ over \mathbb{Q} .

2. Let $F = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ show that $\sqrt[3]{2} \notin F$. (Hint: Show that the degree $[F(\sqrt[3]{2}) : \mathbb{Q}]$ is divisible by 3.)

- 3. Determine the degree of the extension $\mathbb{Q}(\sqrt{3+2\sqrt{2}})$ over \mathbb{Q} .
- 4. Determine the splitting field and its degree over \mathbb{Q} for $X^4 2$.
- 5. Determine the splitting field and its degree over \mathbb{Q} for $X^6 4$.
- 6. Prove that an algebraically closed field must be infinite.

7. Construct a field of 9 elements and give its addition and multiplication tables. Find a generator of the multiplicative group. How many generators are there?

8. Factor $X^8 - X$ into irreducibles in $\mathbb{Z}[X]$ and $\mathbb{F}_2[X]$.

9. Let f be an irreducible polynomial of degree n over a finite field \mathbb{F}_q . Prove that f divides $X^{q^n} - X$.

10. Determine all q such that -1 is a square in \mathbb{F}_q .