HOMEWORK 1

1. Prove that the subring

$$F = \{a + b\sqrt{2}; a, b \in \mathbb{Q}\} \subset \mathbb{R}$$

is a field.

2. Find characteristic of F and the degree $[F : \mathbb{Q}]$, where F is a field in Problem 1.

3. Define characteristic of an arbitrary commutative ring. Show that any integer can be characteristic of some ring.

4. Show that $f = X^3 + 9X + 6$ is irreducible in $\mathbb{Q}[X]$. Let α be a real root of f. Compute $(1+\alpha)^{-1}$ as a linear combination of $1, \alpha, \alpha^2$ with rational coefficients.

5. Show that $f = X^3 + X + 1$ is irreducible in $F = (\mathbb{Z}/2\mathbb{Z})[X]$. Let α be a root of f in some field extension of F. Compute all the powers α^n , $n \ge 0$, as linear combinations of $1, \alpha, \alpha^2$.

6. Let F be a finite field. Prove that the characteristic p of F is positive. Prove that $|F| = p^n$ for some positive integer n.

7. Determine the minimal polynomial over \mathbb{Q} for the element 1 + i.

8. Determine the minimal polynomial over \mathbb{Q} for the element $\sqrt{2} + \sqrt{3}$.

9. Let X be a variable over a field $F, Y = \frac{X^2}{X-1}$. Find [F(X) : F(Y)].

10. Let K/F be a field extension, $\alpha, \beta \in K$. Prove that the extension $F(\alpha, \beta)/F(\alpha + \beta, \alpha\beta)$ is algebraic.