Problem Set 3

Due Monday, Oct. 11.

Formal Logic

Math 430, Fall 2004

1. Let $S=\{0,+\}$ where 0 is a constant symbol and + is a 2 -place function symbol. Show that the set Φ consisting of the S-sentences

$$
\begin{aligned}
& \forall x \forall y \forall z((x+y)+z=x+(y+z)), \\
& \forall x(x+0=x \wedge 0+x=x) \\
& \forall x \forall y(x+y=0 \rightarrow(x=0 \wedge y=0))
\end{aligned}
$$

is satisfiable.
2. Let S be a symbol set. A set Φ of S-sentences is called independent if there is no $\varphi \in \Phi$ such that $\Phi \backslash\{\varphi\} \mid=\varphi$. Suppose now that $S=\{E\}$ where E is a 2-place relation symbol. Show that the set of axioms for equivalence relations

$$
\{\forall x E x x, \forall x \forall y(E x y \leftrightarrow E y x), \forall x \forall y \forall z(E x y \wedge E y z \rightarrow E x z)\}
$$

is independent.
3. Let S be a symbol set. An S-formula which does not contain $\neg, \rightarrow, \leftrightarrow$ is called positive.
(a) Give an inductive definition of the set \mathcal{P}_{S} of positive S-formulas (similar to the definition of the set \mathcal{F}_{S} of all S-formulas).
(b) Show that every positive S-formula is satisfiable. (One may use an S-structure whose universe consists of a single element.)
4. Let S be a symbol set and let \mathcal{M} be an S-structure. Show:
(a) If α and β are automorphisms of \mathcal{M}, then so is $\alpha \circ \beta$.
(b) If α is an automorphism of \mathcal{M}, then so is α^{-1}.
(For those of you who know about groups: this yields that the set of all automorphisms of \mathcal{M} forms a group, with o as group operation, called the automorphism group of \mathcal{M}.)
5. Let $S=\{<\}$ where $<$ is a 2 -place relation symbol. Without proof: what are all automorphisms of the S-structure $\mathcal{Z}=\left(\mathbb{Z},<^{\mathcal{Z}}\right)$, where $<$ is interpreted as the usual ordering on \mathbb{Z} ?
6. Recall the symbol set $S_{\text {graph }}=\{R\}$ appropriate for graphs introduced in Problem Set 2.
(a) Show that the following graphs, construed as $S_{\text {graph }}$-structures, are not isomorphic (using 4.1.9 in the lecture notes):
i. $\mathcal{A}=$
 and $\mathcal{B}=$

ii. $\mathcal{A}=$

and $\mathcal{B}=$

iii. $\mathcal{A}=$

and $\mathcal{B}=$

(b) Are the following graphs isomorphic?

7. (Extra credit.) A set A of natural numbers is called a spectrum if there is a symbol set S and an S-sentence φ such that

$$
\begin{aligned}
& A=\{n \in \mathbb{N}: \text { there is an } S \text {-structure } \mathcal{M} \text { with } \mathcal{M} \models \varphi \\
&\text { whose universe } M \text { contains exactly } n \text { elements }\} .
\end{aligned}
$$

Show:
(a) Every finite subset of $\mathbb{N}^{>0}=\{1,2,3, \ldots\}$ is a spectrum.
(b) For every $m \geq 1$, the set of positive integers which are divisible by m is a spectrum.
Which subsets of $\mathbb{N}^{>0}$ are spectra? This problem was asked by Heinrich Scholz in 1952, and it is still unsolved. For example, as far as I know, it is unknown whether the complement $\mathbb{N}^{>0} \backslash A$ of a spectrum A is also a spectrum.

