Problem Set 3 Due Monday, Oct. 11.

## Formal Logic

## Math 430, Fall 2004

1. Let  $S = \{0, +\}$  where 0 is a constant symbol and + is a 2-place function symbol. Show that the set  $\Phi$  consisting of the S-sentences

$$\forall x \forall y \forall z ((x+y) + z = x + (y+z)), \\ \forall x (x+0 = x \land 0 + x = x), \\ \forall x \forall y (x+y = 0 \rightarrow (x = 0 \land y = 0))$$

is satisfiable.

2. Let S be a symbol set. A set  $\Phi$  of S-sentences is called **independent** if there is no  $\varphi \in \Phi$  such that  $\Phi \setminus \{\varphi\} \models \varphi$ . Suppose now that  $S = \{E\}$ where E is a 2-place relation symbol. Show that the set of axioms for equivalence relations

$$\left\{\forall x Exx, \ \forall x \forall y (Exy \leftrightarrow Eyx), \ \forall x \forall y \forall z (Exy \wedge Eyz \rightarrow Exz)\right\}$$

is independent.

- 3. Let S be a symbol set. An S-formula which does not contain  $\neg, \rightarrow, \leftrightarrow$  is called **positive**.
  - (a) Give an inductive definition of the set  $\mathcal{P}_S$  of positive S-formulas (similar to the definition of the set  $\mathcal{F}_S$  of all S-formulas).
  - (b) Show that every positive S-formula is satisfiable. (One may use an S-structure whose universe consists of a single element.)
- 4. Let S be a symbol set and let  $\mathcal{M}$  be an S-structure. Show:
  - (a) If  $\alpha$  and  $\beta$  are automorphisms of  $\mathcal{M}$ , then so is  $\alpha \circ \beta$ .
  - (b) If  $\alpha$  is an automorphism of  $\mathcal{M}$ , then so is  $\alpha^{-1}$ .

(For those of you who know about groups: this yields that the set of all automorphisms of  $\mathcal{M}$  forms a group, with  $\circ$  as group operation, called the **automorphism group** of  $\mathcal{M}$ .)

- 5. Let  $S = \{<\}$  where < is a 2-place relation symbol. Without proof: what are all automorphisms of the S-structure  $\mathcal{Z} = (\mathbb{Z}, <^{\mathcal{Z}})$ , where < is interpreted as the usual ordering on  $\mathbb{Z}$ ?
- 6. Recall the symbol set  $S_{\text{graph}} = \{R\}$  appropriate for graphs introduced in Problem Set 2.
  - (a) Show that the following graphs, construed as  $S_{\text{graph}}$ -structures, are not isomorphic (using 4.1.9 in the lecture notes):



(b) Are the following graphs isomorphic?



7. (Extra credit.) A set A of natural numbers is called a **spectrum** if there is a symbol set S and an S-sentence  $\varphi$  such that

 $A = \{ n \in \mathbb{N} : \text{there is an } S \text{-structure } \mathcal{M} \text{ with } \mathcal{M} \models \varphi \\ \text{whose universe } M \text{ contains exactly } n \text{ elements} \}.$ 

Show:

- (a) Every finite subset of  $\mathbb{N}^{>0} = \{1, 2, 3, \dots\}$  is a spectrum.
- (b) For every  $m \ge 1$ , the set of positive integers which are divisible by m is a spectrum.

Which subsets of  $\mathbb{N}^{>0}$  are spectra? This problem was asked by Heinrich Scholz in 1952, and it is still unsolved. For example, as far as I know, it is unknown whether the complement  $\mathbb{N}^{>0} \setminus A$  of a spectrum A is also a spectrum.