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I
mage processing, traditionally an engineering
field, has attracted the attention of many math-
ematicians during the past two decades. From
the point of view of vision and cognitive sci-
ence, image processing is a basic tool used to 

reconstruct the relative order, geometry, topology,
patterns, and dynamics of the three-dimensional 
(3-D) world from two-dimensional (2-D) images.
Therefore, it cannot be merely a historical coinci-
dence that mathematics must meet image process-
ing in this era of digital technology.

The role of mathematics is determined also by
the broad range of applications of image process-
ing in contemporary science and technology. These
applications include astronomy and aerospace ex-
ploration, medical imaging, molecular imaging,
computer graphics, human and machine vision,
telecommunication, autopiloting, surveillance
video, and biometric security identification (such

as fingerprints and face identification). All these
highly diversified disciplines have made it neces-
sary to develop common mathematical founda-
tions and frameworks for image analysis and 
processing. Mathematics at all levels must be in-
troduced to address the crucial criteria demanded
by this new era—genericity, well-posedness, accu-
racy, and computational efficiency, just to name a
few. In return, image processing has created
tremendous opportunities for mathematical mod-
eling, analysis, and computation.

This article gives a broad picture of mathemat-
ical image processing through one of the most re-
cent and very successful approaches—the varia-
tional PDE (partial differential equation) method.
We first discuss two crucial ingredients for image
processing: image modeling or representation, and
processor modeling. We then focus on the varia-
tional PDE method. The backbone of the article
consists of two major problems in image process-
ing that we personally have worked on: inpainting
and segmentation. By no means, however, do we
intend to give a comprehensive review of the en-
tire field of image processing. Many of the authors’
articles and preprints related to the subject of this
paper can be found online at our group home-
page [11], where an extended bibliography is also
available.
Image Processing as an Input-Output System
Directly connected to image processing are two
dual fields in contemporary computer science:
computer vision and computer graphics. Vision
(whether machine or human) tries to reconstruct
the 3-D world from observed 2-D images, while
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graphics pursues the opposite direction by de-
signing suitable 2-D scene images to simulate our
3-D world. Image processing is the crucial middle
way connecting the two.

Abstractly, image processing can be considered
as an input-output system

Q0 �→ Image Processor T �→ Q

Here T denotes a typical image processor: for ex-
ample, denoising, deblurring, segmentation, com-
pression, or inpainting. The input data Q0 can rep-
resent an observed or measured single image or
image sequence, and the output Q = (q1, q2, · · · )
contains all the targeted image features.

For example, the human visual system can be
considered as a highly involved multilevel image
processor T . The input Q0 represents the image se-
quence that is constantly projected onto the retina.
The output vector Q contains all the major features
that are important to our daily life, from the low-
level ones such as relative orders, shapes, and
grouping rules to high-level feature parameters
that help classify or identify various patterns and
objects.

Table 1 lists some typical image processing
problems.

The two main ingredients of image processing
are the input Q0 and the processor T . As a result,
the two key issues that have been driving main-
stream mathematical research on image process-
ing are (a) the modeling and representation of the
input visual data Q0, and (b) the modeling of the
processing operators T . Although the two are in-
dependent, they are closely connected to each other
by the universal rule in mathematics: the structure
and performance of an operator T is greatly in-
fluenced by how the input functions are modeled
or represented.

Image Modeling and Representation
To efficiently handle and process images, we need
first to understand what images really are mathe-
matically and how to represent them. For example,
is it adequate to treat them as general L2 functions
or as a subset of L2 with suitable regularity con-
straints? Here we briefly outline three major classes
of image modeling and representation.

Random fields modeling. An observed image u0

is modeled as the sampling of a random field. For
example, the Ising spin model in statistical me-
chanics can be used to model binary images. More
generally, images are modeled by some Gibbs/Mar-
kovian random fields [10]. The statistical proper-
ties of fields are often established through a fil-
tering technique and learning theory. Random field
modeling is the ideal approach for describing nat-
ural images with rich texture patterns such as trees
and mountains.

Wavelet Representation. An image is often ac-
quired from the responses of a collection of 
microsensors (or photo receptors), either digital or
biological. During the past two decades, it has been
gradually realized (and experimentally supported)
that such local responses can be well approximated
by wavelets. This new representation tool has rev-
olutionized our notion of images and their multi-
scale structures [12]. The new JPEG2000 protocol
for image coding and the successful compression
of the FBI database of fingerprints are its two most
influential applications. The theory is still being ac-
tively pushed forward by a new generation of geo-
metric wavelets such as curvelets (Candés and
Donoho) and beamlets (Pennec and Mallat).

Regularity Spaces. In the linear filtering theory of
conventional digital image processing, an image u
is considered to be in the Sobolev space H1(Ω). The
Sobolev model works well for homogeneous regions,
but it is insufficient as a global image model, since
it “smears” the most important visual cue, namely,
edges. Two well-known models have been intro-
duced to recognize the existence of edges. One is
the “object-edge” model of Mumford and Shah [13],
and the other is the BV image model of Rudin, Osher,
and Fatemi [15]. The object-edge model assumes that
an ideal image u consists of disjoint homogeneous
object patches [uk,Ωk] with uk ∈ H1(Ωk) and regu-
lar boundaries ∂Ωk (characterized by one-dimen-
sional Hausdorff measure). The BV image model as-
sumes that an ideal image has bounded total
variation 

∫
Ω |Du|. Regularity-based image models

Table 1. Typical image processors and their inputs and
outputs. The symbols represent (1) K: a blurring kernel, and n:
an additive noise, both assumed in this paper to be linear for
simplicity; (2) u0: the given noisy or blurred image; (3) Ω: the
entire image domain, and D: a subset where image
information is missing or inaccessible; (4) [uk,Ωk] : Ωk ’s are the
segmented individual “objects”, while uk’s are their intensity
values; (5) λk’s are different scales, and uλ can be roughly
understood as the projection of the input image at scale λ; (6)
u(n)

0 ’s denote the discrete sampling of a continuous “movie”
u0(x, t) (with some small time step h) and �v (n)’s are the
estimated optical flows (i.e., velocity fields) at each moment.

T Q0 Q

denoising+deblurring u0 = Ku+ n clean & sharp u
inpainting u0|Ω\D entire image u|Ω
segmentation u0 “objects”

[uk,Ωk], k = 1,2, . . .

scale-space u0 multiscale images (
uλ1 , uλ2 , ...

)
motion estimation (u(1)

0 , u
(2)
0 , ...) optical flows

(�v (1), �v (2), ...)
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are generally applicable to images with low texture
patterns and without rapidly oscillatory compo-
nents.

Modeling of Image Processors
How images are modeled and represented very
much determines the way we model image proces-
sors. We shall illustrate this viewpoint through the
example of denoising u = T u0: u0 = u+ n , as-
suming for simplicity that the white noise n is ad-
ditive and homogeneous, and there is no blurring
involved.

When images are represented by wavelets, the
denoising processor T is in some sense “diago-
nalized” and is equivalent to a simple engineering
on the individual wavelet components. This is a cel-
ebrated result of Donoho and Johnstone on 
threshold-based denoising schemes.

Under the statistical/random field modeling of
images, the denoising processor T becomes MAP
(Maximum A Posteriori) estimation. By Bayes’s for-
mula, the posterior probability given an observa-
tion u0 is

p(u|u0) = p(u0|u)p(u)/p(u0).

The denoising processor T is achieved by solving
the MAP problem max

u
p(u|u0) . Therefore, it is im-

portant to know not only the random field image
model p(u) but also the mechanism by which u0 is
generated from the ideal image u (the so-called
generative data model). The two are crucial for
successfully carrying out Bayesian denoising.

Finally, if the ideal image u is modeled as an el-
ement in a regular function space such as H1(Ω)
or BV(Ω) , then the denoising processor T can be
realized by a variational optimization. For instance,
in the BV image model, T is achieved by

min
u

∫
Ω
|Du| subject to

1
|Ω|

∫
Ω

(u− u0)2 dx ≤ σ 2,

where the white noise is assumed to be well ap-
proximated by the standard Gaussian N(0, σ 2) .
This well-known denoising model, first proposed
by Rudin, Osher, and Fatemi, belongs to the more
general class of regularized data-fitting models.

Just as different coordinate systems that de-
scribe a single physical object are related, different
formulations of the same image processor are
closely interconnected. Again, take denoising for 
example. It has been shown that the wavelet tech-
nique is equivalent to an approximate optimal reg-
ularization in certain Besov spaces (Cohen, Dahmen,
Daubechies, and DeVore). On the other hand,
Bayesian processing and the regularity-based 
variational approach can also be connected (at 
least formally) by Gibbs’s formula in statistical 
mechanics (see (3) in the next section).

Variational PDE Method
Having briefly introduced the general picture of
mathematical image processing, we now focus on
the variational PDE method through two processors:
inpainting and segmentation.

For the history and a detailed description of
current developments of the variational and PDE
method in image and vision analysis, see two spe-
cial issues in IEEE Trans. Image Processing [7 (3),
1998] and J. Visual Comm. Image Rep. [13 (1/2),
2002] and also two recent monographs [1], [18].

In the variational or “energy”-based models,
nonlinear PDEs emerge as one derives formal Euler-
Lagrange equations or tries to locate local or global
minima by the gradient descent method. Some
PDEs can be studied by the viscosity solution 
approach [8], while many others still remain open
to further theoretical investigation.

Compared with other approaches, the varia-
tional PDE method has remarkable advantages in
both theory and computation. First, it allows one
to directly handle and process visually important
geometric features such as gradients, tangents,
curvatures, and level sets. It can also effectively sim-
ulate several visually meaningful dynamic
processes, such as linear and nonlinear diffusions
and the information transport mechanism. Sec-
ond, in terms of computation, it can profoundly
benefit from the existing wealth of literature on 
numerical analysis and computational PDEs. For 
example, various well-designed shock-capturing
schemes in Computational Fluid Dynamics (CFD)
can be conveniently adapted to edge computation
in images.

Variational Image Inpainting and
Interpolation
The word inpainting is an artistic synonym for
image interpolation; initially it circulated among
museum restoration artists who manually restore
cracked ancient paintings. The concept of digital
inpainting was recently introduced into digital
image processing in a paper by Bertalmio, Sapiro,
Caselles, and Ballester. Currently, digital inpaint-
ing techniques are finding broad applications in
image processing, vision analysis, and digital tech-
nologies such as image restoration, disocclusion,
perceptual image coding, zooming and image super-
resolution, error concealment in wireless image
transmission, and so on [2], [4], [9]. Figure 1 shows
an example of error concealment.

We now discuss the mathematical ideas and
methodologies behind variational inpainting tech-
niques. Throughout this section, u denotes the
original complete image on a 2-D domain Ω, and
u0 denotes the observed or measured portion of
u, which can be either noisy or blurry, on a sub-
domain or general subset D. The goal of inpaint-
ing is to recover u on the entire image domain Ω
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as faithfully as possible from the available data u0

on D.
From Shannon’s Theorem to Variational
Inpainting
Interpolation is a classical topic in approximation
theory, numerical analysis, and signal and image
processing. Successful interpolants include poly-
nomials, harmonic waves, radially symmetric func-
tions, finite elements, splines, and wavelets. Despite
the diversity of the literature, there exists one most
widely recognized result due to Shannon, known
as Shannon’s Sampling Theorem.

Theorem (Shannon’s Theorem). If a signal u(t) is
band-limited within (−ω,ω), then

u(t) =
∞∑

n=−∞
u
(
n
π
ω

)
sinc

(ω
π
t − n

)
.

That is, if an analog signal u(t) (with finite en-
ergy or, equivalently, in L2(R ) ) does not contain any
high frequencies, then it can be perfectly interpo-
lated from its properly sampled discrete sequence
u0[n] = u(nπ/ω) (where ω/π is known as the
Nyquist frequency).

All interpolation problems share this “if-then”
structure. “If” specifies the space where the target
signal u is sought, while “then” gives the recon-
struction or interpolation procedure based on the
discrete samples (or, more generally, any partial 
information about the signal).

Unfortunately, for most real applications in sig-
nal and image processing, one cannot expect a
closed-form formula as clean as Shannon’s. This is
due to at least two factors. First, in vision analysis
and communication, signals like images are in-
trinsically not band-limited because of the presence
of edges (or Heaviside-type singularities). Second,
for most real applications, the given incomplete
data are often noisy and become blurred during the
imaging and transmission processes. Therefore,
in the situation of Shannon’s Theorem, we are deal-
ing with a class of “bad” signals u with “unreliable”
samples u0.

Naturally, for image inpainting, both the “if”
and “then” statements in Shannon’s Theorem need
to be modeled carefully. It turns out that there are
two powerful and interdependent frameworks that
can carry out this task: one is the variational
method, and the other is the Bayesian frame-
work [10].

In the Bayesian approach the “if” statement
specifies both the so-called prior model and the
data model. The prior model specifies how images
are distributed a priori or, equivalently, which 
images occur more frequently than others. Proba-
bilistically, it specifies the prior probability p(u).
Let u0 denote the incomplete data that are ob-
served, measured, or sampled. Then the second part
of “if” is to model how u0 is generated from u or

to specify the conditional probability p(u0|u) . 
Finally, in the Bayesian framework, Shannon’s
“then” statement is replaced, as indicated earlier,
by the Maximum A Posteriori (MAP) optimization
given by Bayes’s formula:

(1) max
u

p(u|u0) = p(u0|u)p(u)/p(u0).

(It is equivalent to maximizing the product of the
prior model and the data model, since the de-
nominator is a fixed normalization constant once
u0 is given.) To summarize, Bayesian inpainting
means finding the most probable image given its
incomplete and possibly distorted observation.

The variational approach resembles the Bayesian
methodology, but now everything is expressed 
deterministically. The Bayesian prior model p(u)
becomes the specification of the regularity of 
an image u, while the data model p(u0|u) now 
measures how well the observation u0 fits if the
original image is indeed u. Regularity is enforced
through “energy” functionals: for example, the
Sobolev norm E[u] =

∫
Ω |∇u|2 dx , the total variation

(TV) model E[u] =
∫
Ω |Du| of Rudin, Osher, and

Fatemi, and the Mumford-Shah free-boundary
model E[u, Γ ] =

∫
Ω\Γ |∇u|2 dx+ βH1(Γ ) , where H1

denotes the one-dimensional Hausdorff measure.
The quality of data fitting u → u0 is often judged
by an error measure E[u0|u] . For instance, the least
square measure prevails in the literature due to the
genericity of Gaussian-type noise and the Central
Limit Theorem :  E[u0|u] = 1

|D|
∫
D(Tu− u0)2 dx,

where D is the domain on which u0 has been 
sampled or measured, |D| is its area (or cardinal-
ity for the discrete case), and T denotes any linear
or nonlinear image processor (such as blurring and 
diffusion). In this variational setting, Shannon’s
“then” statement becomes a constrained opti-
mization problem:

minE[u] over all u such that E[u0|u] ≤ σ 2.

Here σ 2 denotes the variance of the white noise,
which is assumed to be known by proper statistical

Figure 1. TV inpainting for the error concealment of a blurry
image.
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estimators. Equivalently, the model solves the fol-
lowing unconstrained problem using Lagrange mul-
tipliers (e.g., Chambolle and Lions):

(2) min
u
E[u]+ λE[u0|u].

Generally, λ expresses the balance between regu-
larity and fitting. In summary, variational inpaint-
ing searches for the most “regular” image that best
fits the given observation.

The Bayesian approach is more universal in the
sense of allowing general statistical prior and data
models, and it is powerful for restoring both arti-
ficial images and natural images (or textures). But
to learn the prior model and the data model is
usually quite expensive. The variational approach
is ideal for dealing with regularity and geometry
and tends to work best for man-made indoor and
outdoor scenes and images with low textures. The
two approaches (1) and (2) can be at least formally
unified under Gibbs’s formula in statistical me-
chanics:

(3) E[·] ∝ −β logp(·), or p(·) ∝ e−E[·]/β,

where β = kT is the product of the Boltzmann con-
stant and temperature, and ∝ means equality up
to a multiplicative or additive constant. (However,
the definability of a rigorous probability measure
over “all” images is highly nontrivial because of the
multiscale nature of images. Recent efforts can be
found in the work of Mumford and Gidas.)
Variational Inpainting Based on Geometric Image
Models
In a typical image inpainting problem, u0 denotes
the observed or measured incomplete portion of
a clean “good” image u on the entire image domain
Ω. A simplified but already very powerful data
model in various digital applications is blurring fol-
lowed by noise degradation and spatial restriction:

u0

∣∣
D = (Ku+ n)D,

where K is a continuous blurring kernel, often
assumed to be linear or even shift-invariant, and n
is an additive white noise field assumed to be close
to Gaussian for simplicity. The information u0|Ω\D
is missing or inaccessible. The goal of inpainting is
to reconstruct u as faithfully as possible from u0

∣∣
D .

The data model is explicitly given by

(4) E[u0|u,D] = 1
|D|

∫
D

(Ku− u0)2 dx.

Therefore, from the variational point of view, the
quality of an inpainting model crucially depends
on the prior model or the regularity energy E[u].

The TV prior model E[u] =
∫
Ω |Du| was first in-

troduced into image processing by Rudin, Osher,
Fatemi in [15]. Unlike the Sobolev image model
E2[u] =

∫
Ω |∇u|2 dx, the TV model recognizes one

of the most important vision features, the “edges”.
For example, for a cartoon image u showing the
night sky (u = 0) with a full bright moon (u = 1),
the Sobolev energy blows up, while the TV energy∫
Ω |Du| equals the perimeter of the moon, which

is finite. Therefore, in combination with the data
model (4), the variational TV inpainting model 
minimizes

(5) Etv[u|u0,D] = α
∫
Ω
|Du| + λ

∫
D

(Ku− u0)2 dx.

The admissible space is BV(Ω) , the Banach space
of all functions with bounded variation. It is very
similar to the celebrated TV restoration model of
Rudin, Osher, and Fatemi [15]. In fact, the beauty
and power of the model exactly lie in the provision
of a unified framework for denoising, deblurring,
and image reconstruction from incomplete data.
Figure 1 displays the computational output of the
model applied to a blurry image with simulated ran-
dom packet loss due to the transmission failure of
a network.

The second well-known prior model is the ob-
ject-edge model of Mumford and Shah [13]. The
edge set Γ is now explicitly singled out, unlike in
the TV model, and an image u is understood as a
combination of both the geometric feature Γ and
the piecewise smooth “objects” ui on all the con-
nected components Ωi of Ω \ Γ . Thus in both the
Bayesian and the variational languages, the prior
model consists of two parts (applying (3) for the
transition between probability and “energy”):

p(u, Γ ) = p(u|Γ )p(Γ ) and

E[u, Γ ] = E[u|Γ ]+ E[Γ ].

Figure 2. Mumford-Shah inpainting for text removal.
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In the Mumford-Shah model the edge regularity is
specified by E[Γ ] = H1(Γ ) , the one-dimensional
Hausdorff measure, or in most computational ap-
plications, E[Γ ] = length(Γ ) , assuming that Γ is Lip-
schitz. The smoothness of the “objects” is naturally
characterized by the ordinary Sobolev norm:
E[u|Γ ] =

∫
Ω\Γ |∇u|2 dx. Therefore, in combination

with the data model (4), the variational inpainting
model based on the Mumford-Shah prior is given
by

(6) inf
u,Γ
Ems[u, Γ |u0,D] = α

∫
Ω\Γ
|∇u|2 dx

+ βH1(Γ )+ λ
∫
D

(Ku− u0)2 dx.

Figure 2 shows one application of this model for
text removal. Notice that edges are preserved and
smooth regions remain smooth.

Numerous applications have demonstrated that,
for classical applications in denoising, deblurring,
and segmentation, both the TV and the Mumford-
Shah models perform sufficiently well even by the
high standard of human vision. But inpainting does
have special characteristics. We have demonstrated
in [2], [4], [9] that for large-scale inpainting prob-
lems, high-order image models which incorporate
the curvature information become necessary for
more faithful visual effects.

The key to high-order geometric image models
is Euler’s elastica curve model:

e[γ] =
∫
γ
(a+ bκ2)ds, a, b > 0,

where κ denotes the scalar curvature. Birkhoff and
de Boor called it the “nonlinear spline” model in
approximation theory. It was first introduced into
computer vision by Mumford. Unlike straight 
lines (for which b = 0), the elastica model allows
smooth curves because of the curvature term,
which is important for computer vision and com-
puter graphics.

By imposing the elastica energy on each indi-
vidual level line of u (at least symbolically or by 
assuming that u is regular enough), we obtain the
so-called elastica image model:

Eel[u] =
∫∞
−∞
e[u ≡ λ]dλ

=
∫∞
−∞

∫
u≡λ

(a+ bκ2)ds dλ

=
∫
Ω

(a+ bκ2)|∇u|dx.

(7)

In the last integrand the curvature is given by
κ = ∇ · [∇u/|∇u|] . (Notice that in the absence of
the curvature term, the above formula is exactly the
co-area formula for smooth functions (e.g., Giusti).
This elastica prior model was first studied for in-
painting by Masnou and Morel, and by Chan, Kang,

and Shen [2], and as expected it improves the TV
inpainting model.

Similarly, the Mumford-Shah image model Ems

can be improved by replacing the length energy by
Euler’s elastica energy:

Emse[u, Γ ] = α
∫
Ω\Γ
|∇u|2 dx+ e[Γ ].

This was first applied to image inpainting by Ese-
doglu and Shen [9]. Figure 3 shows one example of
applying this image prior model to the inpainting
of an occluded disk. Both the TV and Mumford-Shah
inpainting models would complete the interpola-
tion with a straight-line edge and introduce visible
corners as a result. The elastica model restores
the smooth boundary.

The improved performance of curvature-based
models comes at a price in terms of both theory
and computation. The existence and uniqueness of
the TV and Mumford-Shah inpainting models can
be studied in a fashion similar to the classical
restoration and segmentation problems. But theo-
retical study on high-order models is only begin-
ning. The difficulty lies in the involvement of the
second-order geometric feature of curvature and
in the identification of a proper function space to
study the models. Secondly, in terms of computa-
tion, the calculus of variation on the curvature
term leads to fourth-order highly nonlinear PDEs,
whose fast and efficient numerical solution im-
poses a tremendous challenge.

We conclude this section with a brief discussion
of computation, especially for the TV and Mumford-
Shah inpaintings.

For the TV inpainting model Etv , the Euler-
Lagrange equation is formally (or assuming that u
is in the Sobolev space W 1,1) given by

(8) −∇ ·
[ ∇u
|∇u|

]
+ µK∗χD(Ku− u0) = 0.

Here K∗ denotes the adjoint of the linear blurring
kernel K, the multiplier χD(x) is the indicator ofD,
and µ = 2λ/α . The boundary condition along ∂Ω

Figure 3. Smooth inpainting by the Mumford-
Shah-Euler model.
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is Neumann adiabatic to eliminate any boundary
contribution during the integration-by-parts process.
This nonlinear PDE can be solved iteratively by 
the freezing technique: if u(n) denotes the current
inpainting at step n, then the updated inpainting
u(n+1) solves the linearized PDE

−∇ ·
[
∇u(n+1)

|∇u(n)|

]
+ µK∗χD(Ku(n+1) − u0) = 0.

In practice the intermediate diffusivity coeffi-
cient 1/|∇u(n)| is often modified to
1/
√
|∇u(n)|2 + ε2 for some small conditioning pa-

rameter ε or by the mandatory ceiling and floor-
ing between ε and 1/ε . The convergence of such
algorithms has been well studied in the literature
(e.g., Chambolle and Lions, and Dobson and Vogel).
There are also many other possible techniques in
the literature for solving (8) (e.g., Vogel and Oman,
and Chan, Mulet, and Golub). We need only to re-
late (8) to the conventional TV restoration case.

The computation of the Mumford-Shah inpaint-
ing model is also very interesting. For inpainting,
unlike segmentation, one’s direct interest is only in
u, not in Γ. Such understanding makes the Γ-conver-
gence approximation theory perfect for inpainting.
According to Ambrosio and Tortorelli, by introduc-
ing an edge signature function z(x) ∈ [0,1], x ∈ Ω,
and having E[u|Γ ] = α

∫
Ω\Γ |∇u|2 dx replaced by

E[u|z] = α
∫
Ω z2|∇u|2 dx , one can approximate the

length energy in the Mumford-Shah model by a qua-
dratic integral in z (up to a constant multiplier):

Eε[z] = β
∫
Ω

(
ε|∇z|2

2
+ (z − 1)2

2ε

)
dx, ε� 1.

Thus the Mumford-Shah inpainting model is ap-
proximated by

Eε[u, z|u0,D] = E[u|z]+ Eε[z]+ λE[u0|u,D],

which is a quadratic integral in both u and z ! It leads
to a coupled system of linear elliptic-type PDEs in
both u and the edge signature z , which can be
solved efficiently using any numerical elliptic solver.
The example in Figure 2 was computed by this
scheme.

Finally, we mention some of the major applica-
tions of the inpainting and geometric image inter-
polation models developed above. These include
digital zooming, primal-sketch-based perceptual
image coding, error concealment for wireless image
transmission, and progressive disocclusion in com-
puter vision [2], [4], [9]. Extensions to color or more
general hyperspectral images and nonflat image 
features (i.e., ones that live on Riemannian mani-
folds) are also currently being studied in the liter-
ature. Other approaches to the inpainting problem
can be found in the papers by Bertalmio, Sapiro,

Caselles, and Ballester, and by Bertalmio, Bertozzi,
and Sapiro. In particular, it has been interestingly
found in the latter paper that the earlier PDE model
by Ballester, Bertalmio, Caselles, Sapiro, and Verdera
is closely related to the stream function–vorticity
equation in fluid dynamics.

Variational Level Set Image Segmentation
Images are the proper 2-D projections of the 3-D
world containing various objects. To successfully
reconstruct the 3-D world, at least approximately,
the first crucial step is to identify the regions in im-
ages that correspond to individual objects. This is
the well-known problem of image segmentation. It
has broad applications in a variety of important
fields such as computer vision and medical image
processing.

Denote by u0 an observed image on a 2-D Lipschitz
open and bounded domainΩ. Segmentation means
finding a visually meaningful edge set Γ that leads 
to a complete partition of Ω. Each connected com-
ponent Ωi of Ω \ Γ should correspond to at most one
real physical object or pattern in our 3-D world, 
for example, the white matter in brain images or the
abnormal tissues in organs. In some applications,
one is interested also in the clean image patches 
ui on each Ωi of the segmentation, since u0 is often
noisy.

Therefore, there are two crucial ingredients in
the mathematical modeling and computation of 
the segmentation problem. The first is how to 
formulate a model that appropriately combines
the effects of both the edge set Γ and its segmented
regions {Ωi , i = 1,2, · · · } . The other is to find 
the most efficient way to represent the geometry
of both the edge set and the regions and to repre-
sent the segmentation model as a result. This of
course reflects the general philosophy in the 
introduction.

In the variational PDE approach, these two issues
have found good answers in the literature: for 
the first, the celebrated segmentation model of Mum-
ford and Shah [13] and for the second, the level-set
representation technology of Osher and Sethian [14].
In what follows we detail our recent efforts in ad-
vancing the application of the level-set technology to
various Mumford-Shah-related image segmentation
models. Much of the work can be found in our pa-
pers (e.g., [3], [5], [17], [19] and many more on our
group homepage [11]) and also in related works by
Yezzi, Tsai, and Willsky; Paragios and Deriche; Zhu
and Yuille; and Cohen, Bardinet, and Ayache [6], [7].

We start with a novel active-contour model whose
formulation is independent of intensity edges de-
fined by the gradients, in contrast to most con-
ventional ones in the literature. We then explain how
this model can be efficiently computed based on the
multiphase level-set method. In the second part we
extend these results to the level-set formulation and
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computation of the general Mumford-Shah
segmentation model for piecewise-smooth
images. In the last part we present our re-
cent work on extending the previous mod-
els to logical operations on multichannel
image objects.
Active Contours without Edges and
Multiphase Level Sets
The active contour is a powerful tool in
image and vision analysis for boundary de-
tection and object segmentation. The key
idea is to evolve a curve so that it eventu-
ally stops along the object edges of the given
image u0. The curve evolution is controlled
by two sorts of energies: the internal energy
defining the regularity of the curve and the
external energy determined by the given
image u0. The latter is often called the 
feature-driven energy.

In almost all classical active-contour 
models, the feature-driven energies rely
heavily on the gradient feature |∇u0| or on
its smoothed version |∇Gσ ∗ u0| , where 
Gσ denotes a Gaussian kernel with a small
variance σ. They work well for detecting
gradient-defined edges but fail for more
general classes of edges such as the bound-
ary of a nebula in some astronomical images
or the top image in Figure 4.

Our new model, active contours without
edges, first introduced in [5], is independent
of the gradient information and therefore can
handle more general types of edges. The
model is to minimize the energy

E2[c1, c2, Γ |u0] =
∫

int(Γ )
|u0(x)− c1|2 dx

+
∫

ext(Γ )
|u0(x)− c2|2 dx+ ν|Γ |,(9)

where ν denotes a given positive weight, the c’s are
unknown constants, int(Γ ) and ext(Γ ) denote the 
interior and exterior of Γ, and |Γ | is its length. The
subscript 2 in E2 indicates that it deals with two-
phase images, i.e., ones whose “objects” can be
completely indexed by the interior and exterior 
of Γ.

In the level-set formulation of Osher and
Sethian [14], Γ is embedded as the zero-level set
{φ = 0} of a Lipschitz continuous function
φ : Ω → R. Consequently, {φ > 0} and {φ < 0} de-
fine the interior Ω+ and exterior Ω− of the curve.
(The level-set approach is computationally superior
to other curve representations, because it lets one
directly work on a fixed rectangular grid and it 
allows automatic topological changes such as merg-
ing and breaking.) Denote by H the 1-dimensional
Heaviside function: H(z) = 1 if z ≥ 0 and 0 if z < 0.
Then the energy in our model becomes

E2[c1, c2,φ|u0] =
∫
Ω
|u0(x)− c1|2H(φ)dx

+
∫
Ω
|u0(x)−c2|2(1−H(φ))dx+ν

∫
Ω
|∇H(φ)|dx.

Minimizing E2[c1, c2,φ|u0] with respect to c1 , c2 ,
and φ leads to the Euler-Lagrange equation:

∂φ
∂t

= δ(φ)
[
νdiv

( ∇φ
|∇φ|

)

− |u0 − c1|2 + |u0 − c2|2
]
,

c1(t) =
∫
Ω u0(x)H(φ(x))dx∫

ΩH(φ(x))dx
,

c2(t) =
∫
Ω u0(x)(1−H(φ(x)))dx∫

Ω(1−H(φ(x)))dx
,

with a suitable initial guess φ(0, x) = φ0(x). In nu-
merical implementations the Heaviside function
H(z) is often regularized by some Hε(z) in C1(R)
that converges as ε → 0 to H(z) in some suitable
sense. As a result, the Dirac function δ(z) in the last

Figure 4. Top: Detection of a simulated minefield by our new active-
contour model. Bottom: Segmentation of an MRI brain image. Notice
that the interior boundaries are automatically detected.

Figure 5. Left: Two curves given by φ1 = 0 and φ2 = 0 partition the
domain into four regions based on indicator vector (sign(φ1),sign(φ2)).
Right: Three curves given by φ1 = 0, φ2 = 0, and φ3 = 0 partition the
domain into eight regions based on the triple (sign(φ1),sign(φ2),
sign(φ3)).
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equation is regularized to δε(z) = H′
ε(z). We have

discovered in [5] that a carefully designed approx-
imation scheme can even allow interior contours to
emerge, a challenging task for most conventional
algorithms. Also notice that the length term in the
energy has led to the mean-curvature motion.

The model performs as an active contour in the
class of piecewise-constant images taking only two
values; it looks for a two-phase segmentation of a
given image. The internal energy is defined by the
length, while the external energy is independent of
the gradient |∇u0|. Defining the segmented image
by u(x) = c1H(φ(x))+ c2(1−H(φ(x))) , we realize
that the energy model is exactly the Mumford-Shah
segmentation model [13] restricted to the class of
piecewise-constant images. However, our model
was initially developed from the active-contour
point of view.

Two typical numerical outputs of the model are
displayed in Figure 4. The top row shows that our
model can segment and detect objects without
clear gradient edges. The bottom one shows that
it can also capture complicated boundaries and
interior contours.

For more complicated situations where multiple
objects occlude each other and multiphase edges
such as T-junctions emerge, the above two-phase

active-contour model is insufficient, and we need
to introduce multiple level-set functions. Therefore,
we have generalized the above framework to multi-
phase active contours or, equivalently, the piece-
wise-constant Mumford-Shah segmentation with
multiphase regions:

inf
u,Γ

Ems[u, Γ |u0]

=
∑
i

∫
Ωi
|u0 − ci|2 dx+ ν|Γ |.(10)

Here the Ωi’s denote the connected components of
Ω \ Γ , and u = ci on Ωi. Notice that Γ can now be a
general set of edge curves, including for example
the T-junction class.

Generally, consider m level-set functions
φi : Ω → R . The union of the zero-level sets of the
φi represents the edges in the segmented image.
Using these m level-set functions, one can define
up to n = 2m phases, which form a disjoint and
complete partitioning of Ω. Therefore, each point
x ∈ Ω belongs to one and only one phase. In par-
ticular, there is no vacuum or overlap among the
phases. This is an important advantage compared
with the classical multiphase representation, where
a level-set function is associated to each phase and
more level-set functions are needed as a result.
Figure 5 shows two typical examples of multiphase
partitioning corresponding to m = 2 and m = 3.

We now illustrate the multiphase level-set ap-
proach through the example of n = 4 and m = 2.
Let c = (c11, c10, c01, c00) denote a constant vector
and Φ = (φ1,φ2) the two-phase level-set vector.
Then we are looking for an ideal image u in the form
of

u = c11H(φ1)H(φ2)+ c10H(φ1)(1−H(φ2))

+ c01(1−H(φ1))H(φ2)+ c00(1−H(φ1))(1−H(φ2)).

The Mumford-Shah segmentation energy be-
comes 

E4[c,Φ|u0] =
∫
Ω
|u0(x)− c11|2H(φ1)H(φ2)dx

+
∫
Ω
|u0(x)− c10|2H(φ1)(1−H(φ2))dx

(11) +
∫
Ω
|u0(x)− c01|2(1−H(φ1))H(φ2)dx

+
∫
Ω
|u0(x)− c00|2(1−H(φ1))(1−H(φ2))dx

+ ν
∫
Ω
|∇H(φ1)|dx+ ν

∫
Ω
|∇H(φ2)|dx.

Its minimization leads to the Euler-Lagrange equa-
tions. First, with Φ fixed, the c minimizer can be
explicitly worked out as before:

Figure 6. The original and segmented images
(top row), and the final four segments (the rest).
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cij (t) = average of u0 on

{(2i − 1)φ1 > 0, (2j − 1)φ2 > 0},
i, j = 0,1.

In turn, this new c information leads to the Euler-
Lagrange equations for Φ:

∂φ1

∂t
= δ(φ1)

[
νdiv

( ∇φ1

|∇φ1|
)

−
(
(u0 − c11)2 − (u0 − c01)2

)
H(φ2)

−
(
(u0 − c10)2 − (u0 − c00)2

)
(1−H(φ2))

]
,

∂φ2

∂t
= δ(φ2)

[
νdiv

( ∇φ2

|∇φ2|
)

−
(
(u0 − c11)2 − (u0 − c01)2

)
H(φ1)

−
(
(u0 − c10)2 − (u0 − c00)2

)
(1−H(φ1))

]
.

Notice that the equations are governed both by the
mean curvatures and by jumps of the data-energy
terms across the boundary.

Figure 6 shows an application of the model to
the medical analysis of a brain image. Displayed are
the final segmented image and its associated four
phases. Our model successfully identifies and seg-
ments the white and the gray matters.

Recently the above models and algorithms have
been extended to multichannel, volumetric, and
texture images (e.g., Chan, Sandberg, and Vese [3]).
Let us give a little more detail about texture 
segmentation from our work. Texture images are
general images of natural scenes, such as grass-
lands, beaches, rocks, mountains, and human body
tissues. They typically carry certain coherent struc-
tures in scales, orientations, and local frequencies.
To segment texture images using the above mod-
els, we first apply Gabor’s filters to extract these
coherent structures. The filter responses create a
new vectorial (or multichannel) feature image in 
the form of U (x) = (uα(x), uβ(x), · · · , uγ (x)), where
the Greek letters stand for the filter signatures, and
typically each takes a value of (scale, orientation,
local frequency). We then apply the vectorial active-
contour-without-edges model to the segmentation
of U. Figure 7 shows one typical example.
Piecewise-Smooth Mumford-Shah Segmentation
The most general Mumford-Shah piecewise-smooth
segmentation [13] is defined by

(12) inf
u,Γ

Ems[u, Γ |u0] =
∫
Ω
|u− u0|2 dx

+ µ
∫
Ω\Γ
|∇u|2 dx+ ν|Γ |,

where µ and ν are positive parameters. It allows
the segmented “objects” to have smoothly varying
intensities instead of being strictly constant. We

now show how to carry out the model based on the

multiphase level-set approach [5]. As before, we

start with the two-phase situation where a single

level-set function φ is sufficient, followed by the

more general multiphase case.

In the two-phase situation, the ideal image u is

segmented to u± by the level-set function φ:

u(x) = u+(x)H(φ(x))+ u−(x)(1−H(φ(x))).

We assume that both u+ and u− are C1 functions

up to the boundary {φ = 0}. Substituting this ex-

pression into (12), we obtain

E[u+, u−,φ|u0] =
∫
Ω
|u+ − u0|2H(φ)dx

+
∫
Ω
|u−u0|2(1−H(φ))dx

+ µ
∫
Ω
|∇u+|2H(φ)dx

(13)

+ µ
∫
Ω
|∇u−|2(1−H(φ))dx+ ν

∫
Ω
|∇H(φ)|.

First, with φ fixed, the variation on

E[u+, u−,φ|u0] leads to the two Euler-Lagrange

equations for u± separately:

(14)
u± − u0 = µ�u± on ±φ > 0,

∂u±

∂�n
= 0 on {φ = 0}.

(Here ± takes either of the values + and − , but uni-

formly across the formula.) They act as denoising

operators on the homogeneous regions only. No-

tice that no smoothing is done across the bound-

ary {φ = 0}, which is very important in image

analysis.

Next, keeping the functions u+ and u− fixed and

minimizing E[u+, u−,φ|u0] with respect to φ, we

obtain the motion of the zero-level set:

Figure 7. An example of texture segmentation
(at increasing times).
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∂φ
∂t

= δ(φ)

[
ν∇

(
∇φ
|∇φ|

)
− (|u+ − u0|2

+ µ|∇u+|2 − |u−u0|2 − µ|∇u−|2)

]
,

with some initial guess φ(t = 0, x). The above equa-
tion is actually computed at least near a narrow
band of the zero-level set. As a result, computa-
tionally we have to continuously extend both u+ and
u− from their original domains {±φ > 0} to a suit-
able neighborhood of the zero-level set {φ = 0}.
Figure 8 displays an application of the model in as-
tronomical image analysis. Although the nebula
itself does not seem to be a smooth object, the
piecewise-smooth model can still correctly cap-
ture the main features.

As in the previous section, there are cases where
the boundaries forming a complete partition of the
image cannot be represented by a single level-set
function. Then one has to turn to the multi-phase
approach. In our papers, thanks to the planar Four-
Color Theorem, we have been able to conclude that
two level-set functions are sufficient for all multi-
phase partition problems.

By the Four-Color Theorem one can color all the
regions in a partition using only four colors, so that
any two adjacent regions are color distinguishable.
Identifying a phase with one color, we see that two
level-set functions φ1 and φ2 are sufficient to pro-
duce four “colors”: {±φ1 > 0, ±φ2 > 0} . There-
fore, they can completely segment a general image
with a multiphase boundary set Γ given by {φ1 = 0}
or {φ2 = 0}. As before, we do not have the prob-
lems of “overlapping” or “vacuum” as in the works
by Zhao, Chan, Merriman, and Osher. Note that in
this formulation, generally each “color” can still
have many isolated components. Therefore, the
segmentation is complete only after one applies an
extra step of the well-known topological processor
for finding the connected components of an open
set.

In this four-phase formulation, the ideal image
u is segmented into four disjoint but complete
parts u±±, each defined by one of the four phases:

{±φ1 > 0, ±φ2 > 0}.
Overall, by using the Heaviside function, we obtain
the following synthesis formula:

u =u++H(φ1)H(φ2)+ u+−H(φ1)(1−H(φ2))

+ u−+(1−H(φ1))H(φ2)

+ u−−(1−H(φ1))(1−H(φ2)),

for all x ∈ Ω. We can express the energy function
of u and Φ = (φ1,φ2) in a similar way and derive
the corresponding Euler-Lagrange equations.

Notice the remarkable feature of this single
model, which includes both the original energy
formulation and the elliptic and evolutionary PDEs:
it naturally combines all three image processors—
active contour, segmentation, and denoising.
Logic Operators for Multichannel Image
Segmentation
In a multichannel image u(x) = (u1(x), u2(x),
· · · , un(x)) , a single physical object can leave 
different traces in different channels. For example,
Figure 9 shows a two-channel image containing 
a triangle that is, however, incomplete in each 
individual channel. For this example, most con-
ventional segmentation models for multichannel
images (e.g., Guichard, Sapiro, Zhu and Yuille)
would output the complete triangle, i.e., the union
of both channels. The union is just one of the 
several possible logical operations for multichan-
nel images. For example, the intersection and the

Figure 8. Numerical result from the piecewise-smooth
Mumford-Shah level-set algorithm with one

level-set function.

Figure 9. A synthetic example of an object in
two different channels. Notice that the lower

left corner of A1 and the upper corner of
A2 are missing.

A1 A2

Figure 10. Different logical combinations for
the sample image: the union, the intersection,

and the differentiation.

Λ1∪Λ2 Λ1∩Λ2 Λ1∪¬Λ2

A1 A2
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differentiation are also very common in applica-
tions, as illustrated in Figure 10.

In this section we outline our recent efforts in
developing logical segmentation schemes for multi-
channel images based on the active-contour-
without-edges model [16].

First, we define two logical variables to encode
the information inside and outside the contour Γ
separately for each channel i:

zini (ui0, x, Γ ) =




1, if x is inside Γ and not on
the object,

0, otherwise;

zouti (ui0, x, Γ ) =




1 if x is outside Γ and on
the object,

0 otherwise.

Such different treatments are motivated by the en-
ergy minimization formulation. Intuitively speak-
ing, in order for the active contour Γ to evolve and
eventually capture the exact boundary of the tar-
geted logical object, the energy should be designed
so that both partial capture and overcapture lead
to high energies (corresponding to zouti = 1 and
zini = 1 separately). Imagine that the target object
is tumor tissue: then in terms of decision theory,
over and partial captures correspond respectively
to false alarms and misses. Both are to be penal-
ized.

In practice we do not have precise information
of “the object” to be segmented. One possible way
to approximate zini and zouti is based on the inte-
rior (Ω+) and exterior (Ω−) averages c±i in channel i:

zini (ui0, x, Γ ) =
|ui0(x)− c+i |2

maxy∈Ω+ |ui0(y)− c+i |2
,

for x ∈ Ω+, and

zouti (ui0, x, Γ ) =
|ui0(x)− c−i |2

maxy∈Ω− |ui0(y)− c−i |2
,

for x ∈ Ω−.
The desired truth table can then be described

using the zini ’s and zouti ’s. Table 2 shows three ex-
amples of logical operations for the two-channel
case. Notice that “true” is represented by 0 inside
Γ. The method is designed so as to encourage en-
ergy minimization when the contour tries to cap-
ture the targeted object inside. Also note that the
“zini ” terms and the “zouti ” terms play asymmetric
but complementary roles. For example, the union
A1 ∪A2 corresponds to the union of the “in” terms
and the intersection of the “out” terms. Similarly,
the intersection A1 ∩A2 corresponds to the inter-
section of the “in” terms and the union of the “out”
terms.

We then design continuous objective functions
to smoothly interpolate the binary truth table. This

is because in practice, as mentioned above, the z ’s
are approximated and take continuous values. For
example, possible interpolants for the union and
intersection are

fA1∪A2 (x) =
√
zin1 (x)zin2 (x)

+
(
1−

√
(1− zout1 (x))(1− zout2 (x))

)
,

fA1∩A2 (x) =1−
√

(1− zin1 (x))(1− zin2 (x))

+
√
zout1 (x)zout2 (x).

The square roots are taken to keep the functions
of the same order as the original scalar models. It
is straightforward to extend the two-channel case
to more general n-channel ones.

The energy functional E for the logical objective
function f can be expressed by the level set func-
tion φ. Generally, as just shown above, the objec-
tive function can be separated into two parts,

f = f (zin1 , zout1 , · · · , zinn , zoutn )

= fin(zin1 , · · · , zinn )+ fout (zout1 , · · · , zoutn ).

The energy functional is then defined by

E[φ|c+, c−] = µlength(φ = 0)

+ λ
∫
Ω

[fin(zin1 , · · · , zinn )H(φ)

+ fout (zout1 , · · · , zoutn )(1−H(φ))]dx.

Here each c± = (c±1 , · · · , c±n ) is in fact a multi-
channel vector. The associated Euler-Lagrange equa-
tion is similar to the scalar model:

∂φ
∂t

= δ(φ)

[
µdiv

( ∇φ
|∇φ|

)

− λ (fin(zin1 , · · · , zinn )− fout (zout1 , · · · , zoutn )
)]
,

with suitable boundary conditions as before. Even
though the form often looks complicated for a typ-
ical application, its implementation is very similar
to that of the scalar model.

Numerical results support our above efforts. Fig-
ure 9 shows two different occlusions of a triangle.

Table 2. The truth table for two channels. Notice that inside Γ
“true” is represented by 0. It is designed so as to encourage
the contour to enclose the targeted logical object at a lower
energy cost.

Truth table for the two-channel case
zin1 zin2 zout1 zout2 A1 ∪A2 A1 ∩A2 A1 ∩¬A2

x inside Γ
(or x ∈ Ω+)

x outside Γ
(or x ∈ Ω−)

1 1 0 0 1 1 1

1 0 0 0 0 1 1

0 1 0 0 0 1 0

0 0 0 0 0 0 1

0 0 1 1 1 1 0

0 0 1 0 1 0 1

0 0 0 1 1 0 0

0 0 0 0 0 0 0
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We are able to success-
fully recover the union,
the intersection, and the
differentiation of the ob-
jects in Figure 10 using
our model. In Figure 11
we have a two-channel
image of the brain. In
one channel we have a
“tumor” with some
noise, while the other
channel is clear. The im-
ages are not registered.
We want to find
A1 ∩¬A2 so that the
tumor can be observed.
This happens to be a
very complicated exam-
ple, as there are a lot of
features and textures.
However, the model
finds the tumor suc-
cessfully.

Conclusion
In this article we have discussed some recent develop-
ments in one successful approach to mathematical im-
age and vision analysis, the variational PDE method.
Besides the inpainting and segmentation problems dis-
cussed here, some other problems for which this method
is well suited are adaptive image enhancement and scale-
space theory, geometric processing of curves and sur-
faces, optical flows of motion pictures, and dynamic ob-
ject tracking. Advantages of the method include faithful
modeling and processing of vision geometry and its re-
lated visual optimization, effective simulation of dy-
namic visual processes such as selective diffusion and
information transport, and close interaction with the
rich literature of numerical analysis and computational
PDEs. This subject shows that mathematics has a key role
to play in addressing real-world problems in science
and technology. Some challenges for the future are fur-
ther theoretical study on the variational and PDE mod-
els developed in recent years, more intrinsic integration
with stochastic modeling and applied harmonic analy-
sis such as geometric wavelets, and more systematic in-
vestigation on the computation and numerical analysis
of geometry-based variational optimizations and PDEs.
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Figure 11. Region-based logical
model on a medical image. In the first

channel, A1, the noisy image has a
“brain tumor”, while channel A2 does

not. The goal is to spot the tumor
that is in channel A1 but not in A2, i.e.,

the differentiation A1 ∩¬A2 . In the
right-hand column we observe that

the tumor has been successfully
captured.
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