
A VARIATIONAL METHOD IN IMAGE RECOVERY∗

GILLES AUBERT† AND LUMINITA VESE‡

SIAM J. NUMER. ANAL. c© 1997 Society for Industrial and Applied Mathematics
Vol. 34, No. 5, pp. 1948–1979, October 1997 016

Abstract. This paper is concerned with a classical denoising and deblurring problem in image
recovery. Our approach is based on a variational method. By using the Legendre–Fenchel transform,
we show how the nonquadratic criterion to be minimized can be split into a sequence of half-quadratic
problems easier to solve numerically. First we prove an existence and uniqueness result, and then we
describe the algorithm for computing the solution and we give a proof of convergence. Finally, we
present some experimental results for synthetic and real images.
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1. Introduction. An important problem in image analysis is the reconstruc-
tion of an original image f describing a real scene from an observed image p. The
transformation (or degradation) connecting f to p is in general the result of two phe-
nomena. The first phenomenon is deterministic and is related to the mode of image
acquisition (for example, the computation of integral projections in tomography) or to
possible defects of the imaging system (blur created by a wrong lens adjustement, by
a movement,. . .). The second phenomenon is random: the noise inherent degradation
in any signal transmission. Suppose that the noise denoted by η is white, Gaussian,
and additive.

The simplest model accounting for both blur and noise is the linear degradation
model: we suppose that f is connected to p by an equation of the form

(1.1) p = Rf + η,

where R is a linear operator. (We remain, for the moment, intentionally vague on
the exact significance of (1.1)—in particular, on the space on which this equation is
defined.)

The reconstruction problem of f can be identified, in that way, with an inverse
problem: find f , from (1.1). In general, this problem is ill-posed in the sense of
Hadamard. The information provided by p and the model (1.1) is not sufficient to
ensure the existence, uniqueness, and stability of a solution f .

It is therefore necessary to regularize the problem by adding an a priori constraint
on the solution. The most classical and frequent approach in image reconstruction
is a stochastic approach based, in the framework of Bayesian estimation, on the use
of maximum a posteriori (MAP) estimation. Supposing that f is a Markov field
(which constitutes an a priori constraint), then the MAP criterion identifies with a
minimization problem in which the energy J depends on the image f and on the
gradient. We are not going into the details of this approach; instead, we refer the
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‡Laboratoire de Mathématiques, Universite de Nice, Parc Valrose, BP 71, F 06108 Nice, Cedex

02, France (luminita@math.unice.fr).

1948



A VARIATIONAL METHOD IN IMAGE RECOVERY 1949

reader to the original article of Geman and Geman [13] or, for a clear and synthetic
exposition, to the work of Charbonnier [4].

Our purpose being to study the problem of image reconstruction via the calculus
of variations and partial differential equations, we do not develop a new model here.
We will study for a continuous image the model described by Geman and Geman for
a numerical image (or a slight modification of this).

In section 2, we will present more precisely the minimization problem studied
here, as well as the assumptions to impose on the model. These will be imposed by
the requirements that we wish to obtain on the results. In section 3 we will show by
using the Fenchel–Legendre transform how we can introduce in the energy J (possibly
nonconvex) a dual variable b allowing us to reduce the minimization of J to a sequence
of quadratic minimization problems. In section 4 we will study the problem of the
existence and uniqueness of a solution f . The obtained results are based on a singular
perturbation result of Temam [12]. Moreover, we note the analogy of our problem
with the one of minimal surfaces studied by Temam in [12] and [26]. In section 5 we
will describe the algorithm in continuous variables for computing the solution, as well
as a convergence proof. Finally, in sections 6 and 7, we develop the numerical analysis
of the approximated problem, and we try to validate the model by presenting some
examples with synthetic or real images.

2. Description of the model. Assumptions. In continuous variables the ob-
served image p and the reconstructed image f can be represented by functions of Ω ⊂
R2 → R which associate with the pixel (x, y) ∈ R2 its gray level p(x, y) or f(x, y); Ω is
the support of the image (a rectangle in general). The gray levels being in finite num-
ber, we can suppose that the observation p(x, y) verifies 0 ≤ p(x, y) ≤ 1∀(x, y) ∈ Ω.

The stochastic model proposed by Geman and Geman for image reconstruction
leads us, as we pointed out in the introduction, to search for a solution among the
minima of the energy

Jα(f) =
∫

Ω
(p(x, y)− (Rf)(x, y))2dxdy + α

∫
Ω
φ(|Df(x, y)|)dxdy.(2.1)

R is a linear operator of L2(Ω)→ L2(Ω), and the first integral represents an attached
term on the data. The function φ : R+ → R+ is to be defined and symbolizes the
regularization term (hence, a constraint on the solution). In [13], Geman and Geman
have added a regularization term of the form∫

Ω

(
φ
(∂f
∂x

)
+ φ

(∂f
∂y

))
dxdy,

corresponding (for numerical images) to a regularization on lines and columns. This
term, unlike ours, is not invariant under rotation. The number α ∈ R+ is a parameter
which allows us to balance the influence of each integral in the energy Jα(f). If α = 0,
Jα(f) is

J0(f) =
∫

Ω
(p(x, y)− (Rf)(x, y))2dxdy,

and so the energy is reduced only to the attached term on the data, and the problem

inf
f
J0(f)(2.2)
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corresponds to the least-squares method associated with the equation (1.1). Formally,
every solution of (2.2) verifies the equation

R∗p = R∗Rf,(2.3)

where we have denoted by R∗ the adjoint operator of R. Generally, (2.3) is an ill-posed
problem: R∗R is not always invertible or the problem (2.3) is often unstable.

To overcome this difficulty, we either look for a solution in a smaller set (where
we have some compactness), or we add a regularization term to the attached term on
the data. This method, which is due to Tikhonov [27], is the one we use here, and
the additional term is represented in (2.1) by

∫
Ω φ(|Df(x, y)|)dxdy. It now remains

to find some appropriate conditions on the function φ in order to satisfy the following
principle of image analysis:

The reconstructed image must be formed by homogeneous regions,(2.4)
separated by sharp edges.

The model must, therefore, diffuse within the regions where the variations of gray
levels are weak, and otherwise, it must preserve the boundaries of these regions; that
is, it must respect the strong variations of gray levels.

So, supposing that the integrals in Jα(f) have made sense, then any function real-
izing the minima of Jα must formally verify (for instance, in the sense of distribution)
the Euler equation J

′

α(f) = 0 or

−α
2

div
(φ′(|Df |)
|Df | Df

)
+R∗Rf = R∗p.(2.5)

Writing (2.5) in a nonconservative form, we will obtain some sufficient assump-
tions on φ, in order to respect, as much as possible, the principle (2.4). To do this,
for each point (x, y) where |Df(x, y)| 6= 0, let the vectors T (x, y) = Df(x,y)

|Df(x,y)| in the
gradient direction, and ξ(x, y) in the orthogonal direction to T (x, y). With the usual
notations fx, fy, fxx, . . . for the first and second partial derivatives of f , and by for-
mally developing the divergence operator, (2.5) can be written as

−α
2

(φ′(|Df |)
|Df |

)
fξξ −

α

2
φ
′′
(|Df |)fTT +R∗Rf = R∗p,(2.6)

where we have denoted by fξξ and fTT the second derivatives of f in the directions
ξ(x, y) and T (x, y), respectively:

fξξ =
1

| Df |2 (f2
xfyy + f2

y fxx − 2fxfyfxy),

fTT =
1

| Df |2 (f2
xfxx + f2

y fyy + 2fxfyfxy).

If f is regular (at least continuous), we can interpret the principle (2.4) in the following
manner (as shown in Figure 2.1): locally, we represent a contour C separating two
homogeneous regions of the image, by a level curve of f : C = { (x, y); f(x, y) = c }.
In this case, the vector T (x, y) is normal to C at (x, y) ∈ C, and the expression
fξξ(x,y)
|Df(x,y)|=div( Df(x,y)

|Df(x,y)|) represents the curvature of C at this point.
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f(x, y) = c

f(x, y) < c

f(x, y) > c
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FIG. 2.1. A contour C separating two homogeneous regions.

In the interior of the homogeneous regions{
(x, y), f(x, y) < c

}⋃{
(x, y), f(x, y) > c

}
,

where the variations of f are weak, we want to encourage smoothing. If we suppose
that φ

′′
exists, with

φ
′
(0) = 0 and φ

′′
(0) > 0,(2.7)

we obtain that in a neighborhood of t = 0, (2.6) is formally

−α
2
φ
′′
(0)(fξξ + fTT ) +R∗Rf = R∗f,(2.8)

and since for any orthogonal directions T and ξ we always have

fξξ + fTT = fxx + fyy = 4f,

(2.8) is written as

−α
2
φ
′′
(0)4 f +R∗Rf = R∗p.(2.9)

Therefore, at the points where the image has a weak gradient, f is a solution of (2.9),
which is a uniformly elliptic equation having (this is well known) strong regularization
diffusion properties on the solution.

On the contrary, in a neighborhood of a contour C, the image presents a strong
gradient. If we wish to better preserve this contour, it is preferable to diffuse only
in the direction parallel to C, i.e., in the ξ-direction. For this, it will be sufficient in
(2.6) to annihilate, for strong gradients, the coefficient of fTT and to suppose that
the coefficient of fξξ does not vanish:

lim
t→+∞

φ
′′
(t) = 0,(2.10)

lim
t→+∞

φ
′
(t)
t

= m > 0.(2.11)

This allows us to reduce (2.6) in a neigborhood of +∞ to an equation of the form

−α
2
mfξξ +R∗Rf = R∗p,

which we can interpret as a regularizing equation in the ξ-direction.
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But (2.10) and (2.11) are not compatible, and one must make a compromise
between these two hypotheses; for example, by supposing that φ

′′
(t) and φ

′
(t)/t both

converge to zero as t→∞ but with different speeds. More precisely, we suppose that

(2.12a) lim
t→+∞

φ
′′
(t) = lim

t→+∞

φ
′
(t)
t

= 0,

(2.12b) lim
t→+∞

φ
′′
(t)

φ′ (t)
t

= 0,

that is, that φ
′′

converges faster to 0 than φ
′
(t)/t, which makes preponderant the

coefficient of fξξ in (2.6).
The preceding assumptions, (2.7) and (2.12), are rather of qualitative type and

represent a priori the properties that we want to obtain on the solution. But these
are not sufficient to prove that the model is well posed mathematically. To do this,
in order to use the direct method of calculus of variations, we suppose that

(2.13) lim
t→+∞

φ(t) = +∞;

this assumption ensures the boundness of the minimizing sequences of

Jα(f) =
∫

Ω
(p−Rf)2dxdy + α

∫
Ω
φ(|Df |)dxdy.

This growth to infinity must not be too strong because it must not penalize strong
gradients (or formation of edges). Hence, we suppose a linear growth to infinity:

(2.14)
{

There exist constants ai > 0 and bi ≥ 0, i = 1, 2, such that
a1t− b1 ≤ φ(t) ≤ a2t+ b2 ∀t ∈ R+,

and then the natural space on which we seek the solution will be

V =
{
f ∈ L2(Ω), Df ∈ L1(Ω)2

}
.

Finally, for passing to the limit on the minimizing sequences of (2.1) and to obtain
the uniqueness of a solution, we suppose that

(2.15) t→ φ(t) is strictly convex on R+ → R+.

Remark. A better growth condition than (2.14), which doesn’t penalize the for-
mation of edges, could be limt→∞ φ(t) = c > 0. In this case, if M denotes a min-
imal threshold representing strong gradients, then the contribution of the integral∫
|Df |≥M φ(|Df |)dxdy in the energy is nearly a constant and then the formation of

an edge does not “cost” anything in the energy. But the hypothesis of a horizontal
asymptote introduces in general a nonconvexity on φ for t ≥M , and we know, in this
case, that the problem is ill-posed and can have no solution. Nevertheless, we have
done some numerical tests with the function φ(t) = t2

1+t2 (which is of this type of
potential and verifies (2.7) and (2.12a)). The results obtained are very satisfactory.

To clarify the exposition, we now summarize our assumptions on the potential φ.
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Hypotheses for φ.
(H1) The function φ : R+ → R+ is of class C2, is nondecreasing, and satisfies

φ
′
(0) = 0 and φ

′′
(0) > 0.

(H2) The function φ : R+ → R+ has the properties

lim
t→+∞

φ
′′
(t) = lim

t→+∞

φ
′
(t)
t

= 0 and lim
t→+∞

φ
′′
(t)

φ′ (t)
t

= 0.

(H3) There exist constants ai > 0 and bi ≥ 0, i = 1, 2, such that

a1t− b1 ≤ φ(t) ≤ a2t+ b2 ∀t ∈ R+.

(H4) The function φ : R+ → R+ is strictly convex.
If it will be necessary to define the function φ on the whole space, we will extend

it by parity of R+ to R. Other hypotheses due to the numerical approximation will
be added in the following sections.

Of course, there are many functions φ verifying (H1)–(H4), and no criterion per-
mits the choice of a potential more than any other. Charbonnier, in [4], presents many
choices used in image reconstruction as well as a comparative study. Our choice here
for the tests is the function φ(t) =

√
1 + t2 which verifies (H1)–(H4) and, moreover,

has a simple and geometric interpretation (the problem of minimal surfaces).
This paper is closely related to the works of Malik and Perona [20], Catté et al. [2],

Rudin and Osher [22], and Chambolle and Lions [3]. Our approach is more oriented
towards the techniques of the calculus of variations than those of PDEs. This paper
completes, in a theoretical point of view, a preceding work concerning tomographic
reconstruction [5], [6]. See also [1], [14], [29].

3. Auxiliary variable. Half-quadratic reduction. Before proving the exis-
tence of a solution, we will show in this section how we can associate an auxiliary
variable (or dual) with the image f and how the regularization term in the energy
(2.1) can be represented by the infimum of quadratic functions. We recall that the
energy Jα(f) is

(3.1) Jα(f) =
∫

Ω
(p−Rf)2dxdy + α

∫
Ω
φ(|Df |)dxdy,

the regularization term being

(3.2) Lφ(f) =
∫

Ω
φ(|Df |)dxdy.

To develop this idea, we use the Fenchel–Legendre transform (see Rockafellar [21]
or Ekeland and Temam [12]). We recall that if l(ξ) is a convex function of RN into R,
then its Fenchel–Legendre transform (or polar) is the convex function l∗(ξ∗) defined
by

l∗(ξ∗) = sup
ξ∈RN

(ξ · ξ∗ − l(ξ))

(ξ ·ξ∗ is the usual scalar product). This definition can be extended, without difficulty,
to infinite-dimensional spaces. Let Ω be an open set of RN and l a convex continuous
function of RN → R, and for u ∈ Lγ(Ω)N , let the functional

L(u) =
∫

Ω
l(u(x))dx.
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Then the polar of L, denoted L∗, is defined on Lγ
′
(Ω)N , the dual space of Lγ(Ω)N ,

where 1
γ + 1

γ′
= 1, by

L∗(u∗) = sup
u∈Lγ′ (Ω)N

{∫
Ω
u(x)u∗(x)−

∫
Ω
l(u(x))dx

}
.

If, in addition, l is nonnegative or if l verifies an inequality of the type l(ξ) ≥ a(x)−
b · |ξ|ηRN , with a(x) ∈ L1(Ω), b ≥ 0, and η ∈ [1,∞), and if there exists u0 ∈ L∞(Ω)N

such that L(u0) < ∞, then we can prove (see Ekeland and Temam [12, Chap. IX])
that L∗(u∗) is written as

L∗(u∗) =
∫

Ω
l∗(u∗(x))dx.

Of course, we can reiterate the process and define

L∗∗(u) =
∫

Ω
l∗∗(u(x))dx.

Since l is convex, we have l(ξ) = l∗∗(ξ) and then L∗∗(u) = L(u).
We use this notion of polarity in our problem with N = 2, γ = γ

′
= 2. Let, for

ξ, ξ∗ ∈ R2,

l(ξ) =
|ξ|2
2
− φ(|ξ|),(3.3)

ψ(ξ∗) = l∗(ξ∗)− |ξ
∗|2
2

,(3.4)

as well as the functionals defined on L2(Ω)2 by

Φ(u) =
∫

Ω
φ(|u(x, y)|)dxdy

(
=
∫

Ω

( |u(x, y)|2
2

− l(u(x, y))
)
dxdy

)
,(3.5)

Ψ(b) =
∫

Ω
ψ(b(x, y))dxdy.(3.6)

The following theorem proves that Φ and Ψ are dual in a certain sense.
THEOREM 3.1. If φ (extended by parity on R) verifies the following hypotheses:
(H3) there exist constants ai > 0 and bi ≥ 0, i = 1, 2, such that

a1|t| − b1 ≤ φ(t) ≤ a2|t|+ b2 ∀ t ∈ R;

(H5) the function t→ t2

2 − φ(t) is convex on R,
then

Φ(u) = inf
b∈L2(Ω)2

∫
Ω

( |u− b|2
2

+ ψ(b)
)
dxdy,(3.7)

Ψ(b) = sup
u∈L2(Ω)2

∫
Ω

(
− |u− b|

2

2
+ φ(|u|)

)
dxdy.(3.8)

Proof. We prove (3.7). Let ρ(u) be the value of the infimum in (3.7):

ρ(u) =
∫

Ω

|u|2
2
dxdy + inf

b

∫
Ω

( |b|2
2
− b · u+ ψ(b)

)
dxdy.
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This can be also written, with (3.4), as

ρ(u) =
∫

Ω

|u|2
2
dxdy + inf

b

∫
Ω

( |b|2
2
− b · u+ l∗(b)− |b|

2

2

)
dxdy

=
∫

Ω

|u|2
2
dxdy − sup

b

∫
Ω

(
b · u− l∗(b)

)
dxdy.

Then (by Ekeland and Temam [12]),

ρ(u) =
∫

Ω

|u|2
2
dxdy −

∫
Ω
l∗∗(u)dxdy.

From (H5) we have that l∗∗(ξ) = l(ξ) ∀ξ ∈ R2; hence

ρ(u) =
∫

Ω

|u|2
2
dxdy −

∫
Ω
l(u)dxdy = Φ(u).

Equation (3.8) can be proved in the same manner.
We have remarked that we must seek a solution on the space

V =
{
f ∈ L2(Ω), Df ∈ L1(Ω)2

}
.

But in order to use the duality, we will look for a solution f on the space H1(Ω).
By using the relation (3.7), Jα(f) is written, for f ∈ H1(Ω), as

Jα(f) =
∫

Ω
(p−Rf)2dxdy + α inf

b∈L2(Ω)2

∫
Ω

( |Df − b|2
2

+ ψ(b)
)
dxdy,

and then

inf
f∈H1(Ω)

Jα(f) = inf
f∈H1(Ω)

inf
b∈L2(Ω)2

[ ∫
Ω

(p−Rf)2dxdy+α
∫

Ω

( |Df − b|2
2

+ψ(b)
)
dxdy

]
.

Because we can always invert the infinima, we get

inf
f∈H1(Ω)

Jα(f) = inf
b∈L2(Ω)2

[
α

∫
Ω
ψ(b)dxdy+ inf

f∈H1(Ω)

∫
Ω

(
(p−Rf)2 +α

|Df − b|2
2

)
dxdy

]
and the method is now clear: we fix b ∈ L2(Ω)2 and we solve the problem

(Pb) inf
f∈H1(Ω)

[ ∫
Ω

(
(p−Rf)2 + α

|Df − b|2
2

)
dxdy

]
.

If R satisfies some appropriate assumptions, then (Pb) has a unique solution, which
is, formally, a solution of the Euler equation:

(3.9)


−α2 4 fb +R∗Rf = R∗p− α

2 divb, in D′(Ω),

∂fb
∂η = 0, on ∂Ω.

We have then, for all v ∈ H1(Ω) and for all b,

(3.10)
∫

Ω

(
(p−Rfb)2 +

α

2
|Dfb − b|2

)
dxdy ≤

∫
Ω

(
(p−Rv)2 + α

|Dv − b|2
2

)
dxdy.



1956 GILLES AUBERT AND LUMINITA VESE

By adding
∫

Ω ψ(b)dxdy on each side of (3.10), and by passing to the infimum in b, we
get, for all v ∈ H1(Ω),

inf
b∈L2(Ω)2

[ ∫
Ω

(
(p−Rfb)2 +

α

2
|Dfb − b|2 + αψ(b)

)
dxdy(3.11)

≤
∫

Ω

(
(p−Rv)2 + αφ(|Dv|)

)
dxdy.

Denoting

T (b) =
∫

Ω

(
(p−Rfb)2 +

α

2
|Dfb − b|2 + αψ(b)

)
dxdy,

it is then sufficient, in order to prove that our algorithm allows us to solve the initial
reconstruction problem, to obtain the existence of b0 ∈ L2(Ω)2 such that

T (b0) = inf
b∈L2(Ω)2

T (b) with(3.12)

T (b0) =
∫

Ω

(
(p−Rfb0)2 + αφ(|Dfb0 |)

)
dxdy = Jα(fb0).

We will then deduce, with (3.11), that

(3.13) Jα(fb0) ≤ Jα(v) ∀v ∈ H1(Ω).

At this stage we must precisely formulate the mathematical assumptions in order to
ensure the existence and uniqueness of a solution. There is a problem due to the fact
that we work with sets constructed from the nonreflexive Banach space L1(Ω).

4. Existence and uniqueness of a solution. To simplify, we will suppose that
R = I on L2(Ω) (which corresponds to a denoising problem), and we will indicate
in Appendix B the minor modifications to add if R 6= I. We also suppose that the
weighting parameter α is equal to 1, which does not modify the theoretical study of
the problem (its presence and adjustment are fundamental in the applications). The
studied functional is therefore

(4.1) J(f) =
∫

Ω
(p− f)2dxdy +

∫
Ω
φ(|Df |)dxdy.

The basic assumptions that we will suppose to be verified in this section are as follows:
(4.2) p ∈ L∞(Ω) and 0 ≤ p(x, y) ≤ 1 a.e. (x, y) ∈ Ω,
(4.3) φ : R→ R is even, of class C2, nondecreasing on R+, and there exist constants

ai > 0, bi ≥ 0, i = 1, 2, such that a1|t| − b1 ≤ φ(t) ≤ a2|t|+ b2∀t ∈ R,
(4.4) 0 < φ

′′
(t) < 1∀t ∈ R.

Remark. From (4.4), the functions φ(t) and t2

2 −φ(t) are strictly convex (i.e., the
hypothesis (H5), which is strengthened).

Thanks to (4.4), with the notations of the preceding section, J(f) can be written,
for f ∈ H1(Ω), as

J(f) = inf
b∈L2(Ω)2

∫
Ω

(p− f)2 +
∫

Ω

( |b−Df |2
2

+ ψ(b)
)
dxdy.

PROPOSITION 4.1. For fixed b in L2(Ω)2 and for p satisfying (4.2), the problem

(4.5) inf
f∈H1(Ω)

∫
Ω

(
(p− f)2 +

|b−Df |2
2

)
dxdy
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has a unique solution fb ∈ H1(Ω) verifying the Euler equation

(4.6) −4 fb + 2fb = 2p− divb in D′(Ω).

Proof. The functional

Jb(f) =
∫

Ω

(
(p− f)2 +

|b−Df |2
2

)
dxdy

being continuous, strictly convex, and coercive on H1(Ω), then, by the classical theory
of calculus of variations, there exists a unique fb ∈ H1(Ω) such that

(4.7) Jb(fb) ≤ Jb(f) ∀f ∈ H1(Ω),

which is equivalent to

2
∫

Ω
(fb − p)fdxdy +

∫
Ω

(Dfb − b) ·Dfdxdy = 0 ∀f ∈ H1(Ω).

Then we obtain (4.6), choosing f ∈ D(Ω).
Remark. For the moment, we will not include in (4.6) the usual condition on the

boundary ∂Ω of Ω: ∂f
∂η (x) = 0, the H1-regularity of fb being insufficient to define the

value on the boundary of the normal derivative.
Hence, we have for all f ∈ H1(Ω) and fixed b

(4.8)
∫

Ω
(fb − p)2dxdy +

∫
Ω

|b−Dfb|2
2

dxdy ≤
∫

Ω
(f − p)2dxdy +

∫
Ω

|b−Df |2
2

dxdy,

and by adding ψ(b) on each side of (4.8) and taking the infimum in b, for all f ∈ H1(Ω),
we obtain

inf
b∈L2(Ω)2

∫
Ω

(
(fb − p)2 +

|b−Dfb|2
2

+ ψ(b)
)
dxdy(4.9)

≤
∫

Ω
((p−Rf)2 + φ(|Df |))dxdy = J(f).

We recall that

T (b) =
∫

Ω

(
(fb − p)2 +

1
2
|b−Dfb|2 + ψ(b)

)
dxdy.

Now we must prove that the problem infb∈L2(Ω)2 T (b) has a solution b0, which will
involve the existence of a function f0 solution of the initial problem

J(f0) ≤ J(f) ∀f ∈ V.

First, we will state some properties of the dual function ψ.
LEMMA 4.2. If φ verifies (4.3) and (4.4), then the function ψ defined by (3.4) has

the following properties:
(4.10) ξ∗ → ψ(ξ∗) is strictly convex,
(4.11) there exist constants a

′

i > 0 and b
′

i ≥ 0 such that

a
′

1|ξ∗| − b
′

1 ≤ ψ(ξ∗) ≤ a′2|ξ∗|+ b
′

2 ∀ξ∗ ∈ R2.
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Proof. We recall the definition of ψ(ξ∗). If l(ξ) denotes the strictly convex function
(from (4.4))

l(ξ) =
|ξ|2
2
− φ(|ξ|),

then ψ(ξ∗) is defined by

ψ(ξ∗) = l∗(ξ∗)− |ξ
∗|2
2

(l∗ denotes the Fenchel–Legendre transform of l).
We prove (4.11):

ψ(ξ∗) = sup
ξ

(
ξ∗ · ξ − l(ξ)

)
− |ξ

∗|2
2

= sup
t≥0

sup
|ξ|=t

(
ξ∗ · ξ − |ξ|

2

2
+ φ(| ξ|)

)
− |ξ

∗|2
2

= sup
t≥0

(
t|ξ∗| − t2

2
+ φ(t)

)
− |ξ

∗|2
2

,

and since φ is even,

ψ(ξ∗) = sup
t∈R

(
t|ξ∗| − t2

2
+ φ(t)

)
− |ξ

∗|2
2

.

Hence, with (4.3), we have

−b1 −
|ξ∗|2

2
+ sup

t∈R

(
a1|t|+ |ξ∗|t−

t2

2

)
≤ ψ(ξ∗)(4.12)

≤ b2 −
| ξ∗ |2

2
+ sup

t∈R

(
a2|t|+ |ξ∗|t−

t2

2

)
.

The supremum in the right-hand side of (4.12) is achieved for t = a2 + |ξ∗|, and its
value is 1

2 (a2 + |ξ∗|)2; hence, with (4.12),

ψ(ξ∗) ≤ b2 −
|ξ∗|2

2
+

1
2

(a2 + |ξ∗|)2 = b2 +
1
2
a2

2 + a2 | ξ∗|,

from which we obtain the second inequality of (4.11), with a
′

2 = a2 and b
′

2 = b2 + 1
2a

2
2.

The first inequality of (4.11) can be proved in the same way. The proof of (4.10)
follows from (4.4) and by a classical argument of convex analysis. From (4.4), we
have that the function ξ → l(ξ) is strictly convex; hence, l∗(ξ∗) is of class C2 (by
Rockfellar [21], Dacorogna [10]) and

∇ψ(ξ∗) = ∇l∗(ξ∗)− ξ∗,
∇2ψ(ξ∗) = ∇2l∗(ξ∗)− I.

Moreover, since l(ξ) is strictly convex, ∇l(ξ) is strictly monotonic and then, for
each ξ∗ ∈ R2, there is a unique ξ0 ∈ R2 such that ξ∗ = ∇l(ξ0), or equivalently,
∇l∗(ξ∗) = ξ0. Hence, we get

(4.13) ∇ψ(ξ∗) = ξ0 −∇l(ξ0) = −∇(φ(|ξ|))ξ=ξ0 = −φ
′
(|ξ0 |)
|ξ0|

ξ0
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and (see Crouzeix [9] for computational details)

(4.14) ∇2ψ(ξ∗) =
(
∇2l(ξ0)

)−1
− I,

which can be also written, from the definition of l(ξ), as

∇2ψ(ξ∗) =
(
I −∇2(φ(|ξ|))ξ=ξ0

)−1
− I.

Thanks to (4.4), it is then clear that the matrix∇2ψ(ξ∗) is symmetric positive definite;
consequently, ψ is strictly convex.

Remark. In Lemma 4.2, ξ0 is, in fact, the unique point realizing the supremum
supξ(ξ · ξ∗ − l(ξ)) = l∗(ξ∗).

Provided with the properties of the function ψ, we can now return to the study
of the problem (4.9):

inf
b∈L2(Ω)2

{
T (b) =

∫
Ω

(
(fb − p)2 +

|b−Dfb|2
2

+ ψ(b)
)
dxdy

}
.

If bn is a minimizing sequence, then it is simple to deduce from (4.8) and (4.11) that
bn and fbn verify the estimates

‖fbn‖L2(Ω) ≤ c,
‖bn‖L1(Ω)2 ≤ c,

where c is a constant which only depends on the data. But we cannot obtain an
H1(Ω)-estimate for fbn and an L2(Ω)2-estimate for bn, hence we must work on the
nonreflexive space L1(Ω) or on Mb(Ω), the space of bounded measures. To over-
come this difficulty, we regularize the problem by making a slight modification on the
potential φ. We introduce the function

φε(t) = φ(t) +
ε

2
t2, ε > 0,

with which we associate

lε(ξ) =
|ξ|2
2
− φε(|ξ|),

ψε(ξ∗) = l∗ε(ξ)− |ξ|
2

2
.

The function ψε has the same properties as ψ if we modify and replace (4.4) by the
following:

(4.4)ε There is ε0, with 0 < ε0 < 1 such that 0 < φ
′′
(t) < 1− ε0, for all t ∈ R.

The assumption (4.4)ε is not restrictive, because we can always change the weighting
parameter in the energy Jα(f), to have (4.4)ε verified.

By proceeding as in Lemma 4.2, it is easy to see, for ε ≤ ε0, that

(4.10)ε ξ∗ → ψε(ξ∗) is strictly convex,

(4.11)ε −b1 +
a2

1

2(1− ε) +
a1

1− ε |ξ
∗|+ ε

2(1− ε) |ξ
∗|2 ≤ ψε(ξ∗)

≤ b2 +
a2

2

2(1− ε) +
a2

1− ε |ξ
∗|+ ε

2(1− ε) |ξ
∗|2,
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and the regularized problem associated with T (b) is

(4.15) inf
b∈L2(Ω)2

{
Tε(b) =

∫
Ω

(
(fb − p)2 +

|b−Dfb|2
2

+ ψε(b)
)
dxdy

}
,

for which we state the following proposition.
PROPOSITION 4.3. Under the assumptions (4.2), (4.3), and (4.4)ε, the problem

(4.15) has a unique solution bε and there exists a constant c, independent of ε, such
that

(4.16)

ε‖bε‖2L2(Ω)2 ≤ c,
ε‖Dfbε‖2L2(Ω)2 ≤ c,
‖bε‖L1(Ω)2 ≤ c,
‖fbε‖L2(Ω) ≤ c.

Proof. The functional Tε(b) is strictly convex since, from (4.6), the map b → fb
is affine from L2(Ω) to H1(Ω) and the function ψε is strictly convex (from (4.10)ε).

Moreover, from (4.11)ε, for each b ∈ L2(Ω)2 there are some coefficients a
′

1 > 0
and b

′

1 such that

ε

2
‖b‖2L2(Ω)2 + a

′

1‖b‖L1(Ω)2 − b′1 ≤ Tε(b);

hence, for fixed ε, the minimizing sequences bnε from (4.15) are bounded in L2(Ω)2;
therefore, there exist bε ∈ L2(Ω)2 and a subsequence denoted also by bnε such that
bnε

w
⇀ bε in L2(Ω) weak. Since to the strict convexity of Tε, bε is unique, the entire

sequence bnε converges to bε, and

Tε(bε) ≤ lim
n→∞

Tε(bnε ) = inf
b
Tε(b) ≤ Tε(b) ∀b ∈ L2(Ω)2;

that is, bε is the unique solution of (4.15):

(4.17)
∫

Ω

(
(fbε − p)2 +

|bε −Dfbε |2
2

+ ψε(bε) +
ε

2
|bε|2

)
dxdy

≤
∫

Ω

(
(fb − p)2 +

|b−Dfb|2
2

+ ψε(b) +
ε

2
|b|2
)
dxdy ∀b ∈ L2(Ω)2.

Choosing, for example, b = 0 in (4.17), it is clear that there is a constant c,
independent of ε, such that (4.16) is verified.

The following theorem examines the optimality condition satisfied by bε.
THEOREM 4.4. The solution bε of the problem (4.15) verifies the optimality con-

dition

(4.18) (1 + ε)bε +Dψε(bε)−Dfbε = 0 a.e. (x, y) ∈ Ω.

Proof. To simplify the notations, we denote fε = fbε ; then let us consider a
variation of bε of the form bθ = bε + θq, where θ ∈ R and q ∈ L2(Ω)2. Denoting
fθ = fbθ , it is clear, thanks to the linearity of formula (4.6), that

(4.19) fθ = fε + θh,

where h verifies

(4.20) −4 h+ 2h = −divq in H1(Ω)
′

(the dual of H1(Ω)).
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With this remark
Tε(bθ)− Tε(bε)

θ

(4.21) =
∫

Ω
(2fε − 2p+ θh)hdxdy +

∫
Ω

(2bε − 2Dfε + θ(q −Dh)) · (q −Dh)dxdy

+
1
θ

∫
Ω

(ψ(bε + θq)− ψ(bε))dxdy.

Now, as θ → 0, the sum of the two first integrals converges to

2
∫

Ω

(
(fε − p)h+ (bε −Dfε) · (q −Dh)

)
dxdy.

For the third integral, according to a result of convex analysis of Tahraoui [25],
we have from (4.10)ε and (4.11)ε that there exist two constants a(ε), b(ε) ≥ 0, such
that

(4.22) |∇ψε(b)| ≤ a(ε)|b|+ b(ε) ∀b ∈ R2.

Hence, thanks to (4.16) and the Lebesgue dominated convergence theorem, we can
pass to the limit in the third integral and obtain

(4.23) lim
θ→0

1
θ

(Tε(bθ)−Tε(bε)) = 2
∫

Ω

(
(fε−p)h+(bε−Dfε)·(q−Dh)+Dψε(bε)q

)
dxdy.

But with the Euler equation of (4.7),

(4.24) 2
∫

Ω
(fε − p)hdxdy = −

∫
Ω

(Dfε − bε) ·Dhdxdy.

Therefore, since bε is a critical point of T , for all q ∈ L2(Ω)2,

lim
θ→0

1
θ

(Tε(bθ)− Tε(bε)) =
∫

Ω

(
(bε −Dfε) +Dψε(bε)

)
qdxdy = 0,

which implies the relation we wanted to prove:

(4.25) bε −Dfε +Dψε(bε) = 0.

In the following corollary, we express Dψε(bε) in terms of Dfε and φ
′
(|Dfε|).

COROLLARY 4.5. The optimality condition (4.25) can be written as

(4.26) bε =
(

(1− ε)− φ
′
(|Dfε|)
|Dfε|

)
Dfε.

Proof. We recall that

ψε(ξ∗) = l∗ε(ξ∗)− |ξ
∗|2
2

,

where
lε(ξ) =

|ξ|2
2
− φ(|ξ|)− ε

2
|ξ|2.

Thanks to (4.3) and (4.4)ε, the function lε is strictly convex; hence, l∗ε and ψε are
differentiable and

(4.27) Dψε(ξ∗) = Dl∗ε(ξ∗)− ξ∗.
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But

l∗ε(ξ∗) = sup
ξ

(
ξ∗ · ξ − lε(ξ)

)
.

Then Dl∗ε(ξ∗) = ξε, where ξε is the unique point realizing the supξ(ξ∗ · ξ− lε(ξ)); that
is, ξ∗ −Dlε(ξε) = 0 or

(4.28) ξ∗ = (1− ε)ξε − ξε
φ
′
(|ξε|)
|ξε|

= 0.

Denoting

Lε(ξ) = (1− ε)ξ − ξ φ
′
(|ξ|)
|ξ| ,

thanks to (4.4)ε, Lε is invertible and (4.28) is equivalent to

ξε = L−1(ξ∗) and Dψε(ξ∗) = L−1(ξ∗)− ξ∗.

With the optimality condition, we have the following sequence of equalities:

Dψε(bε) + bε −Dfε = 0,

L−1(bε)− bε + bε −Dfε = 0,

L−1(bε) = Dfε,

bε = L(Dfε) = (1− ε)Dfε −Dfε
φ
′
(|Dfε|)
|Dfε|

,

bε =
(

(1− ε)− φ
′
(|Dfε|)
|Dfε|

)
Dfε.

Now, to prove the existence of a solution for the initial problem (3.13), it remains
to study the behavior of fε and bε when ε→ 0. The system linking fε and bε consists
of two equations, namely, (4.6) and (4.26).

From (4.26) we have

divbε = (1− ε)4 fε − div
(φ′(|Dfε|)
|Dfε|

Dfε

)
.

Putting this equality in (4.6), we get

(4.29) ε4 fε + div
(φ′(|Dfε|)
|Dfε|

Dfε

)
= 2(fε − p).

Then, (4.29) is exactly the Euler equation associated with the problem

inf
{
Jε(f); f ∈ H1(Ω)

}
,

where

(4.30) Jε(f) =
∫

Ω
(p− f)2dxdy +

∫
Ω
φ(|Df |)dxdy +

ε

2

∫
Ω
|Df |2dxdy.
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Otherwise, we remark, thanks to (4.26), that

Jε(fε) =
∫

Ω
(p− fε)2dxdy +

∫
Ω

(
φ(|Dfε|) +

ε

2
|Dfε|2

)
dxdy

=
∫

Ω
(p− fε)2dxdy + inf

b∈L2(Ω)2

∫
Ω

( |b−Dfε|2
2

+ ψε(b)
)
dxdy

=
∫

Ω

(
(p− fε)2 +

|bε −Dfε|2
2

+ ψε(bε)
)
dxdy

= inf
b∈L2(Ω)2

Tε(b) ≤ Jε(f) ∀f ∈ H1(Ω).

Thanks to classical results of regularity, the solution fε of (4.29) belongs to C2(Ω)
(see, for example, Ladyzenskaya and Uralceva [17] or Gilbarg and Trudinger [16]).
Moreover, we can easily obtain an L∞-estimate for fε.

PROPOSITION 4.6. If p verifies (4.2), then the solution fε of (4.29) satisfies

(4.31) 0 ≤ fε(x, y) ≤ 1 a.e. (x, y) ∈ Ω.

Proof. Let us show, for example, that fε(x, y) ≤ 1∀(x, y) ∈ Ω. The other inequal-
ity can be proved in the same way.

fε is a solution of the variational problem
(4.32)

2
∫

Ω
(fε − p)vdxdy +

∫
Ω

φ
′
(|Dfε|)
|Dfε|

Dfε ·Dvdxdy + ε

∫
Ω
Dfε ·Dvdxdy = 0∀v ∈ H1(Ω).

In (4.32), we choose v = (fε − 1)+ ≥ 0; according to Stamppachia [24], v ∈ H1(Ω)
and (4.32) can be written as

(4.33) ε

∫
fε>1

|Dfε|2dxdy +
∫
fε>1

φ
′
(|Dfε|)dxdy = −2

∫
fε>1

(fε − p)(fε − 1)+.

But, by hypothesis, φ
′
(t) ≥ 0 on R+ (see (4.3)) and 0 ≤ p(x, y) ≤ 1 a.e. (x, y) ∈ Ω.

Then (fε − p)(x, y) ≥ 0 a.e. (x, y) ∈ {(x, y); fε > 1}, which implies, from (4.33), that∫
fε>1

|Dfε|2dxdy ≤ 0;

from this, we have that Dfε(x, y) = 0 ∀(x, y) ∈ {(x, y); f(x, y) > 1}; i.e., (fε−1)+ = 0,
which is equivalent to fε(x, y) ≤ 1 a.e. (x, y) ∈ Ω.

The following estimates are more delicate and are based on a very fine pertur-
bation lemma due to Temam [12], [26]. This lemma is rather technical, and we will
make a sketch of the proof in Appendix A.

PROPOSITION 4.7. If p ∈ W 1,∞, then for every open set O relatively compact in
Ω, there is a constant K = K(O,Ω, ‖p‖W 1,∞) such that

(4.34) ‖fε‖W 1,∞(O) ≤ K,

(4.35) ‖fε‖H2(O) ≤ K.

This proposition allows us to pass to the limit on fε and bε when ε→ 0. Besides
the estimates (4.31), (4.34), and (4.35), we can add, thanks to (4.3):

(4.36) ‖fε‖W 1,1(Ω) ≤ c (c independent of ε).
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With these estimates, we can state, using the classical results of compactness and the
diagonal process, that there is a function f0 and a sequence εm → 0 such that

fεm ⇀ f0 in L∞(Ω) weak-star,(4.37)

Dfεm ⇀ Df0 in L∞(O) weak-star ∀O ⊂ O ⊂ Ω,(4.38)

fεm ⇀ f0 in H2(O) weak ∀O ⊂ O ⊂ Ω,(4.39)

fεm → f0 in L1(Ω) strong,(4.40)

fεm |O→ f0 |O in H1(O) strong ∀O ⊂ O ⊂ Ω,(4.41)

fεm(x, y)→ f0(x, y) a.e. (x, y),(4.42)

Dfεm(x, y)→ Df0(x, y) a.e. (x, y),(4.43)

and we have the following result.
THEOREM 4.8. Under the previous assumptions, (4.2), (4.3), and (4.4), and if

p ∈W 1,∞(Ω), then the function f0 defined before belongs to W 1,1(Ω)
⋂
L∞(Ω) and is

the unique solution of the initial optimization problem

(4.44) inf
{
J(f) =

∫
Ω

(p− f)2dxdy +
∫

Ω
φ(|Df |)dxdy, f ∈ L2(Ω), Df ∈ L1(Ω)2

}
.

Proof. By the Fatou lemma, (4.36) and (4.43), it is clear that f0 belongs to
W 1,1(Ω)

⋂
L∞(Ω) (we have, moreover, that f0 |O∈ H2(O)

⋂
W 1,∞(O), for all O with

O ⊂ O ⊂ Ω). f0 is a solution of (4.44). In fact, fεm is the solution of the variational
problem (4.32). Thanks to the Tahraoui result mentioned before, the assumptions
(4.3) and (4.4) imply that there exists a constant M > 0 such that |φ′(t)| ≤M , for all
t ∈ R. Therefore, with the convergences (4.37)–(4.43) and the Lebesgue dominated
convergence theorem, we can pass to the limit in (4.32) and obtain

(4.45) 2
∫

Ω
(f0 − p)2vdxdy +

∫
Ω

φ
′
(|Df0|)
|Df0|

Df0 ·Dvdxdy = 0 ∀v ∈ H1(Ω).

By density, (4.45) is true for all v ∈ L2(Ω) with Dv ∈ L1(Ω)2, and since the problem
is strictly convex, f0 is the unique solution of (4.44); moreover, 0 ≤ f(x, y) ≤ 1 a.e.
(x, y) ∈ Ω.

The previous results imply some convergence properties for the sequence of the
dual variables bε. In fact, we have proved that bε verifies

(4.46) bε =
(

(1− ε)− φ
′
(|Dfε|)
|Dfε|

)
Dfε

and

(4.47) Jε(fε) = J(fε) +
ε

2

∫
Ω
|Dfε|2dxdy =

∫
Ω

(p− fε)2dxdy

+ inf
b∈L2(Ω)2

∫
Ω

( |b−Dfε|2
2

+ ψε(b)
)
dxdy = inf

b∈L2(Ω)2
Tε(b) ≤ Jε(f)∀f ∈ H1(Ω).

If ε→ 0, we deduce from (4.46) that bε(x, y)→ b0(x, y) a.e. (x, y) ∈ Ω, where

b0(x, y) =
(

1− φ
′
(|Df0(x, y)|)
|Df0(x, y)|

)
Df0(x, y).
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The sequence of equalities in (4.47) proves that fε is a minimizing sequence for the
problem inff J(f), and that∫

Ω
φ(|Df0|)dxdy = lim

ε→0
inf

b∈L2(Ω)2

∫
Ω

( |b−Df0|2
2

+ ψε(b)
)
dxdy

= lim
ε→0

∫
Ω

(
φ(|Dfε|) +

ε

2
|Dfε|2

)
dxdy.

We will present more precisely some convergence results for bε in the next section.
Remark. In Theorem 4.8, we have obtained the existence under the condition

p ∈ W 1,∞(Ω). This is a restrictive condition, the most natural being p ∈ L∞. This
restriction is due to the method; we can relax it by working on BV (Ω), the space
of functions with bounded variation, and by using the notion of convex function of
a measure [11], [18]. Or, by another point of view, we can solve the problem in the
context of viscosity solutions (see [8] for the general theory and [18] for applications to
image analysis). Nevertheless, with the assumption p ∈ W 1,∞(Ω), we have obtained
the regularity result f0 ∈ H2(O)

⋂
W 1,∞(O) for all O ⊂ O ⊂ Ω; that is, the process

is regularizing.

5. Description and convergence of the algorithm. In this section, we are
working in the context of Theorem 4.8, and we assume the existence and uniqueness
of a function f0 ∈W 1,1(Ω)

⋂
L∞(Ω), which is the solution of

(5.1) inf
{
J(f) =

∫
Ω

(p− f)2dxdy +
∫

Ω
φ(|Df |)dxdy; f ∈ L2(Ω), Df ∈ L1(Ω)2

}
.

Using the previous results, we describe the algorithm for computing f0. We denote
T (b, f), the functional defined on L2(Ω)2 ×H1(Ω), by

(5.2) T (b, f) =
∫

Ω
(p− f)2dxdy +

1
2

∫
Ω
|Df − b|2dxdy +

∫
Ω
ψ(b)dxdy

(with ψ defined as before).
The iterative algorithm is as follows.
(i) f0 ∈ H1(Ω) is arbitrarily given, with 0 ≤ f0 ≤ 1.
(ii) fn ∈ H1(Ω) being calculated, we compute bn+1 by solving the minimization

problem

(5.3) T (bn+1, fn) ≤ T (b, fn) ∀b ∈ L2(Ω)2.

Equation (5.3), which is a strictly convex problem, has a unique solution bn+1 satis-
fying the equation bn+1 = Dfn+1 −Dψ(bn+1), or, by Corollary 4.5,

(5.4) bn+1 =
(

1− φ
′
(|Dfn|)
|Dfn|

)
Dfn.

(iii) fn+1 is therefore calculated as the solution of the problem

(5.5) T (bn+1, fn+1) ≤ T (bn+1, f) ∀f ∈ H1(Ω),

which is equivalent to solving the variational problem

(5.6)
∫

Ω
(Dfn+1 − bn+1) ·Dfdxdy + 2

∫
Ω

(fn+1 − p)fdxdy = 0 ∀f ∈ H1(Ω).

Equation (5.6) has a unique solution fn+1.
We denote by Un the sequence Un = T (bn+1, fn).
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LEMMA 5.1. The sequence Un is convergent.
Proof. We prove that Un is decreasing and bounded below. We have

Un−1 − Un = T (bn, fn−1)− T (bn+1, fn),

Un−1 − Un = (T (bn, fn)− T (bn+1, fn)) + (T (bn, fn−1)− T (bn, fn));

thanks to the definition of bn+1 and fn, we have for all n > 0,

An = T (bn, fn)− T (bn+1, fn) ≥ 0,

Bn = T (bn, fn−1)− T (bn, fn) ≥ 0.

Therefore, Un−1 − Un = An +Bn ≥ 0; that is, Un is decreasing, and since

inf
b

∫
Ω
ψ(b)dxdy > −∞,

the sequence Un is bounded below and then is convergent.
LEMMA 5.2. The previous sequence bn verifies

(5.7) lim
n→∞

‖bn − bn+1‖L2(Ω)2 = 0.

Proof. We study the term An, which can be written as

An =
∫

Ω
(fn − p)2dxdy +

1
2

∫
Ω
|Dfn − bn|2dxdy +

∫
Ω
ψ(bn)dxdy

−
∫

Ω
(fn − p)2dxdy − 1

2

∫
Ω
|Dfn − bn+1|2dxdy −

∫
Ω
ψ(bn+1)dxdy,

An =
∫

Ω

(1
2
|Dfn − bn|2 + ψ(bn)

)
dxdy −

∫
Ω

(1
2
|Dfn − bn+1|2 + ψ(bn+1)

)
dxdy.

Denoting hn(b) = 1
2 |Dfn − b|2 + ψ(b), then

An =
∫

Ω
(hn(bn)− hn(bn+1))dxdy.

Thanks to the Taylor formula, there exists cn between bn and bn+1 such that

An =
∫

Ω
(bn − bn+1) ·Dhn(bn+1)dxdy +

1
2

∫ t

Ω
(bn − bn+1) ·D2hn(cn)(bn − bn+1)dxdy.

But Dhn(bn+1) = bn+1 −Dfn +Dψ(bn+1) = 0, by the definition of bn+1. Moreover,
D2hn(b) = I +D2ψ(b) ≥ I, because ψ is convex (by Lemma 4.2). Consequently,

An ≥
∫

Ω
|bn − bn+1|2dxdy.

Otherwise, Un−1−Un = An+Bn ≥ An ≥ 0, and since the sequence Un is convergent,
limn→∞An = 0, which implies that

lim
n→∞

∫
Ω
|bn − bn+1|2dxdy = 0.

In general, we cannot obtain a more precisely convergent theorem (for example,
the convergence in H1(Ω)), without supposing more regularity on the solution.
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LEMMA 5.3. If 0 ≤ (φ
′
(t)/t) ≤ 1 ∀t ≥ 0, then the sequence fn is bounded in

H1(Ω).
Proof. The proof is based on a recurrence process. In (5.6) we choose f = fn+1;

we get

(5.8)
∫

Ω

(
|Dfn+1|2 + 2(fn+1)2

)
dxdy =

∫
Ω

(
bn+1 ·Dfn+1 + 2pfn+1

)
dxdy.

With (5.4), and since 0 ≤ (φ
′
(t)/t) ≤ 1 (in fact, in the applications, (φ

′
(t)/t) decreases

from 1 to 0 for t ∈]0,∞[), we have |bn+1| ≤ |Dfn|, which implies, with (5.8), that

(5.9)
∫

Ω

(
|Dfn+1|2 + 2(fn+1)2

)
dxdy ≤

∫
Ω

(
|Dfn| · |Dfn+1|+ 2|p||fn+1|

)
dxdy.

Denoting M = max(2‖p‖L2 , ‖f0‖H1), we have

(5.10) ‖fn‖H1(Ω) ≤M ∀n.

In fact, (5.10) is true for n = 0; suppose that (5.10) is true for n, and with (5.9),

‖fn+1‖2H1 ≤
∫

Ω

(
|Dfn+1|2 + 2(fn+1)2

)
dxdy

≤M‖Dfn+1‖L2 + 2‖p‖L2‖fn+1‖L2 ≤M‖fn+1‖H1 ,

from which ‖fn+1‖H1 ≤M . Then (5.10) is true for all n.
Like a corollary of Lemma 5.3, we easily deduce that the sequence bn is bounded

in L2(Ω)2. The following theorem examines the convergence of fn to f0, the solution
of the problem (5.1); it is therefore necessary to add a slight regularity assumption
on f0.

THEOREM 5.4. If the solution f0 of (5.1) belongs to H1(Ω), then

i) fn → f0 in L2(Ω) strong ;

ii) Dfn ⇀ Df0 in L2(Ω)2 weak ;

iii) lim
n→∞

∫
Ω
φ(|Dfn|)dxdy =

∫
Ω
φ(|Df0|)dxdy;

iv) Dfn → Df0 in L1(Ω)2 strong.

Proof. We know that f0 is the unique solution, belonging to

V =
{
f ∈ L2(Ω), Df ∈ L1(Ω)2

}
,

of the variational problem

(5.11)
∫

Ω

φ
′
(|Df0|)
|Df0|

Df0 ·Dfdxdy + 2
∫

Ω
(f0 − p)fdxdy = 0∀f ∈ H1(Ω).

With b0 defined in the previous section, (5.11) is equivalent to (all the integrals have
sense, because f0 ∈ H1(Ω))

(5.12)
∫

Ω
(Df0 ·Df − b0 ·Df)dxdy + 2

∫
Ω

(f0 − p)fdxdy = 0 ∀f ∈ H1(Ω).
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Otherwise, with (5.6), fn is defined by

(5.13)
∫

Ω
(Dfn ·Df − bn ·Df)dxdy + 2

∫
Ω

(fn − p)fdxdy = 0 ∀f ∈ H1(Ω).

By subtracting (5.13) from (5.12), and choosing f = f0 − fn, we get

(5.14)
∫

Ω
|Df0−Dfn|2dxdy+2

∫
Ω
|f0−fn|2dxdy−

∫
Ω

(bn−b0)·(Dfn−Df0)dxdy = 0.

With the definition of b0 and bn, by adding and subtracting bn+1, it is easy to see
that∫

Ω
(bn − b0) · (Dfn − Df0)dxdy

=
∫

Ω
|Dfn −Df0|2dxdy +

∫
Ω

(bn − bn+1)(Dfn −Df0)dxdy

+
∫

Ω

(φ′(|Df0|)
|Df0|

Df0 −
φ
′
(|Dfn|)
|Dfn| Dfn

)(
Dfn −Df0

)
dxdy.

If we denote

j(f) =
∫

Ω
φ(|Df |)dxdy,

then (5.14) can be written as

2
∫

Ω
(fn − f0)2dxdy +

∫
Ω

(bn+1 − bn)(Dfn −Df0)dxdy(5.15)

+ 〈j′(f0)− j′(fn), fn − f0〉 = 0.

Since j is convex, the third integral in (5.15) is nonnegative and then

(5.16) 2
∫

Ω
(fn − f0)2dxdy +

∫
Ω

(bn+1 − bn) · (Dfn −Df0)dxdy ≤ 0.

With Lemma 5.2, (bn+1 − bn) n→∞→ 0 in L2(Ω)2 strong, and with Lemma 5.3 and the
assumption f0 ∈ H1(Ω), we have that Dfn − Df0 is bounded in L2(Ω)2; hence, by
passing to the limit in (5.16), we get

(5.17) lim
n→∞

∫
Ω

(fn − f0)2dxdy = 0.

To prove ii), we remark, thanks to Lemma 5.3, that there is an f̃ ∈ H1(Ω) such
that fn ⇀ f̃ (or for a subsequence) in H1(Ω) weak and, with (5.17), that necessarily
f̃ = f0, and that the entire sequence converges.

To prove iii), we deduce from (5.15) and (5.17) that

lim
n→∞

〈j′(f0)− j′(fn), fn − f0〉 = 0;

that is,

(5.18) lim
n→∞

∫
Ω

(φ′(Df0|)
|Df0|

Df0 −
φ
′
(|Dfn|)
|Dfn| Dfn

)
· (Dfn −Df0)dxdy = 0,
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and since Dfn ⇀ Df0 in L2(Ω)2 weak, (5.18) implies that

(5.19) lim
n→∞

∫
Ω

φ
′
(|Dfn|)
|Dfn| Dfn · (Dfn −Df0)dxdy = 0.

But, since φ is convex, we have∫
Ω

(φ(|Df0|)− φ(|Dfn|))dxdy ≥
∫

Ω

φ
′
(|Dfn|)
|Dfn| Dfn · (Df0 −Dfn)dxdy,

from which, with (5.19):∫
Ω
φ(|Df0|)dxdy ≥ limn→∞

∫
Ω
φ(|Dfn|)dxdy.

And, since we always have (thanks to the convexity of φ)

limn→∞

∫
Ω
φ(|Dfn|)dxdy ≥

∫
Ω
φ(|Df0|)dxdy,

we get

(5.20) lim
n→∞

∫
Ω
φ(|Dfn|)dxdy =

∫
Ω
φ(|Df0|)dxdy.

The proof of iv) is a consequence of the following result due to Visintin.
THEOREM 5.5 (Visintin [28, Thm. 3]). Let Φ be a strictly convex function from

R2 → R and let un be a sequence from L1(Ω)2 such that

un ⇀ u in L1(Ω)2 weak,∫
Ω

Φ(un)dxdy →
∫

Ω
Φ(u)dxdy.

Then un → u in L1(Ω) strong.
To prove part iv), we apply the Visintin result with un = Dfn and Φ(u) =

φ(|Du|).
Remarks.
(1) f0, the solution of the initial reconstruction problem (5.1), necessarily verifies,

in the sense of distribution,

(5.21) 2(p− f0)− div
(φ′(Df0|)
|Df0|

Df0

)
= 0 in D′(Ω).

Since p, f0 ∈ L∞(Ω), we deduce from (5.21) that

div
(φ′(Df0|)
|Df0|

Df0

)
∈ L∞(Ω),

and then if f0 ∈ H1(Ω), with a result of Lions and Magenes [19], we can give sense,
on the boundary ∂Ω of Ω, to the conormal derivative φ

′
(|Df0|)/|Df0|Df0 ·n (n is the

exterior normal to ∂Ω). Multiplying (5.21) by f ∈ H1(Ω) and integrating by parts,
we get, with (5.12),

(5.22)
φ
′
(|Df0|)
|Df0|

∂f0

∂n
= 0 on ∂Ω,
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and if limt→∞ φ
′
(t)/t = 0 (by (2.12)), then with (5.22), we have either

(5.23)
∂f0

∂n
= 0 on ∂Ω

or

(5.24) |Df0| = +∞ on ∂Ω.

Supposing that in a neighborhood of its boundary, the image does not present an
edge, we can incorporate (5.23) like a boundary condition in the algorithm.

(2) If limt→0 φ
′
(t)/t = 1 by (2.7), limt→∞ φ

′
(t)/t = 0 by (2.12); then the function

|b0|
|Df0| (x, y) is an edge indicator which takes, roughly speaking, only the values 1 or 0.
In fact,

|b0|
|Df0|

(x, y) =
(

1− φ
′
(|Df0|)
|Df0|

)
(x, y).

In a neighborhood of a pixel (x, y) belonging to an edge, |Df0| is big and |b0|
|Df0| ∼ 1,

whereas in the interior of a homogeneous region, |Df0|(x, y) is small and |b0|
|Df0| (x, y) ∼

0.
(3) There are other dualities for introducing an auxiliary variable. For example, if

t→ φ(
√
t) is strictly concave, we can prove that there is a function ψ strictly convex

and decreasing such that

φ(t) = inf
b

(bt2 + ψ(b)).

This duality was exploited by Geman and Reynolds [15] and Charbonnier et al. [6].

6. The numerical approximation of the model. In this section we will
present the numerical approximation, by using the finite difference method, for the
Euler equation associated with the minimization reconstruction problem; that is,

(E) λ(R∗Rf −R∗p)− div
(φ′(|Df |)
|Df | Df

)
= 0,

where the function φ is of the type of potential introduced in the previous sections
(this equation is equivalent to (2.5), by taking λ = 2

α ). For the tests, we have used

φ1(t) =
√

1 + t2 in the convex case and φ2(t) = t2

1+t2 , which is not convex.
Before starting with the algorithm, we recall some standard notation. Let

10) xi = ih, yj = jh, i, j = 1, 2, . . . , N, with h > 0;

20) fij ≈ f(xi, yj), fnij ≈ fn(xi, yj);

30) pij ≈ p(xi, yj);

40) m(a, b) = minmod(a, b) =
sgna+ sgnb

2
min(|a|, |b|);

50) 4x∓fij = ∓(fi∓1,j − fij) and 4y∓ fij = ∓(fi,j∓1 − fij).
For the moment, we begin with the case R = I and let ψ, the function, be defined

by

ψ : R→ R, ψ(t) =


φ
′
(t)
t

if t 6= 0,

limt→0
φ
′
(t)
t

if t = 0.
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Then, for each type of potential, φ1 and φ2, the function ψ is positive and bounded
on R.

The numerical method is as follows. (We essentially adopt the method of Rudin,
Osher, and Fatemi [23] to approximate the divergence term, and we use an iteration
algorithm.)

We suppose that Ω is a rectangle. So, (pij)i,j=1,N is the initial discrete image such
that m1 ≤ pij ≤ m2, where m2 ≥ m1 ≥ 0. We will approach the numerical solution
(fij)i,j=1,N by a sequence (fnij)i,j=1,N for n→∞, which is obtained as follows.

1) f0 is arbitrarily given, such that m1 ≤ f0
ij ≤ m2.

2) If fn is calculated, then we compute fn+1 as a solution of the linear discrete
problem

λfn+1
ij − 1

h

{
4x−

[
ψ
(((4x+fnij

h

)2
+
(
m
(4y+fnij

h
,
4y−fnij
h

))2) 1
2
)(4x+fn+1

ij

h

)]}
− 1
h

{
4y−

[
ψ
(((4y+fnij

h

)2
+
(
m
(4x+fnij

h
,
4x−fnij
h

))2) 1
2
)(4y+fn+1

ij

h

)]}
(6.1)

= λpij ,

for i, j = 1, . . . , N and with the boundary conditions obtained by reflection as

fn0j = fn2j , f
n
N+1,j = fnN−1,j , f

n
i0 = fni2, f

n
iN+1 = fni,N−1.

Remark. The algorithm described in the previous section allows us to compute
fn+1 by the formula (instead of (6.1))

(6.2) λfn+1
ij −4fn+1

ij = pij − div
[(

1−
φ
′
(|Dfnij |)
|Dfnij |

)
Dfnij

]
.

But, in this way, we unfortunately obtain an unstable algorithm; that is, fn+1
ij is not

bounded by the same bounds of fn. So, to overcome this difficulty, we must replace
(6.2) by

λfn+1
ij − div(Dfn+1

ij ) = pij − div
[(

1−
φ
′
(|Dfnij |)
|Dfnij |

)
Dfn+1

ij

]
,

which is equivalent to

λfn+1
ij − div

(φ′(|Dfnij |)
|Dfnij |

Dfn+1
ij

)
= pij ,

i.e., (6.1) after discretization.
We multiply (6.1) by h2 and we denote by c1(fnij), c2(fnij), c3(fnij), and c4(fnij)

in (6.1), the coefficients of fn+1
i+1,j , f

n+1
i−1,j , f

n+1
i,j+1, and fn+1

i,j−1, respectively. With these
notations, (6.1) can be written as

(λh2 + c1(fnij) + c2(fnij) + c3(fnij) + c4(fnij))f
n+1
ij(6.3)

= c1(fnij)f
n+1
i+1,j + c2(fnij)f

n+1
i−1,j + c3(fnij)f

n+1
i,j+1 + c4(fnij)f

n+1
i,j−1 + λh2pij .

We remark that ci ≥ 0, for i = 1, 4. Now, for fnij , let Ci(fnij) and C(fnij) be defined by

Ci =
ci

λh2 + c1 + c2 + c3 + c4
, C =

λh2

λh2 + c1 + c2 + c3 + c4
.
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Then, we have that Ci, C ≥ 0 and C1 + C2 + C3 + C4 + C = 1 (we recall that these
coefficients depend on fnij).

Hence, we write (6.3) as

(6.4) fn+1
ij = C1(fnij)f

n+1
i+1,j+C2(fnij)f

n+1
i−1,j+C3(fnij)f

n+1
i,j+1 +C4(fnij)f

n+1
i,j−1 +C(fnij)pij .

Now let (E, ‖ · ‖) be the Banach space

E =
{
f = (fij)i,j=1,N , fij ∈ R

}
with ‖f‖ = sup

ij
|fij |,

and the subspace M ⊂ E: M = {f ∈ E;m1 ≤ fij ≤ m2}.
PROPOSITION 6.1.
i) If fn ∈ M , then there exists a unique fn+1 ∈ E such that (6.3) is satisfied.

Moreover, fn+1 ∈M .
ii) The nonlinear discrete problem

(6.5) fij = C1(fij)fi+1,j + C2(fij)fi−1,j + C3(fij)fi,j+1 + C4(fij)fi,j−1 + C(fij)pij

has a solution f ∈M .
Proof.
i) For u ∈M , we define the linear application Qu : M → E by

(Qu(z))ij = C1(uij)zi+1,j +C2(uij)zi−1,j +C3(uij)zi,j+1 +C4(uij)zi,j−1 +C(uij)pij .

We will easily prove thatQu(M) ⊂M and, moreover, thatQu is a contractive function
on E. We have, for z ∈M ,

(Qu(z))ij = C1(uij)zi+1,j + C2(uij)zi−1,j + C3(uij)zi,j+1 + C4(uij)zi,j−1

+ C(uij)pij ≤ (C1(uij) + C2(uij) + C3(uij) + C4(uij) + C(uij))m2 = m2.

We obtain in the same way that m1 ≤ (Qu(z))ij . Hence, Qu(z) ∈ M . For v, w ∈ E,
we have

|(Qu(v)−Qu(w))ij | ≤ C1(uij)|vi+1,j − wi+1,j |+ C2(uij)|vi−1,j − wi−1,j |

+ C3(uij)|vi,j+1 − wi,j+1|+ C4(uij)|vi,j−1 − wi,j−1|

≤ (C1(uij) + · · ·+ C4(uij))‖v − w‖ ≤ c‖v − w‖,
where the positive constant c is

c =
4 sup[0,∞[ ψ

λh2 + 4 sup[0,∞[ ψ
< 1,

since the function ψ is bounded. So, by the classical Banach fixed point theorem, we
deduce that there is a unique fn+1 ∈ E such that fn+1 = Qfn(fn+1), which is the
fixed point of Qfn , or the solution of (6.3). Moreover, fn+1 ∈M .

ii) To prove ii), we define the application F : M →M by F (u) = u∗, where u∗ is
the unique fixed point of Qu. We will prove that this application is continuous from
the compact and convex set M → M , and then we will have the existence of a fixed
point of F , which will be a solution of (6.4).

So, let un, u ∈ M such that limn→∞ ‖un − u‖ = 0 and u∗n = F (un), u∗ = F (u).
We have the following equalities and inequalities:

‖u∗n − u∗‖ = ‖Qun(u∗n)−Qu(u∗)‖ = ‖Qu(u∗n)−Qu(u∗) +Qun(u∗n)−Qu(u∗n)‖

≤ ‖Qu(u∗n)−Qu(u∗)‖+ ‖Qun(u∗n)−Qu(u∗n)‖

≤ c‖u∗n − u∗‖+ ‖Qun(u∗n)−Qu(u∗n)‖.
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Then, we get the following:

(1− c)‖u∗n − u∗‖ ≤ ‖Qun(u∗n)−Qu(u∗n)‖ ≤ ‖u∗n‖ sup
ij

(
|C1(unij)− C1(uij)|+ · · ·

+|C4(unij)− C4(uij)|+ |C(unij)− C(uij)|
)
.

Now, since ‖u∗n‖ ≤ m2, for all n > 0 and since the functions Ci, C are continuous
(because the functions ψ and minmod are continuous), we obtain that the right-hand
side of the least inequality converges to 0 for n→∞. Hence ‖u∗n − u∗‖ → 0; that is,
the application F is continuous.

Remarks.
(1) The conclusion i) of Proposition 6.1 says that the algorithm is unconditionally

stable. Moreover, to compute fn+1 as a solution of the linear system (6.4), since Qfn
is contractive, we can use the iterative method

f0 ∈M, fk+1 = Qfn(fk) and lim
k→∞

fk = fn+1.

Finally, in practice, to accelerate the convergence to the solution f of (6.4), by a
combination of these two iterative methods, we use a scheme based on the Gauss–
Seidel algorithm: for i, j = 1, 2, . . . , N in this order, we let

fn+1
ij = C1f

n
i+1,j + C2f

n+1
i−1,j + C3f

n
i,j+1 + C4f

n+1
i,j−1 + Cpij ,

where for the computation of C1, . . . , C4 and C, we replace, respectively, fni−1,j , f
n
i,j−1

by fn+1
i−1,j , f

n+1
i,j−1.

Hence, in practice, we observe that the algorithm is quite stable and convergent.
(2) The conclusion ii) of Proposition 6.1 says that the problem (6.4), which is a

nonlinear discrete problem associated with (E), has a solution f . In the convex case,
we also have the uniqueness of this solution. But we have not proved the convergence
of fn to f (in fact, if fn converges, which is true in practice, then this will converge
to the solution f of the nonlinear discrete problem).

Now, we will briefly treat the case R 6= I. In many cases, the degradation operator
R, the blur, is a convolution-type integral operator.

In the numerical approximations, (Rmn)m,n=0,d is a symmetric matrix with

d∑
m,n=0

Rmn = 1,

and the approximation of Rf can be

Rfij =
d∑

m,n=1

Rmnfi+ d
2−m,j+

d
2−n

.

Since R is symmetric, then R∗ = R and R∗Rf = RRf is approximated by

R∗Rfij =
d∑

m,n=1

d∑
r,t=1

RmnRrtfi+d−r−m,j+d−t−n.

Then, we use the same approximation of the divergence term and the same iter-
ative algorithm, with a slight modification: let

λh2R∗Rfn+1
ij + (c1(fnij) + c2(fnij) + c3(fnij) + c4(fnij))f

n+1
ij

= c1(fnij)f
n+1
i+1,j + c2(fnij)f

n+1
i−1,j + c3(fnij)f

n+1
i,j+1 + c4(fnij)f

n+1
i,j−1 + λh2Rpij .
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FIG. 7.1. The first sequence of images represents, in the denoising case, from left to right: the
degraded image, the synthetic image before degradation, and the reconstructed images with φ1 and
φ2. The second represents, from left to right: the degraded image and the reconstructed image; from
top to bottom, the deblurring case and both denoising and deblurring, with φ1.

Now, to compute fn+1 as the solution of this linear system, we can use, for
example, the relaxation method [see 7].

Remark. In these algorithms, there are two parameters, λ and h. We denote
λ
′

= λh2. For the moment, there are not any rigorous choices for the values of λ
′

and
h. But, in practice, we have observed that (as is natural), by decreasing h, the edges
are better preserved and also, by decreasing λ

′
, we diffuse the image.

7. Experimental results. Finally, we present some numerical results on two
images of varying difficulty. To generate the images, we have used the software
Megawave from CEREMADE, at the University of Paris-Dauphine. The first im-
age is a synthetic picture (71×71 pixels) with geometric features (like circles, lines,
squares). The second is a real image (256×256 pixels) representing a photograph of
an office. We have introduced in these pictures the types of degradation considered
here: standard noise, Gaussian blur (the atmospheric turbulence blur type) or both,
and we have made the choice of the parameters λ

′
and h in order to increase the

signal to noise ratio. We remark that in the denoising case, we obtain the results very
fast (in just three iterations), and we obtain good results in the deblurring case. If
the degradation involves both noise and blur, the choice of the parameters is more
difficult, because we must take a small λ

′
in order to obtain a denoising image but,

in the same time, λ
′

must be large to deblur the image. The results for the synthetic
image are all represented in Figure 7.1.
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FIG. 7.2. Profiles of the synthetic image ( ), the noisy initial image (- - -), and the recon-
structed image (- - -), with the function φ1. We represent in (a) the denoising case and in (b)
the deblurring case; (c) involves both noise and blur.

To better illustrate the reconstruction, we have represented in Figure 7.2 the
profiles on lines for the first image corresponding to Figure 7.1 (like one-dimensional
signals), for each experiment. So, we have superposed the noisy signal, the result,
and the signal before degradation.

Finally, in Figure 7.3, we present the results for the real image, which is a picture
of an office, in the denoising case and the deblurring case.

Appendix A. In this appendix, we will present the technical lemma of singular
perturbations due to Temam [12], which we have used to obtain the a priori estimates
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FIG. 7.3. The office picture. From left to right: the degraded image and the reconstructed
image. From top to bottom: the denoising case and the deblurring case, with φ1.

in Proposition 4.7. We will state this lemma in an adjusted version of our problem.
The goal is to find some estimates independent of ε, on the solution of the problem

(Pε) inf
v∈H1(Ω)

{∫
Ω

(g(Dv) + h(v) + p(x)v)dx+
ε

2

∫
Ω
|Dv|2dx

}
.

We assume the following:
(A.1) the function ξ → g(ξ) is convex and of class C3 from R2 to R,
(A.2) the function x→ g(q(x)) is measurable on Ω, for all q ∈ L1(Ω)2,
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(A.3) there exist constants µi ≥ 0, i = 0, 8, such that, for all ξ ∈ R2,

(A.31) g(ξ) ≥ µ0|ξ| − µ1, µ0 > 0,

(A.32)
∂g

∂ξi
(ξ) ≤ µ2, i = 1, 2,

(A.33)
2∑
i=1

∂g

∂ξi
(ξ)ξi ≥ µ3(1 + |ξ|2)

1
2 − µ4, µ3 > 0,

(A.34)
µ6|η

′ |2

(1 + |ξ|2)
1
2
≤
∑
i,j

∂2g

∂ξi∂ξj
(ξ)ηiηj ≤

µ7|η
′ |2

(1 + |ξ|2)
1
2
∀η ∈ R2, µ6, µ7 > 0,

where |η′ |2 = |η|2 − (η·ξ)2

1+|ξ|2 ,

(A.35) ‖p‖W 1,∞(Ω) ≤ µ8,

2∑
i=1

∂g

∂ξi
(ξ)ξi ≥ 0 ∀ξ ∈ R2,(A.4)

the function t→ h(t) is convex and h
′
(0) = 0.(A.5)

LEMMA A.1 (Temam [12]). The problem Pε has a unique regular solution uε
bounded independently of ε in L∞(Ω)

⋂
W 1,1(Ω). Moreover, for any relatively compact

open set O in Ω, there is a constant K(O,Ω) such that

‖uε‖W 1,∞(O) ≤ K,
‖uε‖H2(O) ≤ K.

We can apply this lemma to our problem by taking, in Proposition 4.7,

g(ξ) = φ(|ξ|) and h(t) = t2.

We will not give the proof of this lemma. We refer the reader to the paper and
the very technical proofs of Temam. We simply recall that the idea (due to Bernstein)
is to obtain some fine estimates on the function vε = |Duε|2. To do this, we use the
Euler equation associated with (Pε), which can be written as

(Eε) −ε4 uε −
2∑
i=1

∂

∂xi

( ∂g
∂ξi

(Duε)
)

= −h′(uε)− p(x).

We derive (Eε) with respect to xl; then we multiply the result by ∂uε
∂xl

and we add
over l, with 1 ≤ l ≤ 2, to get

(Bε)
ε

2

2∑
j=1

∂

∂xj

( ∂vε
∂xj

)
+ ε

2∑
j=1

2∑
l=1

( ∂2uε
∂xl∂xj

)2
− 1

2

2∑
i=1

∂

∂xi

( 2∑
j=1

∂2g

∂ξi∂ξj

∂vε
∂xj

)
+

2∑
l=1

2∑
i=1

2∑
j=1

∂2g

∂ξi∂ξj

∂2uε
∂xl∂xj

∂2uε
∂xl∂xi

= −h′′(uε)vε −
2∑
l=1

∂p

∂xl

∂uε
∂xl

.

The equation (Bε) allows us to obtain the estimates on vε by using the test func-
tions judiciously selected and the complicated but classical techniques of Ladyzenskaya
and Uralceva [17]. To conclude, we remark that the assumption (A.5) was not given
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by Temam. The Temam assumptions on the integrand dependence in v do not allow
us to directly apply its result.

To overcome this difficulty, we have assumed (A.5), and then the term h
′′
(uε)vε

in (Bε) is not negative, which allows us to obtain all the a priori estimates proved by
Temam.

Appendix B. In the previous sections we studied the problem of image recon-
struction when the operator R = I (corresponding to a denoising problem). If R 6= I
(generally a convolution operator), the existence and uniqueness results of section 4
remain true if R satisfies the following hypotheses:

(1) R is a continuous and linear operator on L2(Ω);
(2) R does not annihilate constant functions.
For the results of section 4, we must suppose in addition that
(3) R is injective.
We do not reproduce the proofs; instead we leave it to the readers to convince

themselves.
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l’Université de Montréal, Canada, 1966.
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Analyse Non Linéaire, 9(1992), pp. 51–99.
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