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We want to discuss various applications of modular forms in topology. The
starting point is elliptic genus and its generalizations. The main techniques are
the Atiyah-Singer index theorem, the Atiyah-Bott-Segal-Singer Lefschetz fixed
point formula, Kac-Moody Lie algebras, modular forms and theta-functions.
Just as the representations theory of classical Lie groups has close connections
with the Atiyah-Singer index formula as exposed in [A1], the representation
theory of loop groups plays very important role in our study. One of the most
important new features of loop group representations is the modular invariance
of the Kac-Weyl character formula, which allows us to derive many interesting
new results and to unify many important old results in topology. In this paper
we will develope along this line. We hope that the other features of loop group
representations, such as fusion rules and tensor category structure may also
be applied to topology. See the discussions in §3.

The contents of this paper is organized in the following way. In §1 we intro-
duce elliptic genus by combining index theory and the representation theory
of loop groups. The relation of the classical index theory with representation
theory of classical Lie groups was discussed in [A1]. Here one finds that just
replacing the classical Lie groups by their corresponding loop groups, we get
the complete theory of elliptic genus, or more generally the index theory on
loop space. Especially the Dirac operator and the Witten genus of loop space
are derived more convincingly in this way. Then all of the other well-known
properties of elliptic genus, such as functional equations, characterizations by
rigidity and fibrations, can be easily obtained. Here we only pick some less
well-known results to discuss, for example the expressions of the parameters
in elliptic genera in terms of theta-functions.

Different from the classical Lie group case, a new feature in our situation
appears, the modular invariance which, by combining with index theory, is
applied to obtain many new topological results. This is the content of §2.
Most results in this section are special cases of more general results. For
simplicity we only give the main ideas of the proofs.

We make some geometric constructions in §3 to understand elliptic coho-
mology. The construction in §3.3 is motivated by the vertex operator algebra
construction of the monstrous moonshine module. In §3.1 we introduce vector
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bundles with infinite dimensional structure groups. We study the correspond-
ing Grothendieck groups and the Riemann-Roch properties in §3.2. An easy
corollary is that elliptic genus can be realized as the difference of two infinite
dimensional vector bundles on a sphere with the action of Virasoro algebra
on each of them. For each modular subgroup, a ring of graded bundles with
modularity is introduced in §3.3, to which there is a natural homomorphism
from elliptic cohomology. Several simple theorems are stated without proof.
The detail of this section will appear in a forthcoming paper.

This survey article is basically an expanded version of my lectures given
in the topology seminars at MIT, Harvard, and the AMS conference on the
monster and the moonshine module. Many ideas are certainly already well-
known to experts. The reader may find related discussions in the references. I
have also benefited from discussions with many people. I would like to thank
the organizers and the audience of the seminars and conference, especially R.
Bott, J.-L. Brylinski, C. Dong, M. Hopkins, Y. Huang, V. Kac, G. Katz, H.
Miller, A. Radul, W. Wang, E. Weinstein, S.-T. Yau, Y. Zhu.
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1. Index theory, elliptic curves and loop groups

One can look at elliptic genus from several different points of view; from
index theory, from representation theory of Kac-Moody affine Lie algebras or
from the theory of elliptic functions and modular forms. Each of them shows
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us some quite different interesting features of ellitic genus. On the other hand
we can also combine the forces of these three different mathematical fields to
derive many interesting results in topology such as rigidity, divisibility and
vanishing of topological invariants.

In this section, we first introduce elliptic genus by combing the represen-
tation theory of affine Lie algebras and the Atiyah-Singer index theory from
which we derive all the other properties of elliptic genus such as functional
equations and logrithms, etc. This section is a ’loop’ analogue of [A1].

1.1. Atiyah-Singer Index theorem. LetM be a smooth compact spin man-
ifold of dimension 2k. We then have the following principal Spin(2k) bundle

Spin(2k) → Q→M

which is the double cover of the frame bundle of TM , the tangent bundle of M .
From the two half spinor representations of Spin(2k), {4+,4−} we get two
associated bundles on M which we still denote by 4± respectively. The Dirac
operator on M is a basic elliptic operator between the section space Γ(4+)
and Γ(4−). Given another principal bundle P on M with structure group
G, and any (real) representation E of G, we can construct the corresponding
associated vector bundle, still denoted by E. The Atiyah-Singer index theorem
in this case is given by

IndD ⊗ E =

∫
M

Â(M)chE

where recall that D ⊗ E is the twisted Dirac operator

D ⊗ E : Γ(4+ ⊗ E) → Γ(4− ⊗ E)

and the index is defined to be

IndD ⊗ E = dim KerD ⊗ E − dim CokerD ⊗ E.

If {±xj} and {±yj} are the formal Chern roots of TM ⊗C and E⊗C respec-
tively, then

Â(M) =
k∏

j=1

xj

2sinhxj/2
, chE =

l∑
j=1

eyj + e−yj

are respectively the Â-class of M and the Chern character of E.
Another important elliptic operator, the signature operator ds is obtained

by taking E to be 4 = 4+ ⊕4−. We obviously have

IndD =

∫
M

Â(M), and Ind ds =

∫
M

L(M)

where
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L(M) =
k∏

j=1

xj

tanh xj/2

is the Hirzebruch L-class of M .
As one can see, the starting point of the index formula is the representa-

tion theory of spin groups. More precisely, the Chern character of a bundle is
induced from the character of the corresponding representation through trans-
gression as in [BH]. Since

ch(4+ −4−) =
k∏

j=1

(exj/2 − e−xj/2) = 2
k∏

j=1

sinh xj/2,

the Â-class is essentially the ratio of the Euler class and the Chern character
of the basic element 4+ −4−, i.e.

Â(M) =
e(M)

ch(4+ −4−)
.

Most interestingly the denominator of the Â-class can also be viewed as in-
duced from the Weyl denominator in the representation theory of compact Lie
groups.

1.2. Loop groups and index theory. In the following, we will show that, if
we replace the representations of the classical Lie groups by their correponding
loop groups, we exactly recover the complete theory of elliptic genus. For this
we need the following simple construction.

Given a principal G-bundle P on M , and a positive energy representation E
of L̃G which is the central extension of the loop group of G, we decompose E
according to the rotation action of the loop to get E =

∑
≥0En where each En

is a finite dimensional representation of G. First assume that E is irreducible.
Construct associated bundles to P from each En, which we still denote by En,
we get an element

ψ(P,E) = qmΛ

∑
n

Enq
n

where q = e2πiτ with τ in the upper half plane and mΛ is a rational number
which is the so-called modular anomaly of the representation E, see [K]. This
construction extends linearly. If E = ⊕jE

j, then ψ(P,E) =
∑

j ψ(P,Ej).

For any positive integer l, the loop group L̃Spin(2l) has four irreducible level
1 positive energy representations. Let us denote them by S+, S− and S+, S−
respectively. Let {±αj} be the roots of Spin(2l). Then the normalized Kac-
Weyl characters of these four representations can be expressed in terms of the
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four Jacobi theta-functions and the Dedekind eta-function [Ch] as follows,

χS+−S− =
l∏

j=1

θ(αj, τ)

η(τ)
, χS+−S− =

l∏
j=1

θ2(αj, τ)

η(τ)
,

χS++S− =
l∏

j=1

θ1(αj, τ)

η(τ)
, χS++S− =

l∏
j=1

θ3(αj, τ)

η(τ)
.

Note that here we view πiv in the theta-functions in [Ch] as one variable v.
That is, for example

θ(v, τ) = −q1/82i sinh v/2
∞∏

n=1

(1− qn)(1− evqn)(1− e−vqn)

It turns out that S+ ± S− are the loop group analogues of the finite di-
mensional spinor representations 4+ ± 4−. Recall that each representation
of loop group L̃G is induced from a representation of G. We note that S± are
induced from 4± respectively. Let Q be the principal spin bundle of M as in
§1.1. For a vector bundle V on M , let

ΛtV = 1 + tΛ1V + t2Λ2V + · · · ,
StV = 1 + tS1V + t2S2V + · · ·

be the two operations in K(M)[[t]]. It is easy to get the following

ψ(Q,S− − S−) = q−
k
12 (4+ −4−)⊗∞

j=1 Λ−qj(TM),

ψ(Q,S+ + S−) = q−
k
12 (4+ +4−)⊗∞

j=1 Λqj(TM);

ψ(Q,S+ − S−) = q−
k
24 ⊗∞

j=1 Λ−qj−1/2(TM)

ψ(Q,S+ + S−) = q−
k
24 ⊗∞

j=1 Λqj−1/2(TM).

Just as 4+ −4− induces the Dirac operator on M , S+ − S− also induces
the Dirac operator on LM . Similar to the above Â-calss of M , introduce the
loop space Â-class Θ̂(M) as

Θ̂(M) =
e(M)

ch (ψ(Q,S+)− ψ(Q,S−))
= η(τ)k ·

k∏
j=1

xj

θ(xj, τ)
.

Then we have similarly the Dirac operator for loop space

DL = q−
k
12D ⊗⊗∞

j=1Sqj(TM)

and the corresponding index formula

IndDL =

∫
M

Θ̂(M).
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A general index theorem in this loop group setting is

IndDL ⊗ ψ(P,E) =

∫
M

Θ̂(M)chψ(P,E).

Especially take P = Q as the principal Spin(2k)-bundle of M and E =
S+ + S−, we get the signature of the loop space LM

IndDL ⊗ ψ(Q,S+ + S−) =

∫
M

k∏
j=1

xj
θ1(xj, τ)

θ(xj, τ)
.

We call
k∏

j=1

xj
θ1(xj, τ)

θ(xj, τ)

the elliptic L-class.
Associated to S+±S− are the other two elliptic operators which do not have

finite dimensional analogues. Their indice are

IndDL ⊗ ψ(Q,S− − S−) =

∫
M

k∏
j=1

xj
θ2(xj, τ)

θ(xj, τ)
,

IndDL ⊗ ψ(Q,S− + S−) =

∫
M

k∏
j=1

xj
θ3(xj, τ)

θ(xj, τ)
.

It is just because of these two new elliptic operators that make the proof of
the famous Witten rigidity theorems very simple. This is the magic of infinite
dimensional geometry and topology.

1.3. Elliptic genera. The indices of the above three elliptic operators are
actually modular functions. To get modular forms instead, we consider their
virtual versions. This means that we replace TM by its virtual bundle T̄M =
TM − 2k in the above symmetric and wedge products. Denote by

DL = D ⊗⊗∞
j=1Sqj(T̄M),

we get

Ind DL =

∫
M

k∏
j=1

xj
θ′(0, τ)

θ(xj, τ)

which is called the Witten genus; and

Ind DL ⊗4⊗∞
m=1 Λqm(T̄M) =

∫
M

k∏
j=1

xj
θ′(0, τ)θ1(xj, τ)

θ(xj, τ)θ1(0, τ)
,



MODULAR FORMS AND TOPOLOGY 7

Ind DL ⊗∞
m=1 Λ−qm−1/2(T̄M) =

∫
M

k∏
j=1

xj
θ′(0, τ)θ2(xj, τ)

θ(xj, τ)θ2(0, τ)
,

Ind DL ⊗∞
m=1 Λqm−1/2(T̄M) =

∫
M

k∏
j=1

xj
θ′(0, τ)θ3(xj, τ)

θ(xj, τ)θ3(0, τ)

which are usually called universal elliptic genera. The three functions, suitably
normalized, appeared in the above index formulas,

Fj(x) =
1

2i

θj(x, τ)θ
′(0, τ)

θ(x, τ)θj(0, τ)

with j = 1, 2, 3 are called their generating series correspondingly. Also we
simply call

k∏
j=1

xj
θ′(0, τ)

θ(xj, τ)

the Witten class and write it as W (M). Obviously

W (M) = η(τ)2kΘ̂(M).

Similarly

k∏
j=1

xj
θ′(0, τ)θ1(xj, τ)

θ(xj, τ)θ1(0, τ)

is called the normalized elliptic L-class of M .
It is worthwhile to record the following remarks. Assume there exists a

torus action on a manifold M with fixed point set F and normal bundle N .
Then according to the action, N can be decomposed into sums of complex line
bundles {Lj} and the torus acts on Lj by gmj , where g is a generator of the
torus and mj is called the weight of Lj.

The equivariant Euler class of N is by definition
∏

j(mj + xj) where xj is
the first Chern class of Lj. We define the normalized equivariant Euler class
of N to be

∏
j(1 + xj/mj).

Let LM denote the loop space of M and LLM the double loop space of
M . The rotation of the circles induces a natural circle action on LM and an
S1 × S1 action on LM with fixed points M . The normal bundle NL of M in
LM is ⊕n6=0TMn where each TMn is the same as TM with weight n. The
normal bundle NLL of M in LLM is ⊕n,m6=0TMn,m with TMn,m the same as
TM with weight n+mτ .

As a simple consequence of Eisenstein’s product formulas for sine function
and theta-function [We], we have the following
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1) the normalized equivariant Euler class of NL is the inverse of the Â-class
of M .

2) the normalized equivariant Euler calss of NLL is the inverse of the Θ̂-class
of M .

In certain sense we can say that the classical Hirzebruch genera, such as
Â-genus and L-genus, are 1-periodic genera, since they are associated to triog-
nometric functions; while the elliptic genera, associated to elliptic functions,
are 2-periodic genera. Note that the first observation above is due to Witten.
From a pure functional theoretic point of view, make the following replacement
in the Hirzebruch Â-class and L-class,

sinh x/2 → θ(x, τ)

η(τ)

coshx/2 → θ1(x, τ)

η(τ)
,

one exactly recovers the Θ̂-class and the elliptic L-calss. On the other hand,
make the following replacement

sinh x/2 → θ(x, τ)

θ′(0, τ)

coshx/2 → θ1(x, τ)

θ1(0, τ)
,

we get the Witten class and the normalized elliptic L-class.

1.4. Elliptic genera and theta-functions. Let P(x) be the Weierstrass el-
liptic function associated to the lattice {2mπ + 2nπτ}. Then one has the
following parametrization of elliptic curves

P′(x) = 4(P(x)− e1)(P(x)− e2)(P(x)− e3)

with ej = P(ωj) where ω1 = π, ω2 = πτ, ω3 = π(1 + τ).
The interesting connection of elliptic genera with elliptic curves are mani-

fested by the following relations, for j = 1, 2, 3

2iFj(x) =
√

P(x)− ej

which is easily seen by comparing poles of the functions of both sides.
For j = 1, 2, 3, let us denote θj(0, τ) by θj, we then have relations

e3 − e2 = θ4
1, e1 − e3 = θ4

2, e1 − e2 = θ4
3.

Here note that we use v, instead of πv as the variable in the theta-functions
in [Ch]. This is also slightly different from §1.2. This change is only for
convenience and does not matter much. Since P′(x) = −8Fj(x)F

′
j(x), plug into
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the Weierstrass equation, we get the functional equations of the three elliptic
genera.

F1(x)
2 = (F1(x)

2 − 1/4θ4
3)(F1(x)

2 − 1/4θ4
2),

F2(x)
2 = (F2(x)

2 + 1/4θ4
3)(F2(x)

2 + 1/4θ4
1),

F3(x)
2 = (F3(x)

2 + 1/4θ4
2)(F3(x)

2 − 1/4θ4
1).

¿From these equations, we easily get the logrithms of the three elliptic genera

g1(x) =

∫ x

0

du√
(1− 1/4θ4

3u
2)(1− 1/4θ4

2u
2)
,

g2(x) =

∫ x

0

du√
(1 + 1/4θ4

3u
2)(1 + 1/4θ4

1u
2)
,

g3(x) =

∫ x

0

du√
(1 + 1/4θ4

2u
2)(1− 1/4θ4

1u
2)
.

In fact, let z denote the first Chern class of the universal line bundle on
CP n. By definition,

gj(x) =
∞∑

n=0

ϕj(CP
2n)

x2n+1

2n+ 1
, j = 1, 2, 3,

where ϕj denotes the corresponding elliptic genus associated to xFj(x). Since

ϕj(CP
2n) =

∫
CP 2n

(zFj(z))
2n+1 =

1

n!

dn

dzn
[zFj(z)]

2n+1,

it is easy to show, by Lagrange theorem [Co], that

g−1
j (x) =

1

Fj(x)
.

Compare with the Ochanine’s standard equation for elliptic genus,

y2 = 1− 2δx2 + εx4,

we have the following expressions,

δ1 = 1/8(θ4
2 + θ4

3), ε1 = 1/16θ4
2θ

4
3,

δ2 = −1/8(θ4
1 + θ4

3), ε2 = 1/16θ4
1θ

4
3,

δ3 = 1/8(θ4
2 − θ4

2), ε3 = −1/16θ4
1θ

4
2.
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The δj’s are modular forms of level 2 and the εj’s are modular forms of level
4, as easily follow from the properties of theta-functions. Note that these
formulas give us the infinite product expansions of the ε’s. They are very useful
in following discussions. These three elliptic genera are uniquely characterized
by their functional equations, as well as by their topological properties, such
as rigidity under group action and multiplicativaty under spin fibrations. See
[HBJ], [O], [S] and below for further discussions.

2. Applications in topology

The combining strength of index theory, Kac-Moody algebras, elliptic func-
tions and modular forms in the above discussion can help us get many interest-
ing topological results. Here for simplicity, I will only explain several special
examples. For more general discussion see [Liu1]. The following two lists may
be helpful in understanding the general picture of applications. First many
results on a compact smooth spin manifold M have analogues on its loop space
LM

M −−− LM

Â− vanishing theorem −− Θ̂− vanishing theorem

ds is rigid −− the Witten rigidity theorem

signature ≡ 0(mod 16) −− signature ≡ 0(mod 16).

But the results on LM are much more stronger and many of them have no
finite dimensional analogues. More precisely we have the following list

M −−− LM

? −− higher level rigidity theorems

? −− higher level vanishing theorems

? −− general miraculous cancellation.

Here higher level means higher level loop group representation which appears
natrually in our study. Of course one can get results on M by specializing
the results on LM . We hope quantum group, which is the finite dimensional
counterpart of affine Lie algebra, may eventually help explain the above ?’s.

2.1. Miraculous cancellation formula. In [AW], a gravitational anomaly
cancellation formula was derived from direct computations. This is a formula
relating the L-class to the Â-class and a twisted Â-class of a 12-dimensional
manifold. More precisely, let M be a smooth manifold of dimension 12, then
the miraculous cancellation formula is

L(M) = 8Â(M,T )− 32Â(M)
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where T = TM denotes the tangent bundle of M and the equality holds at
the top degree of each differential form. Here

Â(M,T ) = Â(M)chT

is the Â-class twisted by tangent bundle.
Using elliptic genera, we can easily derive a much general formula for man-

ifolds of any dimension. We can even get a formula with a general vector
bundle involved. For simplicity, let us just take a manifold M of dimension
8k + 4 and only consider the tangent bundle case. Write

Θ1(M) = ⊗∞
j=1Sqj(T̄M)⊗⊗∞

m=1Λqm(T̄M),

Θ2(M) = ⊗∞
j=1Sqj(T̄M)⊗⊗∞

m=1Λ−qm−1/2(T̄M).

They have the following expansions in q with coefficients in K(M)

Θ1(M) = A0 + A1q + · · · ,

Θ2(M) = B0 +B1q
1
2 + · · · .

Denote the top degree terms in

L(M)ch Θ1(M) and Â(M)ch Θ2(M)

by P1(τ) and P2(τ) respectively.
Let Γ0(2),Γ0(2) be the modular subgroups,

Γ0(2) = {
(
a b
c d

)
∈ SL2(Z)|c ≡ 0 (mod 2)},

Γ0(2) = {
(
a b
c d

)
∈ SL2(Z)|b ≡ 0 (mod 2)}.

Recall that a modular form over a modular subgroup Γ is a holomorphic func-

tion f(τ) defined on the upper half plane H such that for any g =

(
a b
c d

)
∈

Γ, one has

f(
aτ + b

cτ + d
) = χ(g)(cτ + d)kf(τ)

where χ : Γ → C∗ is a character on Γ and k is called the weight of f . We also
assume that f is holomorphic at τ = i∞. The following lemma can be proved
by using the theta-function expressions of P1(τ) and P2(τ) as given in §1.

Lemma 2.1.1. P1(τ)is a modular form of weight 4k + 2 over Γ0(2); P2(τ) is
a modular form of weight 4k + 2 over Γ0(2).
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Let

δ1(τ) =
1

8
(θ4

2 + θ4
3) , ε1(τ) =

1

16
θ4
2θ

4
3,

δ2(τ) = −1

8
(θ4

1 + θ4
3) , ε2(τ) =

1

16
θ4
1θ

4
3

be as in §1.4. They have the following Fourier expansions in q

δ1(τ) =
1

4
+ 6q + · · · , ε1(τ) =

1

16
− q + · · · ,

δ2(τ) = −1

8
− 3q

1
2 + · · · , ε2(τ) = q

1
2 + · · · ,

where “· · · ” are the higher degree terms all of which are of integral coefficients.
Let M(Γ) denote the ring of modular forms over Γ with integral Fourier

coefficients.
Using the transformation formulas of the Jacobi theta-functions [Ch], we

get

Lemma 2.1.2. δ1, δ2 are modular forms of weight 2 and ε1, ε2 are modular
forms of weight 4, and furthermore M(Γ0(2)) = Z[8δ2(τ), ε2(τ)].

In view of these two Lemmas we can write

P2(τ) = b0(8δ2)
2k+1 + b1(8δ2)

2k−1ε2 + · · ·+ bk(8δ2)ε
k
2,

where the bj’s are integral linear combinations of the top degree terms of the

{Â(M)chBj}’s.
Apply the modular transformation S : τ → − 1

τ
, we have

δ2(−
1

τ
) = τ 2δ1(τ) , ε2(−

1

τ
) = τ 4ε1(τ),

P2(−
1

τ
) = 2−(4k+2)τ 4k+2P1(τ).

Therefore,

P1(τ) = 24k+2[b0(8δ1)
2k+1 + b1(8δ1)

2k−1ε1 + · · ·+ bk(8δ1)ε
k
1].

At q = 0, 8δ1 = 2 and ε1 = 2−4. We get a special case of the general miraculus
cancellation formula,

Theorem 2.1. At top degree, the following identity holds,

L(M) = 23

k∑
j=0

26k−6jbj.

For a more general formula, see [Liu1]. Denote by bj(TM) the integral linear
combinations of the Bi(TM)’s which gives the polynomials bj in the theorem.
It is rather clear that these bj(TM)’s can be determined canonically.
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We have, for a compact oriented smooth manifold M ,

Corollary 2.1. The follwoing identity holds,

Sign(M) = 23

k∑
j=0

26k−6j

∫
M

Â(M)ch bj(TM).

The left hand side denotes the signature of M . In particular, if M is spin,
then each characteristic number on the right hand side is an even integer. One
thus recovers the Ochanine theorem [O1],

Corollary 2.2. The signature of an 8k+4 dimensional compact spin manifold
is divisible by 16.

Actually the proof shows that P1(τ), the signature of the corresponding loop
space LM is divisible by 16. Combining with the Atiyah-Patodi-Singer index
formula, the above miraculous cancellation formula gives us interesting ana-
lytic expressions of some topological invariants. It can also be used to express
the holonomy of certain determinant line bundles in terms of η-invariants. See
[Liu1] and [LZ] for more details. Note that the main idea of the above proof
are due to Hirzebruch [H1] and Landweber [La].

2.2. Rigidity. Elliptic genus originated from many people’s trying to find the
generating series of rigid elliptic operators. Given a smooth compact manifold
with an action of a group G. Let P be an elliptic operator on M which
commutes with the action. Then both the kernal and the cokernal of P are
finite dimensional representations of G. The Lefschetz number of P at g ∈ G
is defined to be

LP (g) = TrgKerP − TrgCokerP

which is a character of G.
We say P is rigid with respect to G, if L(g) is independent of g, that is

a constant character of G. To prove the rigidity of an elliptic operator with
respect to a general compact connected Lie group action, we obviously only
need to study its rigidity with respect to S1-action which will be our only
concern in the following.

The rigidity of the signature operator ds with respect to S1-action on M
is a trivial fact, since its kernal and cokernal are contained in the deRham
cohomology. If M is spin, the rigidity of the Dirac operator with respect
to the S1-action is the famous Â-vanishing theorem of [AH]. As will be seen
in the following, the rigidity of the signature operator with respect to S1-
action on loop space was conjectured by Witten and is highly non-trivial. The
correponding Â-vanishing theorem for loop space will be discussed in next
section.
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In [W] Witten first conjectured the rigidity of D ⊗ TM and proved it for
compact homogeneous spin manifolds. In trying to prove it in general and to
find other rigid elliptic operators, Landweber-Stong and Ochanine discovered
elliptic genus [LS], [O]. Witten, motivated by quantum field theory, conjectured
that all of the three elliptic operators associted to the three elliptic genera, i.e.

DL ⊗4⊗∞
j=1 Λqj(T̄M)

DL ⊗⊗∞
j=1Λ−qj−1/2(T̄M)

DL ⊗⊗∞
j=1Λqj−1/2(T̄M)

are rigid. Note that, so far no body has been able to give a direct proof of
the rigidity of D ⊗ TM for a general spin manifold M which is only known
through the following theorem.

Theorem 2.2. The above three elliptic operators are rigid.

This means that, if we expand the above elliptic operators into formal power
series in q, for example

DL ⊗⊗∞
m=1Λqm−1/2(T̄M) =

∞∑
j=1

D⊗ Ejq
j−1/2,

then each D ⊗ Ej is rigid. Note that D ⊗ TM is the second term.
This theorem was first proved in [T], [BT]. Our proof uses the key properties

of the Jacobi theta-functions and the Atiyah-Bott-Segal-Singer fixed point
formula. For simplicity we only consider the isolated fixed point situation.
Let {p} ⊂ M be the fixed points of a generator g = e2πit ∈ S1. Let {mj}
be the exponents of TM at the fixed point p. That is, we have orientation-
compatible decompositions

TM |p = E1 ⊕ · · · ⊕ Ek, k =
1

2
dimM,

and g acts on Ej by gmj .
let us denote the Lefschetz numbers of the above three elliptic operators by

F1(t, τ), F2(t, τ) and F3(t, τ)

respectively. Apply the Lefschetz fixed point formula [AB], we have

F1(t, τ) = (2πi)−k
∑

p

k∏
j=1

θ1(mjt, τ)θ
′(0, τ)

θ(mjt, τ)θ1(0, τ)
,

F2(t, τ) = (2πi)−k
∑

p

k∏
j=1

θ2(mjt, τ)θ
′(0, τ)

θ(mjt, τ)θ2(0, τ)
,
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F3(t, τ) = (2πi)−k
∑

p

k∏
j=1

θ3(mjt, τ)θ
′(0, τ)

θ(mjt, τ)θ3(0, τ)
.

Here the theta-functions are the same as in [Ch]. The rigidity is equivalent
to the fact that the above F ’s are independent of t. First we can obviously
extend these F ’s to well-defined meromorphic functions on (t, τ) ∈ C × H.
The key point is to show that they are actually holomorphic. The proof of the
theorem is divided into three steps.

Lemma 2.2.1. The F ’s are doubly periodic on the lattice {n+mτ}.

That is we have Fj(t + n + mτ) = Fj(t, τ). For g =

(
a b
c d

)
∈ SL2(Z),

define modular transformation of g on the F ’s as

F (g(t, τ)) = (cτ + d)−kF (
t

cτ + d
,
aτ + b

cτ + d
).

Then we have

Lemma 2.2.2. The integral span of the three F ’s are invariant under the
action of SL2(Z).

These two lemmas can be proved by using the transformation formulas of
the four Jacobi theta-functions [Ch]. It depends essentially on the ’elliptic
property’ of these elliptic genera.

Lemma 2.2.3. The three F ’s are holomorphic for t real and τ in upper half
plane.

Note that t real implies that e2πit lies in S1, and that the definition of Lef-
schetz number imples that it is the character of the action group S1, therefore
it is holomorphic as a function of g ∈ S1. In our case, these F ’s can be
expanded as power series in q with coefficients the combinations of the charac-
ters of S1 representations. The Lefschetz fixed point forumla comes into play
crucially at this point.

Then a key observation is that these three lemmas implies the rigidity. In
fact, modular transformation, together with lemma 2, transforms the regu-
larity of the F ’s on S1 to everywhere in the complex plane; the first lemma
immediately implies that they are constant. See [Liu0] for the detail.

2.3. A vanishing theorem of the Witten genus. Let M be a compact
smooth spin manifold with an S1-action, in [AH], Atiyah-Hirzebruch proved
the following theorem,

Theorem [AH]: The Â-genus of M is zero.
As a corollary, we know that a compact smooth spin manifold with non-zero

Â-genus does not admit any compact connected Lie group action.
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LetM be compact smooth and spin, with an S1-action, andMS1 = ES1×S1

M be the Borel model of M . Let u be the generator of H∗(BS1, Z). Recall
that BS1 = CP∞ and ES1 = S∞. The equivariant characteristic classes of M
are defined to be the usual characteristic classes of MS1. Let p1(M)S1 denote
the first equivariant Pontrjagin class with respect to the S1-action. Let

π : MS1 → BS1

be the canonical projection and

π∗ : H∗(BS1, Z) → H∗(MS1, Z)

be the pull-back in cohomology. Corresponding to the above theorem of
Atiyah-Hirzebruch, we have the following theorem for LM ,

Theorem 2.3. If p1(M)S1 = n · π∗u2 for some integer n, then the Witten
genus of M is zero.

Note that the Witten genus is the Â-genus of LM which is the index of

D ⊗⊗∞
m=1Sqm(T̄M).

The Witten genus is the virtual version of the Θ̂-genus which is the index of

D ⊗⊗∞
m=1Sqm(TM).

They differ by a factor η(τ)2k.
¿From quantum field theory, we know that, given a compact smooth mani-

fold M , the loop space LM is orientable, if and only if M is spin; LM is spin,
if and only if p1(M), the first Pontrjagin class of M is zero. The condition
on the first equivariant Pontrjagin class in Theorem 2.3 is equivalent to that
p1(M) = 0 and the S1-action preserves this condition, i.e. LM is spin and
the S1-action preserves this spin structure. Note that in Atiyah-Hirzebruch’s
situation, one can always lift the action to a double cover to make the action
preserve the spin structure of M . The reason is that the second Stieffel-
Whitney class whose vanishing is equivalent to the existence of spin structure
on M is 2-torsion.

If there is an non-abelian compact connected Lie group action, the condition
on p1(M)S1 in Theorem 2.3 is equivalent to p1(M) = 0 which gives us the
following corollary due to Dessai [D],

Corollary 2.3. Let M be a compact smooth spin manifold with a non-abelian
compact connected Lie group action. If p1(M) = 0, then the Witten genus of
M is zero.

Especially the Witten genus of any compact homogeneous spin manifold
with p1 = 0 vanishes. This is the first concrete evidence of the following
conjecture of Hoehn and Stolz:
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Conjecture: Any compact smooth spin manifold with p1 = 0 and positive
Ricci curvature has vanishing Witten genus.

The proof of our loop space Â-vanishing theorem is a refinement of the proof
of the rigidity theorem in last section. Still let us only consider the isolated
fixed point case and use the same notation as in last section. The Lefschetz
number H(t, τ) of

D ⊗⊗∞
m=1Sqm(T̄M)

is given by

H(t, τ) = (2πi)−k
∑

p

k∏
j=1

θ′(0, τ)

θ(mjt, τ)
.

Obviously H(t, τ) can be extended to C ×H as a meromorphic function.

Lemma 2.3.1. For m,n ∈ Z,

H(t+ n+mτ, τ) = e|n|πi(2t+τ)H(t, τ).

This tells us the behaviour of H(t, τ) under the translation of lattice. Its
behaviour under modular transformation is given by the following

Lemma 2.3.2. For g =

(
a b
c d

)
∈ SL2(Z), we have

H(
t

cτ + d
,
aτ + b

cτ + d
) = (cτ + d)ke−|n|ct

2/(cτ+d)H(t, τ).

These two lemmas imply that H(t, τ) is a (meromorphic) Jacobi form of
index −|n|/2 and weight k. On the other hand, as in Lemma 2.2.3, the
Atiyah-Bott-Segal-Singer Lefschetz fixed point formula tells us that H(t, τ)
is holomorphic for t ∈ R and τ in the upper half plane which together with
the above two lemmas gives us the regularity of H(t, τ) in t on the whole
complex plane. Therefore H(t, τ) is a holomorphic Jacobi form of negative
index which is impossible, except it is zero. Actually it is a simple exercise to
prove that the number of zeroes in a fundemental domain of the lattice of a
holomorphic Jacobi form is equal to its index [EZ].

2.4. Kac-Moody algebras in topolgy. Let G be a simple and simply con-
nected Lie group, and L̃G be the central extension of its loop group. Let E
be a positive energy representation of L̃G of level m and P be a principal
G-bundle on a compact smooth spin manifold M . Let ψ(P,E) be the element
constructed in §1 from P and E, and assume that there exists an S1-action
on M which lifts to P .

Theorem 2.4. If p1(M)S1 = m · p1(P )S1, then

DL ⊗ ψ(P,E)

is rigid.
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Here p1(P )S1 is the equivariant first Pontrjagin class of P . The proof of this
theorem follows the same idea of the above modular invariance argument. The
modular invariance of Kac character formula for the corresponding affine Lie
algebras, instead of the classical Jacobi theta-functions comes into play.

Similarly we have the following

Theorem 2.5. If m · p1(P )S1 − p1(M)S1 = n · π∗u2 with n a negative integer,
then the Lefschetz number, especially the index of

DL ⊗ ψ(P,E)

vanishes.

We refer to [Liu] and [GL] for the proofs of the above results. It should
be interesting to generalize them from affine Lie algebras to vertex operator
algebras.

3. Vector bundles and modular forms

In this section we first introduce infinite dimensional vector bundles on
finite dimensional manifolds, and then describe the corresponding K-group
and Riemann-Roch type theorems. We then construct rings from families of
vector bundles with certain modularity restriction. Modulo torsion, these rings
give construction of elliptic cohomology in terms of families of vector bundles.
Part of the work in this section is still under progress.

3.1. Infinite dimensional vector bundles. Let M be a manifold. By using
transition functions [L] we can define an infinite dimensional vector bundle E
with Hilbert space as fiber just in the same way as define a finite dimensional
vector bundle. Let H be the structure group of E which may be infinite
dimensional. First assume that the fiber of E is an irreducible representation
of H. We say E is a vector bundle of positive energy, if

1. There exists a fiberwise S1-action on E, such that under this action E is
decomposed into direct sum of finite dimensional vector bundles, ⊕n∈ZEn;

2. The character χ(τ) =
∑

n dimEnq
n+a for some rational number a is a

modular form.
This definition is motivated by the definition of positive energy representa-

tions of infinite dimensional Lie algebras [K] and Lie groups [PS]. In general,
we also call the direct sum and tensor product of two positive energy bundles
of positive energy.

The examples of positive energy bundles include the case that H = L̃G with
G a simple and simply connected Lie group. Each positive energy represen-
tation of loop group admits an action of Diff+S1 which, in our case extends
to fiberwise action on the corresponding infinite dimensional vector bundle on
M . Therefore in loop group case, one has very rich structures on the infinite
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dimensional vector bundles. On the other hand, the Virasoro equivariant bun-
dles on LM in [Br], when restricted to M ⊂ LM , gives infinite dimensional
vector bundles of positive energy on M .

Corresponding to each positive energy vector bundle E, we introduce a for-
mal power series with genuine vector bundle coefficients, ψ(E) = qa

∑
nEnq

n

and consider the set {ψ(E)} for all E’s. The sum and product in this set are
induced by the sum and the product of the corresponding formal power series.
In the standard way, we can make it into an abelian group with respect to the
sum. Together with product, it becomes a ring which we denote by FK(M).
Especially interesting is the subring generated by those elements coming from
positive energy vector bundles with loop group as structure group, we denote
this subring by LK(X). Obviously the equivalence relation in FK(X) and
LK(X) is not the one induced from the K-group of X.

3.2. Riemann-Roch and Virasoro algebra. Let X, Y be two compact
smooth spin manifolds with an embedding f : Y → X. Assume that
dimY = 2l and dimX = 2k. Denote by FH∗(X) the image of the Chern
character

ch : FK(X) → H∗(X,R)

where R is the ring

R = limN→∞Q[[q−1/N , q1/N ]].

Let f∗ and f ∗ denote the push-forward and pull-back map in cohomology
respectively.

The following theorem is an analogue of the Atiyah-Hirzebruch Riemann-
Roch theorem [AH1].

Theorem 3.1. Assume f ∗p1(X) = p1(Y ), then for any element U in FK(Y ),
there exists an element f!U in FK(X), such that

f∗(Θ̂(Y ) chU) = Θ̂(X) ch f!U

holds in FH∗(X).

We can also consider the subring LK(X) in FK(X) generated by those ele-
ments coming from positive energy vector bundles with loop group as structure
group. We can replace FK(X) by LK(X) in which case the above theorem
still holds. More precisely we have

Theorem 3.2. Assume f ∗p1(X) = p1(Y ), then for any element U in LK(Y ),
there exists an element f!U in LK(X), such that

f∗(Θ̂(Y ) chU) = Θ̂(X) ch f!U

holds in LH∗(X).
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Here LH∗(X) denotes the image of the Chern character of LK(X) inH∗(X,R).
Note that every element in LK(X) admits a fiberwise action of Diff+S1. Espe-
cially one can take X = S2L for a big integer L and Y an MO < 8 >-manifold
to get the

Corollary 3.1. Every elliptic genus of Y can be realized as a (virtual) infinite
dimensional vector bundle on S2L on which there exists a fiberwise action of
Diff+S1.

Here virtual means the difference of two bundles and the Diff+S1 acts on
each of them. The proof of Theorems 3.1 and 3.2 are basically the same as
the proof of the Atiyah-Hirzebruch Riemann-Roch. We use the existence of
the level 1 positive energy representations of L̃Spin(2l), S+, S− such that the
character of S+ − S− is given by

χS+−S− =
l∏

j=1

θ(αj, τ)

η(τ)

as in §1.2. For a different proof of Corollary 3.1, see [Ta].
Tensor category may enter this picture in the following way. Take a principal

bundle on a manifold M with structure group L̃G with G a semisimple Lie
group. Let Pm(G) be the set of highest weight representations of of L̃G of
level m. Each element in Pm(G) induces one element in LK(X) by the above
construction. We denote the set consisting of these elements by LKm(M,G).

There exists an interesting exotic tensor structure on Pm(G) which is given
by fusion rule [KL]. This naturally induces an exotic tensor structure on
LKm(M,G). For complex Grassmanniann, this is in turn isomorphic to the
quantum cohomology. According to [KL], as tensor category Pm(G) is isomor-
phic to the tensor category of representations of the quantum group UqG with
q a root of unity. UqG is the deformation of the universal eveloping algebra of
G. Hopefully the three very interesting subjects, loop groups, quantum groups
and tensor category may bring some new light to topology.

3.3. Vector bundles and Jacobi forms. This section is motivated by the
vertex operator algebra construction of the monstrous moonshine module. We
will discuss a construction from Jacobi forms and relate it to elliptic cohomol-
ogy.

Let R(G) be the Grothendieck ring of representations of a Lie group G. Let
q = e2πiτ with τ in the upper half plane be a parameter. Let {Vn} be a family
of elements in R(G) and χ(Vn) denote their characters.

A Jacobi form of level m and weight k with l variables over LoΓ, where L is
an integral lattice in the complex plane C preserved by the modular subgroup
Γ is a holomorphic function f(t, τ) with t = (t1, · · · , tl) on C l ×H such that
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(1) f(
t

cτ + b
,
aτ + b

cτ + d
) = (cτ + d)ke2πimc

∑
j t2j/(cτ+d)f(t, τ),

(2) f(t+ λτ + µ, τ) = e−2πim(lλ2τ+2λ
∑

j tj)f(t, τ)

where (λ, µ) ∈ L and g =

(
a b
c d

)
∈ Γ. Here

t

cτ + d
= (

t1
cτ + d

, · · · , tl
cτ + d

)

and
t+ λτ + µ = (t1 + λτ + µ, · · · , tl + λτ + µ).

Let (x1, · · · , xl) denote the standard root basis of G. Consider the formal
power series

∑
n Vn · qn.

Definition: A family {Vn} in R(G) is called a Jacobian family of level n
and weight k over Lo Γ, if there exists a rational number a, such that

qa
∑

n

χ(Vn)qn

is a Jacobi form in (x1, · · · , xl; τ) of level n and weight k over Lo Γ.
Let M be a smooth compact manifold. Let P be a principal G bundle on

M . From each Vn we get a vector bundle on M by associating Vn to P . For
convenience we still denote the corresponding bundle by Vn. This induces an
element in the ring of formal power series in q with vector bundle coefficients.
Let us denote the Grothendieck ring generated by these induced Jacobian
elements over Lo Γ for some L by JK(M)Γ.

The examples of Jacobian elements include the elements induced from loop
group representations.

1) Bundles induced from loop group representations. Let E be an irreducible
positive energy represenation of L̃G. According to the rotation of the circle,
E has decomosition ⊕jEj and there exists a rational number a such that

qa
∑

j

Ejq
j

is Jacobian. Its weight and level depend on G and E.
Actually the category of Jacobi elements may be bigger than that of loop

group representations.
2) For any Jacobi form over SL2(Z), one can get a Jacobian element. Let

Jk,m be the ring of Jacobi forms over Lo SL2(Z) for some lattice L [EZ]. For
any f(z, τ) ∈ Jk,m, under the action of −I in SL2(Z) we have by definition

f(−z, τ) = (−1)kf(z, τ)

which implies that
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k even, f(z, τ) =
∑

n

Pn(ξ + ξ−1)qn

k odd, f(z, τ) =
∑

n

(ξ − ξ−1)Pn(ξ + ξ−1)qn

where ξ = e2πiz and Pn is a polynomial.
Let E be a complex line bundle on M , then

F (E, τ) =
∑

n

Pn(E + E−1)qn or F (E, τ) =
∑

n

(E − E−1)Pn(E + E−1)qn

is a Jacobian element over Lo SL2(Z). Apply splitting principle, we can get
a Jacobian element from any vector bundle on M .

3) The following interesting element from the definition of elliptic genus is
a Jacobian element over Ln Γ0(2) with L = Z + Zτ ,

[(4+
V −4

−
V )⊗∞

n=1 Λ−qnVC ] · [(4+
V +4−

V )⊗∞
m=1 ΛqmVC ]−1.

where VC is the complexification of V and 4±
V are the spinor bundles of V .

3.4. Relation with elliptic cohomology. The Jacobian elements defined in
last section can be easily related to elliptic cohomology. We take the modular
subgroup Γ = Γ0(2) and denote the corresponding subring of level 0 elements
by JK(M)0

Γ and denote JK(M)Γ ⊗ Z[1
2
] simply by JK(M). The reason to

invert 2, which will be clear from the following discussions, is to get a homo-
morphism from the Landweber-Ravenel-Stong elliptic cohomology [La]. Note
that on a MO < 8 > manifold, every Jacobian element has level 0. Let M∗ be
the ring of modular forms over Γ0(2) with Fourier coefficients in Z[1

2
], and B

be the Bott periodicity element in K(S8). First it is easy to see the following

Lemma 3.4.1.
JK(S8) = M∗ ⊕M∗[B].

Define the reduced JK-group to be the kernal of the induced map by the
inclusion of a point x0 in M ,

i∗ : JK(M) → JK(x0).

It is clear that JK(x0) = M∗. Let us denote the reduced JK-group by ˜JK(M).
For a manifold N ⊂ M , one can accordingly define the relative JK-group by
JK(M,N) = ˜JK(M/N) which is a subring of formal power series in q with
coefficents in K(M,N) and with modularity. It can also be described by the
standard difference construction in topological K-theory.

As in topological K-theory, for n ≥ 1, using suspension, we define

˜JK
−n

(M) = ˜JK(SnM),
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JK−n(M,N) = ˜JK(Sn(M/N)),

JK−n(M) = JK−n(M,φ).

Let ε = ε1 = 1/16 θ4
2θ

4
3 be as in §1.4, we then have the following simple

lemma:

Lemma 3.4.2. The multiplication by Bε induces an isomorphism

JK−n(M,N) → JK−n−8(M,N).

Consider

JK ′′(M,N) =
∑

n

JK−n(M,N).

Let

JK∗(M,N) = JK ′′(M,N)/(1−Bε).

It is clear that

JK∗(pt) = M∗[ε
−1] = Z[

1

2
, δ, ε, ε−1].

The following obvious theorem establishes the relation of this ring with
elliptic cohomology

Theorem 3.3. There is a natural homomorphism Φ from Ω∗
Spin(M)[1

2
] to

JK∗(M) which factorizes through elliptic cohomology.

Φ is constructed in a standard way as in [CF]. Let

π : E → BSpin(8k)

be the universal spin bundle, P be the corresponding principal bundle and S±

be the two level 1 positive energy representations as given in §1.2. Denote by
S = S+ + S−. Let ψ(P, S±) and ψ(P, S) be the corresponding power series
constructed from S± and respectively S as in §1.2. Then

β = (π∗(ψ(P, S+)ψ(P, S)−1), π∗(ψ(P, S−)ψ(P, S)−1);µ)

where µ is the Clifford multiplication by e at (x, e) ∈ E , is an element in
JK∗(MSpin(8k)). Note that ψ(P, S) is invertable in JK∗(BSpin(8k)).

Let

f : S8k−n ∧M →MSpin(8k)

be the map inducing an element [X]f in Ω∗
Spin(M), then

Φ([X]f ) = f ∗β ∈ JK(S8k−n ∧M).

This theorem implies the following diagram of natural homomorphisms,
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Ell∗(M)
p↗ ↘ Φ̄

Ω∗
Spin(M)[[1

2
]]

Φ−→ JK∗(M)

where p is the natural transformation and Φ̄ is the induced map by Φ. This
diagram is also compatible with push-forward map [M]. More precisely for
π : M → pt, we have the K-theory push-forward

πK
∗ : JK∗(M) →M∗[ε

−1],

as well as the elliptic cohomology push-forward

πE
∗ : Ell∗(M) →M∗[ε

−1].

For an element α ∈ Ell∗(M), one has

πE
∗ α = πK

∗ Φ̄α

which should be compared with [M].
It is very easy to see that

Ell∗(M)⊗Q w JK∗(M)⊗Q.

Actually both of them are isomorphic to H∗(M,M∗[ε
−1]⊗Q).

Obiviously the JK∗(M) is slightly ’bigger’ than Ell∗(M). At this point,
we do not know how to put an equivalence relation in JK∗(M) to make it
a cohomology theory. If this can be done properly, then the quotient theory
should be very close to a vector bundle description of Ell(M).
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