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0. The Results. Let f : X → B be a fibration of a compact smooth
algebraic surface over a compact Riemann surface B, denote by g ≥ 2 the
genus of a generic fiber of f and by q the genus of B. Let s be the number of
singular fibers of f and ωX/B be the relative dualizing sheaf. Let C1, · · · , Cn

be n mutually disjoint sections of f , and denote by D the divisor
∑n

j=1Cj.
Then the main result we are going to prove in this note is the following
Theorem 0.1

Theorem 0.1. If f is not isotrivial and semistable, then

(ωX/B +D)2 < (2g − 2 + n)(2q − 2 + s).

In fact our proof shows that, for any n,

(ωX/B +D)2 = (2g − 2 + n)(2q − 2 + s).

if and only if f is isotrivial.
We can derive several corollaries from this theorem. To state the results,

we first introduce some notations. Let k be the function field of B and k̄
be its algebraic closure. For an algebraic point P ∈ X(k̄), we let CP be the
corresponding horizontal curve on X. Let

hK(P ) =
ωX/B · CP

[k(P ) : k]
, d(P ) =

2g(C̃P )− 2

[k(P ) : k]

be respectively the geometric height and the geometric logarithmic discrimi-
nant of P . Here C̃P is the normalization of CP and [k(P ) : k] = F ·CP , where
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F is a generic fiber of f , is the degree of P . Let bP be the number of ramifi-
cation points on C̃P of the induced map r : C̃P → B. Write dP = [k(P ) : k].
Then we have

Theorem 0.2. If f is semistable and not isotrivial, then

hK(P ) < (1 +
2g − 2

dP

)(d(P ) +
bP
dP

+ s)−
ω2

X/B

dP

.

This theorem gives us a corollary about the geometric height inequality
which is originally due to Vojta [V].

Corollary 0.3. Given any ε > 0, there exists a constant Oε(1) depending
on ε, s, g and q, such that

hK(P ) ≤ (2 + ε)d(P ) +Oε(1).

Vojta conjectured that the above inequality holds with (2 + ε) replaced
by (1 + ε). Take n = 1 in Theorem 0.1, we get the following geometric
height inequality, a weaker version of which was fisrt proved by Tan [Ta].
For simplicity we still assume f is semistable, the general case follows from
the semistable reduction trick as used in [Ta].

Corollary 0.4. Assume f is not isotrivial, then

hK(P ) ≤ (2g − 1)(d(P ) + s)− ω2
X/B.

The equality holds if and only if f is isotrivial.

We note that Theorem 0.2 is stronger than the Vojta’s (2+ ε) inequality,
but it is slightly weaker than the (1+ε) conjectural height inequality. I hope
that a modification of our method can be used to prove the (1+ε) conjecture.

For the long history of height inequalities and the importance of the Vojta
conjecture, we refer the reader to [La], Chapter VI, or [V2]. Especially such
inequalities immediately imply the Mordell conjecture for functional field.

When n = 0, Theorem 0.1 has the following straightforward consequence
[B], [Ta1],
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Corollary 0.5. (Beauville Conjecture) If B = CP 1 and f is semistable
and not isotrivial, then s ≥ 5.

Recall that f is called a Kodaira fibration, if f is everywhere of maximal
rank but not a complex analytic fiber bundle map. Let c1(X), c2(X) denote
the first and second Chern classes of X. A very interesting consequence of
Theorem 0.1 with n = 0 is the following Chern number inequality.

Corollary 0.6. If f is a Kodaira fibration, then

c1(X)2 < 3c2(X).

For some special Kodaira fibrations, it is proved in [BPV], pp168, that
c1(X)2 < 7

3
c2(X). This particularly implies that a Kodaira surface can not

be uniformized by a ball. I was told by Tan and Tsai that this has been
unknown for a long time.

The method to prove Theorem 0.1 was first used in [Liu] to prove the case
of n = 0. In [Ta1], Corollary 0.5 was proved by establishing a weaker version
of the n = 0 case of Theorem 0.1. Also in [Ta], a weaker version of Corollary
0.4 is proved. His method is algebro-geometric and is completely different
from that of [Liu]. The key technique in [Liu] is the Schwarz-Yau lemma [Y]
and the curvature computations of Wolpert and Jost [W], [J] for the Weil-
Peterson metric on the moduli spaces of curves. Theorem 0.2 follows from
Theorem 0.1 and the stablization theorem in [Kn].

This work is partially supported by an NSF grant. I would like to thank
S. Lu, S. Tan, I. Tsai and S. T Yau for helpful discussions.

1. Moduli Spaces and the Schwarz-Yau Lemma. We will use the
conventions in [W], [W1] for the geometry of moduli space of semistable
curves. Let Mg,n be the moduli space of Riemann surfaces of genus g with
n punctures. As in [W] or [TZ], we can consider Mg,n as the moduli space
of complex structures on a fixed n-punctured Riemann surface R.

Let π : Tg,n →Mg,n be the universal curve and π̄ : T̄g,n → M̄g,n their
Deligne-Mumford compactifications by adding nodal curves. The Poincare
metric on each fiber of Tg,n, which is a complete metric on the corresponding
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n-punctured Riemann surface with constant curvature −1, patches together
to give a smooth metric on the relative cotangent bundle ΩTg,n/Mg,n . The
push-down of Ω⊗2

Tg,n/Mg,n
by π which we denote by π!Ω

⊗2
Tg,n/Mg,n

, is the cotan-
gent bundle of Mg,n. Recall that for any point z ∈Mg,n,

π!Ω
⊗2
Tg,n/Mg,n

|z = H0(Rz,Ω
⊗2
z )

where Rz = π−1(z) and Ωz denotes the cotangent bundle of Rz.
The Poincare metric on each fiber induces a natural inner product on

π!Ω
⊗2
Tg,n/Mg,n

, therefore on the tangent bundle of Mg,n which is just the well-

known Weil-Peterson metric on Mg,n [W], [TZ].

Lemma 1.1. The holomorphic sectional curvature of the Weil-Peterson
metric on Mg,n is negative and strictly bounded from above by − 1

π(2g−2+n)
.

Proof. This is basically due to Wolpert [W]. Let µα be a tangent vector
onMg,n. We know that µα is represented by a harmonic Beltrami differential
[TZ], [W]. Let dA denote the volume element of the Poincare metric on
the n punctured Riemann surface. Assume µα is a unit vector, then we
have < µα, µα >=

∫
R
|µα|2dA = 1 with respect to the induced metric. The

computations in [W] and [J] actually tells us that the holomorphic sectional
curvature of the Weil-Peterson metric is given by

−Rαᾱαᾱ = −2 < 4|µα|2, |µα|2 >

where 4 = −2(D0 − 2)−1 with D0 the Laplacian of the Poincare metric on
the n-punctured Riemann surface. Consider the orthogonal decomposition

|µα|2 =
∑

j

ψj + E

in terms of the eigenfunctions of D0 on R. Here E is an Eisenstein series
which belongs to the continuous spectrum of D0, and ψj is the eigenfunctions
of D0 with eigenvalue λj. Note that λj < 0 and the continuous spectrum is
contained in (−∞,−1

4
]. So E only has negative contribution to the sectional

curvature. Let ψ0 be the constant function term in the above decomposition,
we then have
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−Rαᾱαᾱ ≤ 4
∑

j

< ψj, ψj >

λj − 2
< −2 < ψ0, ψ0 >= −2ψ2

0

∫
R

dA.

Since ∫
R

ψ0dA =

∫
R

|µα|2dA = 1 and

∫
R

dA = 2π(2g − 2 + n)

we get ψ0 = 1
2π(2g−2+n)

which is the required result. As in the n = 0 case in

[W], this upper bound can not be achieved. 2

Note that the relative cotangent bundle ΩTg,n/Mg,n is a line bundle on
Tg,n. Its extension to T̄g,n is the universal dualizing sheaf. Let c1(Ω) denote
its first Chern form with respect to the Poincare metric for n-punctures
Riemann surface. Let π∗ denote the push-down of cohomology class by π,
i.e. the integral along a generic fiber of π and ωWP the Kahler class of the
Weil-Peterson metric. The following lemma is also implicitly proved in [W],
[W1] or [TZ].

Lemma 1.2. On Mg,n we have

π∗(c1(Ω)2) =
1

2π2
ωWP . (1)

Furthermore as currents π∗(c1(Ω)2) and ωWP can be extended to M̄g,n, and
(1) still holds as an equality of currents on M̄g,n.

Proof. Equality (1) for punctured surface is proved in [TZ], formula
(5.3), following the argument of [W], Corollary 5.11.

It is easy to see that the metric on ΩTg,n/Mg,n is good in the sense of
Mumford, from [W1], pp420, we know that (1) can be extended to M̄g,n,
and as currents c1(Ω) is continuous on T̄g,n, and represents the first Chern
class of the universal dualizing sheaf of π̄ : T̄g,n → M̄g,n. Also ωWP has very
mild sigularity near the compactification divisor M̄g,n−Mg,n, and as current
on M̄g,n it is the limit of smooth positive Kahler forms in its cohomology
class in H2(M̄g,n, Q). 2

We will denote by ω̄WP and respectively π̄∗(c1(Ω)2) the extensions of ωWP

and π∗(c1(Ω)2) to M̄g,n. So Lemma 1.2 tells us that, as currents on M̄g,n,
we have
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π̄∗(c1(Ω)2) =
1

2π2
ω̄WP (2).

Note that Mg,n is a V -manifold [W1]. The following lemma is a slight
refinement of a special case of the general Schwarz-Yau lemma in [Y], and
the proof is implicit in [Y], pp.201.

Lemma 1.3. Let M be a complete Riemann surface with curvature
bounded from below by a constant K1. Let N be an Hermitian V -manifold
with holomorphic sectional curvature strictly bounded from above by a nega-
tive constant K2. Then for any non-constant holomorphic map from M to
N , one has

f ∗ωN <
K1

K2

ωM .

Where ωM , ωN denote respectively the Kahler forms of M and N .

Proof. All of the computations in [Y] is done on the domain manifold
M , so the formula (21) in [Y] still holds even when N is a V -manifold. Next
by taking lower limit of ε → 0 on both sides of the formula (21) in [Y] and
then substitute in the bounds for curvatures. 2

In fact we only need the following integral version of the above inequality∫
M

f ∗ωN <
K1

K2

∫
M

ωM .

Now we come back to the semistable family introduced at the beginning
of the paper. By deleting the n sections, we can view f : X → B as a family
of n-punctured Riemann surfaces. Let c1(ΩX/B) be the first Chern form of
the relative cotangent bundle with respect to the complete Poincare metric
on the n-punctured Riemann surface. Of course c1(ΩX/B) is first computed
on the smooth part X − f−1(S), then since the Poincare metric is good
in Mumford sense, as in Lemma 2, it can be extended to X as a current
and represents the first Chern class of the relative dualizing sheaf of the n-
punctured family. Let ωX/B be the relative dualizing sheaf of f considered as
a family of compact Riemann surfaces, and D be the divisor of sections. We
will also use ωX/B and D to denote their corresponding first Chern classes.
Let Q be the rational number field.
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Lemma 1.4. As cohomology classes in H2(X,Q), we have

c1(ΩX/B) = ωX/B +D.

Proof. Let R be a Riemann surface with n punctures, and R̄ be its
compactification. Let c1(Ω)R be the first Chern form of the cotangent bundle
of R with respect to the complete Poincare metric on R. Let c1(Ω)R̄ the first
Chern class of the cotangent bundle of R̄, then as currents on R̄ we obviously
have

c1(Ω)R = c1(Ω)R̄ + δ

where δ is the delta-function of the punctures.
Lemma 1.4 is just a family version of this formula. 2

2. The Proof of Theorem 0.1. Now we can prove Theorem 0.1. Let
f : X → B be the family of semistable curves with n mutually disjoint
sections {Cj}. Then f induces a holomorphic map

h : B → M̄g,n.

Let S denote the set of points over which the fibers are singular. Then s is
just the number of points in S. Since f is not isotrivial, from Lemma 1.3
we know that s ≥ 3 when q = 0 and s ≥ 1 when q = 1 [Liu], otherwise we
must have q > 1. Here recall that q is the genus of B. The restriction of h
to B − S induces a holomorphic map

h0 : B − S →Mg,n.

Equip B − S with the complete Poincare metric whose Kahler form we
denote by ωP . On Mg,n we have the Weil-Peterson metric ωWP . Recall that
the Poincare metric has constant curvature −1. By applying Lemmas 1.1,
1.3 to h0, one has

h∗0ωWP < π(2g − 2 + n)ωP .

Integrate over B − S, we get
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∫
B−S

h∗0ωWP < π(2g − 2 + n) · 2π(2q − 2 + s).

Now Lemma 1.2 tells us

∫
B−S

h∗0ωWP =

∫
B

h∗ω̄WP = 2π2

∫
B

h∗(π̄∗c1(Ω)2) = 2π2

∫
B

f∗(c1(ΩX/B)2)

where c1(ΩX/B) is the first Chern class of the relative dualizing sheaf of
f : X → B with respect to the Poincare metric for n-punctured Riemann
surface.

¿From Lemma 1.4 we get∫
B

f∗(c1(ΩX/B)2) =

∫
X

c1(ΩX/B)2 = (ωX/B +D)2.

This finishes the proof of Theorem 0.1.

3. The Proof of Theorem 0.2

Let d = dP = [k(P ) : k]. We consider the pull-back family by r : C̃P → B
which gives us a semistable family fP : XP → C̃P . The pull-back of the
horizontal curve CP splits into d sections of fP . Let S̃ be the union of the
set of points in C̃P where r ramifies and those points where the fibers of
f : X → B are singular. Then these d sections, which we denote by {Cj},
intersect only over the fibers above S̃. Let D denote the divisor

∑
j Cj. It is

easy to see that the number of points in S̃ is at most b+ ds. Here recall that
b is the number of points where r ramifies and s is the number of singular
fibers of f .

By using the stablization theorem in [Kn], Theorem 2.4, we get a family
of semistable d-punctured curves f̃ : YP → C̃P . The singular fibers of f̃
are those above S. There is a fiberwise contraction map c : YP → XP

such that the d mutually disjoint sections of f̃ , {C̃j}, are mapped to {Cj}
correspondingly. Let us write D̃ =

∑
j C̃j.

By applying Theorem 0.1 to f̃ , we get

(ωYP /C̃P
+ D̃)2 < (2g − 2 + d)(2q̃ − 2 + b+ ds)
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where q̃ denotes the genus of C̃P .
Lemma 1.6 in [Kn] tells us that

(ωYP /C̃P
+ D̃)2 = (ωXP /CP

+D)2.

We deduce from this the following inequality

ω2
XP /CP

+
d∑

j=1

ωY/CP
· Cj < (2g − 2 + d)(2q̃ − 2 + b+ ds).

Now ω2
XP /CP

= dω2
X/B, and ωXP /CP

· Cj = ωX/B · CP . Therefore we have

dω2
X/B + dωX/B · CP < (2g − 2 + d)(2q̃ − 2 + b+ ds).

Divide both sides of the inequality by d2, we get

hK(P ) < (1 +
2g − 2

d
)(d(P ) +

b

d
+ s)−

ω2
X/B

d

which is exactly Theorem 0.2. 2

4. The Proofs of the Corollaries

To prove Corollary 0.3, we take a large integer N such that, when d ≥ N ,
4g−4

d
< ε. The Hurwitz formula tells us that b < 2q̃ − 2. So we get from

Theorem 0.2, for d ≥ N

hK(P ) < (2 + ε)d(P ) + A

where A = s(1 + ε
2
)−

ω2
X/B

d
.

Next we take another large number L such that for any algebraic point
P of degree less than N , one has hK(P ) < L. Obviously L depends on
N , therefore ε, s and q. Then the inequality in Corollary 0.3 holds with
Oε(1) = A+ L.

To get such L, we make a base change of degree N !, π : C → B and let
f̃ : X̃ → C be the pull-back fibration. Then for any algebraic point P of
degree d < N , CP ×B C gives a section of f̃ . By applying Theorem 0.1 to f̃
with n = 1, we get
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hK(P ) < (2g − 1)(
q̃ − 2 + s̃

N !
)− ω2

X/B

where q̃ and s̃ are respectively the genus of C and the number of singular
fibers of f̃ . Take L to be the number on the left hand side of this inequality,
we are done.

Next we recall the following well-known formulas for the Chern numbers
of a semistably fibered algebraic surface f : X → B:

c1(X)2 = ω2
X/B + 8(g − 1)(q − 1), c2(X) = 4(g − 1)(q − 1) + δ

where δ is the number of double points on the fibers. With these two formulas
we see that Corollary 0.4 follows from Theorem 0.1 by taking n = 1 while
Corollary 0.6 follows by taking n = 0.

The proof of Corollary 0.5 follows from a result of Beauville [B] and
Theorem 0.1 with n = 0. In fact Beauville proved that s ≥ 4 and s = 4 if
and only if χ(OX) = 1. On the other hand we have the following inequality

degf∗ωX/B ≤ (4− 4

g
)−1ω2

X/B

proved by Xiao and Harris-Cornalba. Then recall that

degf∗ωX/B = χ(OX)− (g − 1)(q − 1).

By taking n = 0 in Theorem 0.1, we get

χ(OX) + g − 1 <
g

2
(−2 + s)

which gives s > 4.
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