Geometric Height Inequalities

Kefeng Liu

0. The Results. Let f : X — B be a fibration of a compact smooth
algebraic surface over a compact Riemann surface B, denote by g > 2 the
genus of a generic fiber of f and by ¢ the genus of B. Let s be the number of
singular fibers of f and wx/p be the relative dualizing sheaf. Let Cy,---,C),
be n mutually disjoint sections of f, and denote by D the divisor Z;‘:l C;.
Then the main result we are going to prove in this note is the following
Theorem 0.1

Theorem 0.1. If f is not isotrivial and semistable, then

(wx/B + D)2 <(29—24n)(2¢ -2+ s).

In fact our proof shows that, for any n,
(wx/p+ D)* = (29 —2+n)(2g — 2 + ).

if and only if f is isotrivial.
We can derive several corollaries from this theorem. To state the results_,
we first introduce some notations. Let k& be the functi_on field of B and k

be its algebraic closure. For an algebraic point P € X (k), we let Cp be the
corresponding horizontal curve on X. Let

WX/B'CP 29(6}3) -2
hie(P) = XE2E - q(py = 2 2
[k(P) : K] [£(P) : k]
be respectively the geometric height and the geometric logarithmic discrimi-
nant of P. Here Cp is the normalization of Cp and [k(P) : k] = F'-Cp, where
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F is a generic fiber of f, is the degree of P. Let bp be the number of ramifi-
cation points on Cp of the induced map r : Cp — B. Write dp = [k(P) : k.
Then we have

Theorem 0.2. If f is semistable and not isotrivial, then

b w3
)d(P) + £ 4 5) — X8
dp dp

2g — 2

hk(P) < (1+ i

This theorem gives us a corollary about the geometric height inequality
which is originally due to Vojta [V].

Corollary 0.3. Given any e > 0, there exists a constant O.(1) depending
on e, s, g and q, such that

hic(P) < (2+2)d(P) + O.(1).

Vojta conjectured that the above inequality holds with (2 + ¢) replaced
by (1 +¢). Take n = 1 in Theorem 0.1, we get the following geometric
height inequality, a weaker version of which was fisrt proved by Tan [Tal.
For simplicity we still assume f is semistable, the general case follows from
the semistable reduction trick as used in [Ta].

Corollary 0.4. Assume f is not isotrivial, then
hi(P) < (29 = D(d(P) + 5) — wk/p.

The equality holds if and only if f is isotrivial.

We note that Theorem 0.2 is stronger than the Vojta’s (2 + ¢) inequality,
but it is slightly weaker than the (1+¢) conjectural height inequality. I hope
that a modification of our method can be used to prove the (1+4¢) conjecture.

For the long history of height inequalities and the importance of the Vojta
conjecture, we refer the reader to [La], Chapter VI, or [V2]. Especially such
inequalities immediately imply the Mordell conjecture for functional field.

When n = 0, Theorem 0.1 has the following straightforward consequence
B], [Tall,



Corollary 0.5. (Beauville Conjecture) If B = CP! and f is semistable
and not isotrivial, then s > 5.

Recall that f is called a Kodaira fibration, if f is everywhere of maximal
rank but not a complex analytic fiber bundle map. Let ¢1(X), ¢o(X) denote
the first and second Chern classes of X. A very interesting consequence of
Theorem 0.1 with n = 0 is the following Chern number inequality.

Corollary 0.6. If f is a Kodaira fibration, then

c1(X)? < 3ey(X).

For some special Kodaira fibrations, it is proved in [BPV], pp168, that
¢1(X)? < Zep(X). This particularly implies that a Kodaira surface can not
be uniformized by a ball. T was told by Tan and Tsai that this has been
unknown for a long time.

The method to prove Theorem 0.1 was first used in [Liu] to prove the case
of n = 0. In [Tal], Corollary 0.5 was proved by establishing a weaker version
of the n = 0 case of Theorem 0.1. Also in [Tal, a weaker version of Corollary
0.4 is proved. His method is algebro-geometric and is completely different
from that of [Liu]. The key technique in [Liu] is the Schwarz-Yau lemma [Y]
and the curvature computations of Wolpert and Jost [W], [J] for the Weil-
Peterson metric on the moduli spaces of curves. Theorem 0.2 follows from
Theorem 0.1 and the stablization theorem in [Kn].

This work is partially supported by an NSF grant. I would like to thank
S. Lu, S. Tan, I. Tsai and S. T Yau for helpful discussions.

1. Moduli Spaces and the Schwarz-Yau Lemma. We will use the
conventions in [W], [W1] for the geometry of moduli space of semistable
curves. Let M, be the moduli space of Riemann surfaces of genus g with
n punctures. As in [W] or [TZ], we can consider M, as the moduli space
of complex structures on a fixed n-punctured Riemann surface R.

Let m: 7,, — M,, be the universal curve and 7 : 7, — M, their
Deligne-Mumford compactifications by adding nodal curves. The Poincare
metric on each fiber of 7 ,,, which is a complete metric on the corresponding



n-punctured Riemann surface with constant curvature —1, patches together
to give a smooth metric on the relative cotangent bundle Q7. /a4, ,.. The
push-down of Q WM, by 7 which we denote by mQT /My, , is the cotan-
gent bundle of /\/lg n- Recall that for any point z € /\/lg ns

®2
7TIQ Tym/ Mg |2

where R, = 7 1(2) and 2, denotes the cotangent bundle of R..

The Poincare metric on each fiber induces a natural inner product on
mQ?ﬁ WM, , therefore on the tangent bundle of M, ,, which is just the well-
known Weil-Peterson metric on M, (W], [TZ].

|- = H(R., Q)

Lemma 1.1. The holomorphic sectional curvature of the Weil-Peterson

metric on My, is negative and strictly bounded from above by —m.

Proof. This is basically due to Wolpert [W]. Let p, be a tangent vector
on M, ,,. We know that 11, is represented by a harmonic Beltrami differential
[TZ], [W]. Let dA denote the volume element of the Poincare metric on
the n punctured Riemann surface. Assume p, is a unit vector, then we
have < flo, fia >= [ |1a|*dA = 1 with respect to the induced metric. The
computations in [W] and [J] actually tells us that the holomorphic sectional
curvature of the Weil-Peterson metric is given by

—Rogoa = —2 < Amaﬁ |Ma’2
where A = —2(Dy — 2)~! with Dy the Laplacian of the Poincare metric on
the n-punctured Riemann surface. Consider the orthogonal decomposition

|:uo¢|2 = qubj +E
J

in terms of the eigenfunctions of Dy on R. Here E is an Eisenstein series
which belongs to the continuous spectrum of Dy, and 1); is the eigenfunctions
of Dy with eigenvalue \;. Note that A\; < 0 and the continuous spectrum is
contained in (—oo, _411]' So E only has negative contribution to the sectional
curvature. Let 1y be the constant function term in the above decomposition,
we then have



< ¢a¢ >
—Rasaa < 42# < =2 < Yo, Yy >= —M%/RdA-
J

Since

/@/JOdA:/|ua|2dA:1 and /dAzQﬂ(Qg—2+n)
R R R

we get 1y = m which is the required result. As in the n = 0 case in
[W], this upper bound can not be achieved. O

Note that the relative cotangent bundle €07 /o, 15 a line bundle on
Tyn- Its extension to 7, is the universal dualizing sheaf. Let ¢;(€2) denote
its first Chern form with respect to the Poincare metric for n-punctures
Riemann surface. Let 7, denote the push-down of cohomology class by ,
i.e. the integral along a generic fiber of 7 and wy p the Kahler class of the
Weil-Peterson metric. The following lemma is also implicitly proved in [W],

[W1] or [TZ].

Lemma 1.2. On Mg, we have

1
W*(Cl(Q>2) = ﬁu}wp. (1)
T
Furthermore as currents m.(c1(Q)?) and wwp can be extended to M,.,., and

(1) still holds as an equality of currents on M,.,,.

Proof. Equality (1) for punctured surface is proved in [TZ], formula
(5.3), following the argument of [W], Corollary 5.11.

It is easy to see that the metric on Qr, /a4, 1S good in the sense of
Mumford, from [W1], pp420, we know that (1) can be extended to M,,,
and as currents ¢;(£2) is continuous on 7, and represents the first Chern
class of the universal dualizing sheaf of 7 : ’Z_;m — /\;lg,n. Also wyy p has very
mild sigularity near the compactification divisor M, ,, — M, ,, and as current
on M, it is the limit of smooth positive Kahler forms in its cohomology
class in H*(M,,,Q). O

We will denote by @y p and respectively 7. (c;(£2)?) the extensions of wyyp
and 7,(c1(2)?) to M,,,. So Lemma 1.2 tells us that, as currents on M,
we have



(e (Q)?) = #@Wp (2).

Note that M, , is a V-manifold [W1]. The following lemma is a slight
refinement of a special case of the general Schwarz-Yau lemma in [Y], and
the proof is implicit in [Y], pp.201.

Lemma 1.3. Let M be a complete Riemann surface with curvature
bounded from below by a constant Ky. Let N be an Hermitian V -manifold
with holomorphic sectional curvature strictly bounded from above by a nega-
tive constant Ko. Then for any non-constant holomorphic map from M to
N, one has

1
f*wN < —=Wpy-
Ko

Where wyr, wy denote respectively the Kahler forms of M and N.

Proof. All of the computations in [Y] is done on the domain manifold
M, so the formula (21) in [Y] still holds even when N is a V-manifold. Next
by taking lower limit of ¢ — 0 on both sides of the formula (21) in [Y] and
then substitute in the bounds for curvatures. O

In fact we only need the following integral version of the above inequality

. K,
< — .
/Mf”N K2/M“’M

Now we come back to the semistable family introduced at the beginning
of the paper. By deleting the n sections, we can view f : X — B as a family
of n-punctured Riemann surfaces. Let ¢,(€2x/p) be the first Chern form of
the relative cotangent bundle with respect to the complete Poincare metric
on the n-punctured Riemann surface. Of course ¢;(Qx/p) is first computed
on the smooth part X — f~!(S), then since the Poincare metric is good
in Mumford sense, as in Lemma 2, it can be extended to X as a current
and represents the first Chern class of the relative dualizing sheaf of the n-
punctured family. Let wx,p be the relative dualizing sheaf of f considered as
a family of compact Riemann surfaces, and D be the divisor of sections. We
will also use wx/p and D to denote their corresponding first Chern classes.
Let ) be the rational number field.



Lemma 1.4. As cohomology classes in H*(X,Q), we have

c1(Qx/B) = wx/p + D.

Proof. Let R be a Riemann surface with n punctures, and R be its
compactification. Let ¢1(2)g be the first Chern form of the cotangent bundle
of R with respect to the complete Poincare metric on R. Let ¢;(€2) the first
Chern class of the cotangent bundle of R, then as currents on R we obviously
have

aQr=c(Q)r+9d

where ¢ is the delta-function of the punctures.
Lemma 1.4 is just a family version of this formula. O

2. The Proof of Theorem 0.1. Now we can prove Theorem 0.1. Let
f : X — B be the family of semistable curves with n mutually disjoint
sections {C;}. Then f induces a holomorphic map

h: B— M,,.

Let S denote the set of points over which the fibers are singular. Then s is
just the number of points in S. Since f is not isotrivial, from Lemma 1.3
we know that s > 3 when ¢ = 0 and s > 1 when ¢ = 1 [Liu], otherwise we
must have ¢ > 1. Here recall that ¢ is the genus of B. The restriction of h
to B — S induces a holomorphic map

ho: B—S—>Mg7n.

Equip B — S with the complete Poincare metric whose Kahler form we
denote by wp. On M, , we have the Weil-Peterson metric wy p. Recall that
the Poincare metric has constant curvature —1. By applying Lemmas 1.1,
1.3 to hg, one has

hywwp < (29 — 2+ n)wp.

Integrate over B — S, we get



/ hiwwp < 7(29 —2+n)-2m(2¢ — 2+ s).
B-S

Now Lemma 1.2 tells us

/B_S howwp = /Bh*wwp = 27r2/Bh*(7—r*cl(Q)2) = 27r2/Bf*(cl(QX/B)2)

where ¢;(€2x/p) is the first Chern class of the relative dualizing sheaf of
f: X — B with respect to the Poincare metric for n-punctured Riemann
surface.

JFrom Lemma 1.4 we get

/Bf*(cl(QX/B)Q) = /XCl(QX/B)2 = (wx/p + D)*.

This finishes the proof of Theorem 0.1.

3. The Proof of Theorem 0.2

Let d = dp = [k(P) : k]. We consider the pull-back family by r : Cp — B
which gives us a semistable family fp : Xp — Cp. The pull-back of the
horizontal curve Cp splits into d sections of fp. Let S be the union of the
set of points in Cp where r ramifies and those points where the fibers of
f: X — B are singular. Then these d sections, which we denote by {C;},
intersect only over the fibers above S. Let D denote the divisor 3 ;G Tt s

casy to see that the number of points in S is at most b+ ds. Here recall that
b is the number of points where r ramifies and s is the number of singular
fibers of f.

By using the stablization theorem in [Kn|, Theorem 2.4, we get a family
of semistable d-punctured curves f . Yp — Cp. The singular fibers of f
are those above S. There is a fiberwise contraction map ¢ : Yp — Xp
such that the d mutually disjoint sections of f, {éj}, are mapped to {C;}
correspondingly. Let us write D = > i C’j.

By applying Theorem 0.1 to f , we get
(Wypyey, + D)’ < (29 =2+ d)(24 — 2+ b+ ds)
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where ¢ denotes the genus of Cp.
Lemma 1.6 in [Kn] tells us that

(wa/C’p + D)Q = (wXP/CP + D>2'
We deduce from this the following inequality

d
W op Y wyjop O < (29— 2+ d)(2G — 2+ b+ ds).

j=1

Now ngp/Cp = dwi/B, and wx, ¢, - Cj = wy/p - Cp. Therefore we have

dw¥ 5 + dwx/p - Cp < (29 — 24 d)(2§ — 2+ b + ds).
Divide both sides of the inequality by d?, we get
29 — 2 b wk/B

hx(P) < (1+ g )<d(P)+E+S)_ g

which is exactly Theorem 0.2. O
4. The Proofs of the Corollaries

To prove Corollary 0.3, we take a large integer N such that, when d > N,
4gTi_4 < e. The Hurwitz formula tells us that b < 2G — 2. So we get from

Theorem 0.2, for d > N

hg(P) < (24+¢e)d(P)+ A

where A = s(1+5) — WZ/B.

Next we take another large number L such that for any algebraic point
P of degree less than N, one has hx(P) < L. Obviously L depends on
N, therefore €, s and ¢q. Then the inequality in Corollary 0.3 holds with
O.(1)=A+ L.

To get such L, we make a base change of degree N!, 7 : C' — B and let
f : X — C be the pull-back fibration. Then for any algebraic point P of
degree d < N, Cp x C gives a section of f. By applying Theorem 0.1 to f
with n =1, we get



q—2+s
hi(P) < (29 — 1)(T) — Wi/

where ¢ and § are respectively the genus of C' and the number of singular
fibers of f. Take L to be the number on the left hand side of this inequality,
we are done.

Next we recall the following well-known formulas for the Chern numbers
of a semistably fibered algebraic surface f: X — B:

a(X)? =wi/p+8(g—1)(g—1), (X)) =4(g—1)(g—1)+9

where ¢ is the number of double points on the fibers. With these two formulas
we see that Corollary 0.4 follows from Theorem 0.1 by taking n = 1 while
Corollary 0.6 follows by taking n = 0.

The proof of Corollary 0.5 follows from a result of Beauville [B] and
Theorem 0.1 with n = 0. In fact Beauville proved that s > 4 and s = 4 if
and only if x(Ox) = 1. On the other hand we have the following inequality

4\ 1 o
deg fuwx/p < (4 — 5) Wx/B

proved by Xiao and Harris-Cornalba. Then recall that

degf*wX/B =X(Ox) = (g—1)(¢g—1).

By taking n = 0 in Theorem 0.1, we get

W0x)+9-1<5(~2+5)

which gives s > 4.
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