1. Let $f: \mathbb{C} \rightarrow \mathbb{C} \cup\{\infty\}$ be a non-constant doubly periodic function with periods 1 and τ as in HW3. (Recall $\tau \in \mathbb{C}$ has $\operatorname{Im} \tau>0$.)
(a) Show that the sum of the residues in any fundamental parallelogram (i.e., with vertices $\{z, z+1, z+1+\tau, z+\tau\}$) whose sides miss the poles of f is equal to zero.
(b) Show that $f(z)=w$ and $f(z)=\infty$ have an equal number of solutions in each fundamental parallelogram (for any $w \in \mathbb{C}$ and counting with multiplicity). From HW3 we know that this number is non-zero.
(c) Show that

$$
\wp(z):=\frac{1}{z^{2}}+\sum_{n \in \mathbb{Z}^{2} \backslash\{0\}} \frac{1}{\left(z-n_{1}-n_{2} \tau\right)^{2}}-\frac{1}{\left(n_{1}-n_{2} \tau\right)^{2}}
$$

defines a meromorphic function and that

$$
\wp^{\prime}(z):=-2 \sum_{n \in \mathbb{Z}^{2}} \frac{1}{\left(z-n_{1}-n_{2} \tau\right)^{3}} .
$$

Once you prove convergence, it is clear that $\wp^{\prime}(z)$ is doubly periodic.
(d) Use the fact that \wp is even (i.e. $\wp(z)=\wp(-z)$) to deduce that \wp is doubly periodic.
2. (a) Let A be a $n \times n$ matrix and let $f(z):=\operatorname{det}(z \operatorname{Id}-A)$. Show

$$
\frac{f^{\prime}(z)}{f(z)}=\operatorname{Tr}\left\{(z \operatorname{Id}-A)^{-1}\right\}
$$

(b) Apply Rouchés Theorem to f to show that the eigenvalues of A (repeated according to algebraic multiplicity) depend continuously on the entries of A. Here, we say that the distance between two multi-sets is the sum of the distances under the shortest matching.
(c) Now suppose $A(t)$ depends holomorphically on a parameter $t \in \mathbb{D}$ and that λ_{0} is a simple (i.e. multiplicity one) eigenvalue of $A(0)$. Show that there is a holomorphic function $t \mapsto \lambda(t)$ defined in an open neighbourhood of 0 so that $\lambda(0)=0$ and $\lambda(t)$ is an eigenvalue of $A(t)$.
Remark: The matrix function $t \mapsto\left[\begin{array}{ll}0 & 1 \\ t & 0\end{array}\right]$ shows that the eigenvalues may only be Hölder continuous as functions of the entries in A. In the $n \times n$ case, they may be merely Hölder $\frac{1}{n}$ continuous.
3. Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is bijective and holomorphic.
(a) Show that f^{-1} is holomorphic.
(b) Use the continuity of f^{-1} to show that $|f(z)| \rightarrow \infty$ as $|z| \rightarrow \infty$.
(c) Show that $f(z)=O(|z|)$ as $z \rightarrow \infty$. [Hint: Look at $g(z)=1 / f(1 / z)$.]
(d) Deduce that $f(z)=a z+b$ for some $a \in \mathbb{C} \backslash\{0\}$ and $b \in \mathbb{C}$.
4. Show that every meromorphic bijection f from $\mathbb{C} \cup\{\infty\}$ to itself is of the form

$$
f(z)=\frac{a z+b}{c z+d}
$$

for some quadruplet $a, b, c, d \in \mathbb{C}$ obeying $a d-b c=1$.
5. (a) Use Möbius transformations to determine the analogue of the Schwarz Reflection Principle for holomorphic functions f defined in an open neighbourhood of an arc of the circle $\{|z|=1\}$ that obey $\left|f\left(e^{i \theta}\right)\right|=1$.
(b) Use Möbius transformations to determine the analogue of Schwarz Lemma for mappings f of the half-plane $\{\operatorname{Re} z>0\}$ to itself that obey $f(1)=1$.
(c) Use Möbius transformations and Schwarz Lemma to prove the Borel-Carathéodory Theorem: Let f be holomorphic in an open neighbourhood of the closed unit disk, $\overline{\mathbb{D}}$. For each $z \in \mathbb{D}$,

$$
|f(z)| \leq \frac{1+|z|}{1-|z|}|f(0)|+\frac{2|z|}{1-|z|} \sup _{w \in \mathbb{D}} \operatorname{Re} f(w) .
$$

