1. Let $\Omega \subseteq \mathbb{C}$ be open, connected, and simply connected. Let $f: \Omega \rightarrow \mathbb{C} \backslash\{0\}$ be holomorphic. Show the following:
(a) There is a holomorphic function $g: \Omega \rightarrow \mathbb{C}$ so that $f(z)=e^{g(z)}$; moreover if $\tilde{g}: \Omega \rightarrow \mathbb{C}$ is holomorphic and $f(z)=e^{\tilde{g}(z)}$, then $g(z)-\tilde{g}(z)$ is constant and equal to some element of $2 \pi i \mathbb{Z}$.
(b) There is a holomorphic function $h: \Omega \rightarrow \mathbb{C}$ so that $f(z)=[h(z)]^{2}$. Except $\tilde{h}(z)=-h(z)$ there are no other holomorphic functions with this property.
2. Fix $0<r<R<\infty$ and let $A:=\{z \in \mathbb{C}: r \leq|z| \leq R\}$. Suppose $f: A \rightarrow \mathbb{C}$ is continuous and is holomorphic on the interior of A, which we denote A°.
(a) Express $f(z)$ for each $z \in A^{\circ}$ as a Cauchy-like integral over the two circles $|z|=r$ and $|z|=R$.
(b) Deduce that there is a holomorphic function g on $\{z:|z|>r\}$ and another holomorphic function h on $\{z:|z|<R\}$ so that $f(z)=g(z)+h(z)$ for all $z \in A^{\circ}$.
(c) Conclude that there are coefficients $c_{n}, n \in \mathbb{Z}$, so that

$$
f(z)=\sum_{-\infty}^{\infty} c_{n} z^{n}
$$

as a uniformly convergent sum on all compact subsets of A°.
Remark: The series above is called a Laurent series for f. Suppose now that f is holomorphic in the 'annulus' $\left\{z \in \mathbb{C}: 0<|z|<R^{\prime}\right\}$. Choosing some $0<r<R<$ R^{\prime} we can apply the analysis above to get a Laurent series representation. Close inspection of your argument should reveal that the coefficients c_{n} do not depend on the particular choice of r or R. Thus, we have a Laurent expansion valid in throughout $\left\{z \in \mathbb{C}: 0<|z|<R^{\prime}\right\}$.
3. Let $E \subseteq[0,1] \subseteq \mathbb{R} \subseteq \mathbb{C}$ denote the usual Cantor ternary set and let $B=\{z \in \mathbb{C}$: $|z|<2\}$. Suppose $f: B \backslash E \rightarrow \mathbb{C}$ is bounded and holomorphic. Show that f admits a holomorphic extension to all of B.
4. (a) Evaluate

$$
\int_{0}^{\infty} \frac{\sqrt{x}}{x^{2}+1} d x
$$

by writing $2 i \sqrt{x}=\lim _{\varepsilon \rightarrow 0} \exp \left\{\frac{1}{2} \log (-x+i \varepsilon)\right\}-\exp \left\{\frac{1}{2} \log (-x+i \varepsilon)\right\}$.
(b) Evaluate

$$
\int_{0}^{2 \pi}[\sin \theta]^{2 k} d \theta
$$

for all integers $k \geq 1$. [Hint: What is $\left(z-z^{-1}\right)$ when $z=e^{i \theta}$.]
5. In class, we saw that

$$
\zeta(s)=\frac{1}{2 i \cos (\pi s / 2)} \int_{\gamma} \frac{z^{-s} d z}{e^{-2 \pi z}-1}
$$

where $\gamma: \mathbb{R} \rightarrow \mathbb{C}$ by $\gamma(t)=\frac{1}{2}-|t|+i t$. Initially this was for $\operatorname{Re} s>1$ and $s \notin 2 \mathbb{Z}+1$ for other values of s the integral can be regarded as the definition of $\zeta(s)$ (as a meromorphic function). For this problem, we consider only $s \in \mathbb{C}$ with $\operatorname{Re} s<0$.
(a) By collapsing the contour onto $(-\infty, 0]$ evaluate

$$
\int_{\gamma} e^{2 \pi n z} z^{-s} d z
$$

for each integer $n \geq 1$. (Note that the answer involves the Γ function.)
(b) Similarly show that

$$
\int_{\gamma} \frac{e^{2 \pi N z}}{e^{-2 \pi z}-1} z^{-s} d z
$$

converges to 0 as $N \rightarrow \infty$.
(c) By writing

$$
\frac{1}{e^{-2 \pi z}-1}=\frac{e^{2 \pi N z}}{e^{-2 \pi z}-1}+\sum_{n=1}^{N} e^{2 \pi n z}
$$

deduce that ζ obeys the functional equation

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

and so conclude (using results from class and previous homework) that $s=1$ is the only (non-removable) singularity of ζ.
6. Evaluate

$$
\int_{\mathbb{R}} e^{-t^{2} / 2} e^{i \xi t} d t
$$

for all $\xi \in \mathbb{C}$. Deduce Wick's Theorem (as it is called in the physics literature):

$$
\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} t^{2 k} e^{-t^{2} / 2} d t=(2 k-1)!!=(2 k-1)(2 k-3) \cdots(3)(1)
$$

Convince yourself that this is the number of ways of pairing off $2 k$ objects.

