246A Homework 2

Due Oct. 19.

1. (a) Let $\Omega \subseteq \mathbb{C}$ be open. Suppose $f : \Omega \to \mathbb{C}$ is holomorphic; show

$$\Delta f = 4\partial_z \partial_{\bar{z}} f = 0,$$

where Δ is the Laplacian.

(b) Let $f : \mathbb{C} \to \mathbb{C}$ be continuous and a distributional solution of $\partial_{\bar{z}} f = 0$. Show that f is distributionally harmonic:

$$\int_{\mathbb{C}} f(x+iy)[\Delta\phi](x+iy) \, dx \, dy = 0 \quad \text{for all} \quad \phi \in C_c^{\infty}(\mathbb{C})$$

(c) Using just the one-variable Fundamental Theorem of Calculus (and the equality of double Riemann integrals with iterated integrals), prove Green's theorem in the following form:

$$2i \iint_{T} [\partial_{\bar{z}} f](x+iy) \, dx \, dy = \int_{\partial T} f(z) \, dz$$

where $f : \mathbb{C} \to \mathbb{C}$ is C^1 and T is the triangle with vertices 0 + i0, a + i0, and 0 + ib, where a, b > 0.

Remark: The parts are related by the appearance of $\partial_{\bar{z}}$; they don't build on one another. Be explicit about how you parameterize the curve ∂T . Weyl's lemma (which we will prove in due course) says that distributionally harmonic functions are C^{∞} . It then follows that continuous functions that are distribution solutions of $\partial_{\bar{z}} f = 0$ are actually holomorphic in the usual sense.

2. Let $\Omega \subseteq \mathbb{C}$ be open and let $f_n : \Omega \to \mathbb{C}$ be holomorphic. Suppose that for each compact set $K \subset \Omega$ the functions f_n converge uniformly to some $f : \Omega \to \mathbb{C}$. Show that f must me holomorphic. Further, show that $f'_n(z) \to f'(z)$ uniformly on compact subsets of Ω .

3. (a) Prove Liouville's Theorem: Suppose $f : \mathbb{C} \to \mathbb{C}$ is holomorphic and

$$|f(z)| \le C(1+|z|)^n$$

for some C > 0 and integer $n \ge 0$, then f is a polynomial of degree not exceeding n. (b) Let Ω be an open neighbourhood of $0 \in \mathbb{C}$. Suppose g is holomorphic on $\Omega \setminus \{0\}$ and obeys

$$|g(z)| \le C|z|^{-n}$$

there (with n and C as before). Show that there is a holomorphic function $h: \Omega \to \mathbb{C}$ and coefficients a_1, \ldots, a_n in \mathbb{C} so that

$$g(z) = h(z) + \sum_{k=1}^{n} a_k z^{-k}.$$

The sum here is called the *principal part* of g at the point 0.

Hint: First treat the case n = 0, for which the sum is empty (and so zero). This n = 0 result is known as *Riemann's removable singularity theorem*. For general n consider $f(z) = z^n g(z)$.

4. For $z \in \mathbb{C}$ with $\operatorname{Re}(z) > 0$, let us define

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$$

(as an improper Riemann integral).

- (a) Prove that Γ is holomorphic on this region.
- (b) Show that $z\Gamma(z) = \Gamma(z+1)$ when $\operatorname{Re}(z) > 0$.
- (c) Deduce that $\Gamma(n+1) = n!$ when $n \ge 0$ is an integer.

(d) Argue that there is a (unique) extension of Γ to a holomorphic function on $\mathbb{C} \setminus \{0, -1, -2, ...\}$ that obeys $z\Gamma(z) = \Gamma(z+1)$. Show that the omitted points are polar singularities and determine their principal part.

5. (a) Show that

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$$

defines a holomorphic function on $\{s \in \mathbb{C} : \operatorname{Re}(s) > 1\}$. (b) Show that

$$\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}$$

You may take the fundamental theorem of arithmetic for granted, but you must address the issue of convergence.

(c) Identify a function $g: [-\frac{1}{2}, \frac{1}{2}] \to \mathbb{R}$ so that

$$f(n) = \int_{-1/2}^{1/2} f(n+x) \, dx + \int_{-1/2}^{1/2} f''(n+x)g(x) \, dx$$

for all C^{∞} functions f defined in a neighbourhood of $[n - \frac{1}{2}, n + \frac{1}{2}]$. [*Remark:* one may view this formula as giving the error made when using the midpoint rule of numerical integration.]

(d) Use part (c) to show that we can extend the definition of ζ to make it meromorphic in the region $\operatorname{Re}(s) > -1$. Identify the (single) pole and its residue.