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Perhaps more than anyone else in the last 50 years, Anne Troelstra
had a comprehensive, encyclopedic knowledge of the classical and
constructive metamathematics of intuitionistic formal systems.
He shared this knowledge generously, by teaching and by writing
many influential papers and books which weave his original work
into a rich context of history and the contributions of others.

His own metamathematical work seemed to follow a pattern:

I Select a domain of discourse (e.g. arithmetic or analysis).

I Identify and analyze the key concepts from an intuitionistic
viewpoint, using informal rigor.

I Formulate axioms for basic concepts and important models.

I Build corresponding formal systems, with intuitionistic logic.

I Compare these formal systems as constructively as possible.

This pattern emerged early and led to many nice theorems.



Among his best known results are

I the elimination of choice sequence variables,

I the axiomatic characterization of realizability interpretations,

I conservative extension theorems and admissible rules.

There is a deceptively simple pattern to all the proofs:

Find intuitionistic systems S ( T and a syntactic translation τ of
formulas E of the language L(T) to formulas τ(E ) of L(S) so that

(i) `T (E ↔ τ(E )) and

(ii) `T E ⇔ `S τ(E ) can be proved finitistically.

? If L(T) has choice sequence variables but L(S) does not, then
choice sequence variables are eliminated from sentences of L(T).

? If τ(E ) is ∃f (f rE ) where f rE expresses “f realizes E ,” then T
precisely characterizes realizability over S.

? If τ(0 = 1) is (0 = 1), then T is consistent relative to S.

? If τ(E ) = E for E in L(S), T is a conservative extension of S.



Anne chose fruitful combinations of S, T and τ , often inventing a
principle Γ so the pattern would work with T = S + Γ.

Consider the axiomatization of realizability. Given a classically and
intuitionistically correct system S in which a nonclassical system
S+ extending S can be interpreted, e.g. by Kleene’s q-realizability
or Kreisel’s m-realizability. Given that

I τ(E ) expresses “E is true under the interpretation,” and

I `S+ E ⇒ `S τ(E ) for sentences E of L(S), but

I the converse is known to be false.

The challenge is to find the right axiom(s) or schema(s) Γ so that

(i) `T (E ↔ τ(E )) and

(ii) `T E ⇔ `S τ(E )

where T = S + Γ ⊃ S+ ⊃ S.

Then Γ “axiomatizes” the interpretation of S+ over S.



Troelstra’s focus on intuitionistic formal systems goes back to
his undergraduate and graduate work with Arend Heyting, who
formalized Brouwer’s informal intuitionistic logic and arithmetic.

As a postdoctoral scholar in 1966-67, Anne discovered an error in
Kreisel’s axioms for lawless sequences. Kreisel (1968) proved the
first elimination theorem ((i) of the pattern) for the theory LS of
lawless sequences. Troelstra (1969) proved the second elimination
theorem ((ii) of the pattern) for the corrected LS over its neutral
lawlike subsystem IDK. Moreover, LS is conservative over IDK.

Lawless sequences are extremely antisocial. M. Hyland showed how
Troelstra corrected Kreisel’s axioms for choice sequences given by a
spread, resulting in a theory CS of choice sequences closed under
lawlike continuous operations. First and second elimination
theorems for CS over IDB1 (≡ IDK) are in Kreisel and Troelstra
(1970). Troelstra (1971) also proved that CS is a conservative
extension of a notational variant of the formal system I of Kleene
and Vesley’s “Foundations of Intuitionistic Mathematics” (1965).



By reflecting on Kleene’s, Kreisel’s and Vesley’s work, Troelstra
discovered axiomatic characterizations of a variety of realizability
interpretations for formal systems based on intuitionistic logic (the
“axiomatization of realizability”). All these characterizations follow
the pattern described, with a first and second translation theorem.
Each characterization involves a new mathematical principle of
independent interest; some justify admissible, nonderivable rules.

Let’s look first at some details of the elimination of choice
sequence variables, and then at the axiomatization of realizability.
Along the way, we’ll observe Troelstra’s principles in their natural
environments.



Brouwer’s notion of choice sequence

Already in 1907 Brouwer recognized the impossibility of building a
continuum using only lawlike fundamental sequences of rationals.
In 1908 he rejected the universal law of excluded middle (the “First
Act of Intuitionism”), and by 1918 he was developing the notions
of spread, choice sequence and species. In “Historical background,
principles and methods of intuitionism” (1952) he wrote that the
“Second Act of Intuitionism” explicitly recognizes “the possibility
of generating new mathematical entities:

“firstly in the form of infinitely proceeding sequences p1, p2, . . .
whose terms are chosen more or less freely from mathematical
entities previously acquired . . . ;

“secondly in the form of mathematical species, i.e. properties
supposable for mathematical entities previously acquired, and
satisfying the condition that, if they hold for a certain
mathematical entity, they also hold for all mathematical entities
which have been defined to be equal to it . . . ”



Kreisel’s lawless sequences, as improved by Troelstra

Kreisel’s idea of a lawless (originally, “completely free”) sequence
was diametrically opposed to Brouwer’s notion of a lawlike
sequence or “sharp arrow.” A lawless sequence of natural numbers
was a choice sequence admitting no restrictions; at each stage of
its generation, every natural number was eligible to be chosen.
Kreisel’s LS and Troelstra’s CS are three-sorted intuitionistic
formal theories with variables x,y,z,. . . over numbers, a,b,c,. . . over
lawlike sequences, and α, β, γ, . . . over lawless sequences.

LS = IDB1 + LS1-4 and

CS = IDB1 + GC1-4, where

IDB1 = EL + K1-3 + AC01, where

EL (“elementary analysis”) is a two-sorted “lawlike” extension of
Heyting arithmetic HA with primitive recursive function constants,
λ-abstraction, and countable choice for quantifier-free relations.



EL codes finite sequences of natural numbers primitive recursively.
Every natural number n codes a unique sequence whose length ≤ n
is recoverable from n. 〈 〉 = 0 codes the empty sequence; 〈x〉 codes
the sequence consisting of just x ; and ∗ denotes concatenation.
IDB1 adds to the language of EL a constant K representing the
inductively generated class of lawlike neighborhood functions of
continuous functionals of type 1, and adds to the axioms of EL

K1. K (λn.(x + 1)).

K2. a(〈 〉) = 0 & ∀x K (λn.a(〈x〉 ∗ n))→ K (a).

K3. ∀a (A(Q, a)→ Q(a))→ ∀a (K (a)→ Q(a))
for all formulas Q of the language, where
A(Q, a) ≡ ∃x(a = λn.x + 1) ∨ (a(0) = 0 & ∀xQ(λn.a(〈x〉 ∗ n))).

IDB1 also has an axiom schema of countable choice:

AC01. ∀x∃a A(x , a)→ ∃b∀x A(x , (b)x).

Here (b)x = λy .b(j(x , y)) where j is a constant of EL representing
a primitive recursive pairing function.



The formal theory LS adds to the language of IDB1 variables
α, β, γ, . . . for, and quantifiers ∀α,∃α . . . over, lawless sequences.
There are two new axioms and two new axiom schemas.

L1. ∀n∃α(α ∈ n) is the density axiom.

The next axiom says that (not only intensional, but also)
extensional equality of lawless sequences is decidable.

L2. ∀α∀β(α 6= β ∨ α = β).

To express relative independence of lawless variables Troelstra
defined quantifiers ∀̇α, ∃̇α so that e.g. ∀̇αA(α, β, γ) is equivalent
to ∀α(α 6= β & α 6= γ → A(α, β, γ)), and if ~α = α0, . . . , αk then
∀̇~αA(~α) expresses ∀α0 . . . ∀αk(∀i < j ≤ k(αi 6= αj)→ A(~α)).

With all lawless parameters shown, the schema of open data is

L3. ∀̇α(A(α, ~β)→ ∃n(α ∈ n & ∀̇γ ∈ n A(γ, ~β)))

and the bar continuity schema (with lawlike e and b) is

L4.∀̇~α∃bA(~α, b)→ ∃e(K (e) & ∀n(e(n) 6= 0→ ∃b∀̇~α ∈ nA(~α, b)))



Kreisel and Troelstra’s “elimination of lawless sequences”

In (1968) Kreisel proved the “first elimination theorem” for LS:
Any formula with no free lawless sequence variables is equivalent
to one without lawless sequence variables. In (1969) Troelstra
stated the “second elimination theorem” for LS over IDB1. For a
clear exposition of the proof see Volume II of Troelstra and van
Dalen’s “Constructivism in Mathematics: An Introduction” (1988).

The elimination of lawless sequences holds for LS in IDB1:
There is a syntactic translation τ mapping each formula E of
L(LS) without free lawless sequence variables to a formula τ(E )
without any lawless sequence variables such that

(i) `LS (E ↔ τ(E )).

(ii) `LS E ⇔ `IDB1
τ(E ).

(iii) τ(E ) ≡ E if E has no lawless sequence variables.

Corollary: LS is a conservative extension of IDB!.



The translation τ which gradually eliminates quantifiers over
lawless sequences from formulas in LS is complex. It involves e.g.

I using LS2 to replace ∀αA(α, β) by (A(β, β) & ∀̇αA(α, β)),

I using LS2 to replace ∃αA(α, β) by (A(β, β) ∨ ∃̇αA(α, β)),

I replacing A ∨ B by ∃n((n = 0→ A) & (n 6= 0→ B)),

I replacing ∃̇αA(α, β) by ∃n∀̇α ∈ n A(α, β) using LS3,

I moving ∀̇α ∈ n to the inside using LS4, which introduces new
number and lawlike sequence quantifiers only, and

I replacing ∀̇α ∈ n(s(α) = t(α)) by ∀a ∈ n(s(a) = t(a)).

As an example, consider LS1: ∀n∃α(α ∈ n), where α ∈ n is a
prime formula expressing that n codes an initial segment of α.

By the algorithm (simplified as LS1 has no lawless parameters),

τ(LS1)= τ(∀n∃m∀α ∈ m (α ∈ n)) = ∀n∃m∀a ∈ m (a ∈ n)

which is provable in IDB1 (or even in EL), and is equivalent to
∀n∃m∀α ∈ m (α ∈ n) in LS by an argument involving LS4.



Troelstra’s extension principle; Brouwer’s Bar Theorem

IDB1 has lawlike sequence and number variables, and the class K
of neighborhood functions defined inductively by axioms K1-3. If

K0(e) ≡ ∀a∃n e(a(n)) 6= 0 & ∀m∀n(e(n) > 0→ e(n) = e(n ∗m))

then `IDB1
∀e(K (e)→ K0(e)), but not conversely.

Brouwer’s Bar Theorem for lawlike sequences could be expressed
by ∀e(K0(e)→ K (e)), but Kleene’s recursive counterexample
argues against it. So 6`IDB1

∀e(K0(e)→ K (e)). In contrast,

`LS ∀e(K (e)→ ∀α∃x e(α(x)) 6= 0), and if K ∗
0 (e) is like K (e) but

with α in place of a then `LS ∀e(K ∗
0 (e)→ K (e)) using LS4.

Troelstra argued that the initial segments of any choice sequence
can be viewed as initial segments of a lawless sequence in process
of generation. In Brouwer’s terminology, Troelstra’s extension
principle states that every bar on the lawless sequences bars all
sequences of natural numbers, so the Bar Theorem holds for LS.



General choice sequences: the principle of analytic data

An alternate universe of choice sequences closed under lawlike
continuous operations is described by CS = IDB1 + GC 1-4,
with the same language as LS but a very different interpretation.
Let e|α = β abbreviate ∀y(λn.e(〈y〉 ∗ n))(α) = β(y)) where
e(α) = t abbreviates ∃x e(α(x)) = t + 1. The new axioms are

GC1. ∀e(K (e)→ ∀α∃β(e|α = β)) and ∀α∀β∃γ(j(α, β) = γ).

GC2. A(α)→ ∃e(K (e) & ∃β(e|β = α) & ∀βA(e|β)) is the
principle of analytic data. There are two continuity axioms:

GC3. ∀α∃bA(α, b)→ ∃e∀n(e(n) 6= 0→ ∃b∀α ∈ nA(α, b)).

GC4. ∀α∃β A(α, β)→ ∃e∀αA(α, e|α) (like Kleene’s continuous
choice but with a lawlike modulus).

I Elimination of choice sequences holds for CS in IDB1,

I `CS ∀e(K ∗
0 (e)↔ K (e)) (the monotone bar theorem), and

I `CS ∀α¬¬∃b(α = b). (In contrast, `LS ∀α¬∃b(α = b).)



Kleene’s function-realizability; almost negative formulas

Kleene’s formal system I of intuitionistic analysis is two-sorted,
with variables a, b, c , . . . , x , y , z , . . . over natural numbers and
α, β, γ, . . . over arbitrary choice sequences. When Myhill objected
to the absence of lawlike sequence variables, Kleene responded
that the general recursive functions could be coded by numbers.

Kleene defined a function-realizability interpretation for I, proving

I if Γ `I E where Γ are recursively realizable, so is E , and

I 0 = 1 is not recursively realizable, so 6`I 0 = 1,

using arguments formalizable in the classically correct subsystem B
of I. Kleene (1969) completed the formalization and proved e.g.

I `I E ⇒ `B ∃γ(GR(γ) & γrfE ).

I (E is closed and `I E )⇒ (`B ({n} ↓ & {n}rfE ) for some n).

I `B (A↔ ∃β(βrfA)) for almost negative formulas A (no ∨,
and no ∃ except immediately in front of a prime formula).



Troelstra’s Generalized Continuity principle GC

Kleene (1969) formalized the theory of recursive partial functions
in a subsystem M of B with countable choice AC01 weakened to
countable comprehension AC00! In an aside, Troelstra (1973)
observed that countable comprehension for quantifier-free relations
suffices, so this part of Kleene’s formalization is available in EL.

Anne saw something else Kleene evidently missed. He observed

I The formula γ rf E is inductively defined and almost negative.

I The only obstruction to an inductive proof in Kleene’s I of
(E ↔ ∃γ (γ rf E )) for all formulas E is the clause for →.

I That obstruction disappears if Kleene’s continuous choice
principle CC11 is extended to any almost negative hypothesis.

Troelstra’s Generalized Continuity principle GC is

∀α[A(α)→ ∃βB(α, β)]→ ∃γ∀α[A(α)→ ∃β[(γ|α = β)&B(α, β)]]

where A(α) must be almost negative. Note that `EL+GC CC11.



Troelstra’s “Extended Church’s Thesis” ECT0

There is a strong parallel between intuitionistic analysis and
constructive recursive mathematics CRM, which adds at least
Markov’s Principle MP and “Church’s Thesis” CT0 to intuitionistic
arithmetic. HA + MP is classically correct but the recursive choice
principle CT0 is not. The consistency of HA + MP + CT0 was
established by Kleene and David Nelson, using Kleene’s (1945)
number-realizability which Nelson formalized in his dissertation.

I If Γ are realizable and Γ `HA E , then E is realizable.

I `HA+CT0 E ⇒ `HA ∃f (f rnE ), but not conversely.

I `HA ¬∃f (f rn (0 = 1)).

I `HA (A↔ ∃f (f rnA)) if A is almost negative.

Anne saw what was missing. Extended Church’s Thesis ECT0 is

∀x [A(x)→ ∃yB(x , y)]→ ∃f ∀x [A(x)→ {f }(x) ↓ & B(x , {f }(x))]

where A(x) must be almost negative. Note that `HA+ECT0 CT0.



Troelstra’s axiomatic characterizations of realizability

Two examples of his (and van Oosten’s) many characterizations of
realizability and modified realizability (cf. HAω, HRO, HEO,. . . ):

Axiomatization of Kleene’s number-realizability (Troelstra):

(i) `HA+ECT0 (E ↔ ∃g (g rnE )) for all formulas E of L(HA).

(ii) If ∆ are closed formulas of L(HA) and ∆ `HA ∃f (f rn A) for
each A ∈ ∆, then ∆ `HA+ECT0 E ⇔ ∆ `HA ∃g (g rnE ).

(iii) If also E is closed and if to each A ∈ ∆ there is a numeral f
such that ∆ `HA (f rn A), then there is a numeral g such that
(∆ `HA+ECT0 E ) ⇔ (∆ `HA (g rn E )).

Corollary. `HA+MP+ECT0 E ⇔ `HA+MP (g rnE ) for some g.

Axiomatization of Kleene’s function-realizability (Troelstra):

(i) `EL+GC (E ↔ ∃γ (γ rf E )) for all formulas E of L(EL).

(ii) If ∆ consists of formulas of L(EL) such that ∆ `EL ∃α(αrfA)
for each A ∈ ∆, then ∆ `EL+GC E ⇔ ∆ `EL ∃γ (γ rf E ).



Heyting’s arithmetic of species; the Uniformity Principle

Heyting’s arithmetic of species HAS is a second-order intuitionistic
formal system extending first-order Heyting arithmetic HA. It has
variables m, n, x , y , z , . . . over natural numbers and X ,Y ,Z , . . .
over species, and an axiom schema of full comprehension:

CA. ∃X∀x(X (x)↔ A(x , ~y , ~Z )).

Troelstra’s Uniformity Principle for numbers is the schema

UP0. ∀X∃n A(X , n)→ ∃n∀XA(X , n).

Troelstra proved

I 6`HAS UP0 (although the corresponding rule is admissible).

I HAS + ECT0 + UP0 + MP is consistent.

I A weaker version UP0! ∀X∃!n A(X , n)→ ∃n∀XA(X , n)
“is easily proved on the assumption of ¬∀P(¬P ∨ ¬¬P),”
which expresses the denial of the principle of testability.

(∃!nY (n) abbreviates ∃nY (n) & ∀n∀m(X (n) & X (m)→ n = m).)



Formalized realizability-plus-truth; admissible rules

Anne’s chapter on realizability in the Handbook of Proof Theory
uses the logic of partial terms efficiently to express application
(e ∗ x ' {e}(x) for HA and HAS; e|a and e(a) for IDB1;
e|α and e(α) for EL) and the appropriate realizability predicate in
a conservative extension S∗ of each system S. This is possible
because realizing objects are codes of partial function(al)s, not the
functions themselves, so are of the same type as objects of L(S).
The realizing objects form a partial combinatory algebra, so Anne
defined realizability in a one-sorted theory APP with the partial
recursive operations and partial continuous functions as models.

Kleene’s realizability-plus-truth alters the inductive clauses for
→ and ∃, e.g. in Troelstra’s formalization of rnt for HA∗:

I f rnt (A→ B) ≡ ∀g((g rnt A) & A→ f ∗ g rnt B)

I f rnt ∃xA(x) ≡ A(j0(f )) & j1(f ) rnt A(j0(f )).



Nelson formalized rnt-realizability and showed e.g. that HA
satisfies Church’s Rule: If ∀x∃yA(x , y) is closed, then

I `HA ∀x∃yA(x , y) ⇒ `HA ∃f ∀x({f }(x) ↓ & A(x , {f }(x))).

Kleene formalized rft-realizability to show e.g. that B and I satisfy
the Church-Kleene Rule:

I If ∀α∃βA(α, β) is closed and `I ∀α∃βA(α, β), then for some
n: `I ∀x{n}(x) ↓ & ∀α({n}|α = β → A(α, β)).

Troelstra used formalized rnt- and rft-realizability to show that

I HA∗ and EL∗ are closed under Extended Church’s Rule :
For A(x) almost negative: if ∀x [A(x)→ ∃yB(x , y)] is a closed
theorem, so is ∃z∀x [A(x)→ {z}(x) ↓ & B(x , {z}(x))].

I EL∗ is also closed under a Generalized Continuity Rule.

I HAS∗ is closed under Troelstra’s Uniformity Rule:

`HAS∗ ∀X∃y A(X , y) ⇒ `HAS∗ ∃y∀X A(X , y)

So quantifying over species is unlikely to be useful; number
and choice sequence quantifiers should suffice.



Two applications, and a conjecture by Troelstra

Troelstra and van Dalen (1988) identify constructive recursive
mathematics CRM with HA + MP + ECT0. In CRM they prove
the Kreisel-Lacombe-Shoenfield-Tsejtin Theorem: Every function
from R to R is continuous. Their proof uses the fact that “x is a
gödel number of a recursive Cauchy real” is almost negative.

A ⊆ NN is a domain of continuity if every partial function defined
at least on A is continuous on A. B ⊆ N is a Church domain if
every partial function defined at least on B is recursive on B.
Theorem (JRM): Every domain of continuity for B + GC, and
every Church domain for CRM, has an almost negative definition.

Extended bar induction EBI0 is monotone bar induction over AN.
Renardel de Lavalette proved that EL plus the restriction of EBI0
to arithmetical A is arithmetically conservative over IDB1.
Conjecture (Troelstra): EL + EBI0 has the same proof strength as
the theory of finitely iterated positive inductive definitions.



A sensible suggestion

Anne Troelstra invented and used many nonclassical principles
consistently extending accepted parts of intuitionistic mathematics.
These include:

I Extended Church’s Thesis ECT0

I the Generalized Continuity principle GC

I the Uniformity Principle UP

I the principle of analytic data

I Troelstra’s extension principle for lawless sequences

His name is usually attached only to the last of these, which is not
the most useful for intuitionistic mathematics.

Maybe GC ought to be called “Troelstra’s continuous choice
principle” by analogy with Kleene’s strong version of Brouwer’s
continuous choice principle, which it extends.



This talk has aimed to be a kind of botanical travelogue through
Anne’s books and papers, focused on a few genera and species, the
mathematical analogues of the brambles he discovered in nature.
Thank you for listening.


