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Each variety of reverse analysis attempts to determine a minimal
axiomatic basis for proving a particular mathematical theorem.
Classical reverse analysis asks which set existence axioms are
needed to prove particular theorems of classical second-order
number theory. Informal constructive reverse analysis asks which
constructive principles are needed to prove particular theorems of
Bishop’s constructive analysis, and which nonconstructive
principles are equivalent over Bishop’s constructive analysis to
classical theorems. Intuitionistic reverse analysis asks which
intuitionistically accepted properties of numbers and functions
suffice to prove particular theorems of intuitionistic analysis using
intuitionistic logic, and may also consider the relative strength of
classical principles consistent with intuitionistic analysis.

This lecture sketches the current state of intuitionistic reverse
analysis, in relation to its classical counterpart.



In a Nutshell: S. Simpson showed that many theorems of classical
analysis are exactly provable in one of five subsystems of classical
second-order number theory, distinguished by successively stronger
set existence axioms. Intermediate systems are considered also.

Intuitionistic analysis depends on function existence principles:
countable and dependent choice, fan and bar theorems, continuous
choice. Intuitionistic logic distinguishes classically equivalent forms
of countable choice. Many mathematical equivalents of the fan
theorem have been identified. Building on a proof by T. Coquand,
W. Veldman recently showed that over intuitionistic two-sorted
recursive arithmetic BIM the principle of open induction on Cantor
space is strictly intermediate between the fan and bar theorems,
and is equivalent to intuitionistic versions of a number of classical
theorems. R. Solovay proved that Markov’s Principle is surprisingly
strong in the presence of the bar theorem. This is work in progress.



Primitive recursive arithmetic PRA0 is a quantifier-free system
based on intuitionistic logic with equality, in a language with
variables over numbers, constants for =, 0, ′ and all primitive
recursive functions, and logical symbols & ,∨,¬,→,↔, (, ).
¬(0 = x ′) and the definitions of the function constants are axioms.
A logical rule allows substitution of terms for variables, and
quantifier-free mathematical induction is a rule. x ′ = y ′ → x = y
and x = y ∨ ¬(x = y) are provable. x < y abbreviates x ′−̇y = 0.

There is no difference between classical and intuitionistic PRA0.

If number quantifiers are added, mathematical induction is stated
A(0) & ∀x(A(x)→ A(x ′))→ A(x)

(for A(x) quantifier-free) and the mathematical axioms are
universally quantified, then the substitution rule becomes provable.

By removing the restriction on mathematical induction we get a
definitional extension PRA of intuitionistic first-order arithmetic.



S. Simpson has organized classical reverse mathematics,
distinguishing five main subsystems of classical second-order
arithmetic Z2 extending a fragment of Peano arithmetic PA with
restricted induction, in a language with variables and quantifiers
over numbers and sets of numbers; individual constants 0, 1;
operation constants +, · and predicate constants =, <, ∈.

These subsystems have increasingly strong set existence axioms:

I RCA0 (recursive comprehension and Σ0
1-induction),

I WKL0 (“weak König’s Lemma”),

I ACA0 (arithmetical comprehension),

I ATR0 (arithmetical transfinite recursion),

I Π1
1-CA0 (Π1

1 comprehension).

(Note that RCA0 + PRA0 is a conservative extension of RCA0.)

More interesting for intuitionism are the versions with unrestricted
mathematical induction: RCA, WKL, ACA, ATR, Π1

1-CA.



An intuitionistic analogue of RCA can be defined in a two-sorted
language with constants for a suitable list of primitive recursive
functions and functionals (including pairing and coding of finite
sequences), and variables and quantifiers over numbers and
one-place number-theoretic functions. In RCA every set has a
characteristic function so the difference in language is inessential
for classical reverse mathematics. For intuitionistic reverse
mathematics it is important because only sets whose membership
relation is effectively decidable have characteristic functions.

Troelstra and Veldman treat intuitionistic two-sorted recursive
arithmetic as an extension of PRA, but Kleene’s original
axiomatization of two-sorted intuitionistic arithmetic had only
finitely many function constants, with the understanding that
others could be added as needed. This approach seems more in
keeping with the intuitionistic philosophy and we adopt it here.



Intuitionistic logic also affects the treatment of recursive
comprehension. Classically, every ∆0

1 function is recursive. For
RCA and RCA0 the ∆0

1-comprehension axiom takes the form

∀x(∀yA(x , y)↔ ∃yB(x , y))→ ∃X∀x(x ∈ X ↔ ∃yB(x , y))

for A(x , y), B(x , y) quantifier-free. The intuitionistic analogue

∀x [(∀yα(x , y) = 0↔ ∃yβ(x , y) > 0)

& (∀yβ(x , y) = 0→ ∃yα(x , y) > 0)]

→ ∃γ∀x [γ(x) > 0↔ ∃yα(x , y) > 0]

is more complicated because Markov’s Principle is not accepted
intuitionistically. It is simpler to assume that the functions are
closed under composition and primitive recursion and satisfy a
quantifier-free form of the axiom of numerical choice:

qf-AC00: ∀x∃yα(x , y) = 0→ ∃β∀xα(x , β(x)) = 0

which assures the existence of every recursive total function.



Kleene’s fragment IA1 of two-sorted intuitionistic arithmetic has
variables a, b, . . . , x , y , z over numbers and α, β, . . . over one-place
number-theoretic functions; finitely many constants
0,’,+,·,exp,. . . ,fp for primitive recursive functions and functionals
with their defining equations; full mathematical induction;
λ-abstraction and λ-reduction. The equality axioms include
x = y → α(x) = α(y), and equality between functions is defined
extensionally by α = β ≡ ∀xα(x) = β(x).

Kleene lets 2x · 3y code the pair (x , y). The length lh(x) of x is
the number of nonzero exponents in its prime factorization, and
(x)i is the exponent of pi (with p0 = 2). Seq(x) abbreviates
∀i < lh(x) ((x)i > 0), indicating that x codes a finite sequence;
we write 〈 〉 = 1 and 〈x0, . . . , xn〉 = Πn

i=0 pxi+1
i . If Seq(u) then

(u ∗ α)(n) = (u)n−̇1 if n < lh(u), and (u ∗ α)(lh(u) + n) = α(n).

α(n) = 〈α(0), . . . , α(n−1)〉. If k < lh(u) then u(k) = u ∗ λx .0(k).



Kleene, who was interested in formalizing the full strength of
intuitionistic analysis, originally assumed a strong axiom

AC01: ∀x∃αA(x , α)→ ∃β∀xA(x , λy .β(x , y))

of countable choice. To formalize recursive function theory he
weakened AC01 to countable comprehension (“unique choice”)

AC00!: ∀x∃!yA(x , y)→ ∃α∀xA(x , α(x)).

Comparing minimal formal systems for intuitionistic analysis,
G. Vafeiadou observed that Kleene’s M1 = IA1 + AC00! proves

CF0: ∀x(A(x) ∨ ¬A(x))→ ∃χ∀x(χ(x) = 0↔ A(x)),

which is as strong, with classical logic, as full comprehension.

Theorem 1. (G. Vafeiadou) Intuitionistic two-sorted recursive
arithmetic IRA can be expressed interchangeably by any one of:

I the subsystem IA+
1 = IA1 + qf-AC00 of Kleene’s M1 or

I A. S. Troelstra’s Elementary Analysis EL or

I Wim Veldman’s Basic Intuitionistic Mathematics BIM.



The interderivability of CF0 with AC00! over IRA affects the
choice of stronger subsystems of FIM, where “A is a detachable
subset of N” is often expressed by ∀x(A(x) ∨ ¬A(x)).

The natural intuitionistic analogue of WKL should be IRA plus
some version of the Fan Theorem, and the natural intuitionistic
analogue of ATR should be IRA plus some version of the Bar
Theorem. But which version? Kleene gave four versions of his “bar
theorem” axiom, all equivalent over M1 but not over IRA. The
difference mattered when Solovay wanted to negatively interpret a
classical system, with arithmetical countable choice and bar
induction, in its intuitionistic counterpart.

W. Veldman, who deserves the lion’s share of credit for developing
intuitionistic reverse analysis, avoids the issue by working directly
with characteristic functions, replacing ∀x(A(x) ∨ ¬A(x)) by
∃ζ∀x(ζ(x) = 0↔ A(x)). In intuitionistic analysis, only detachable
sets have characteristic functions.



Brouwer’s binary fan is the tree 2<ω of finite binary sequences,
represented by their codes: Bin(u) ≡ ∀i < lh(u)(1 ≤ (u)i ≤ 2).

Proposition. (Veldman) IRA proves detachable fan induction:

∆0-FI: ∀α ∈ 2N∃xβ(α(x)) = 0 & ∀u[Bin(u) &

β(u ∗ 〈0〉) = 0 & β(u ∗ 〈1〉) = 0→ β(u) = 0]→ β(〈 〉) = 0.

The Detachable Fan Theorem for 2N is

∆0-FT: ∀α ∈ 2N∃xβ(α(x)) = 0→ ∃y∀α ∈ 2N∃x ≤ yβ(α(x)) = 0.

The Enumerable Fan Theorem Σ0
1-FT is similar but with

∃yβ(α(x), y) = 0 in place of β(α(x)) = 0.

Enumerable Bar Induction on 2N, or Σ0
1-Fan Induction, is

Σ0
1-FI: ∀α ∈ 2N∃x∃yβ(α(x), y) = 0 & ∀u[Bin(u) &

∃yβ(u ∗ 〈0〉, y) = 0 & ∃yβ(u ∗ 〈1〉, y) = 0→ ∃yβ(u, y) = 0]

→ ∃yβ(〈 〉, y) = 0.

Theorem 2. (H. Ishihara, W. Veldman) Over IRA:

Σ0
1-FT ⇔ ∆0-FT ⇔ Σ0

1-FI.



Weak König’s Lemma for detachable subtrees of 2N is

WKL: ∀y∃α ∈ 2N∀x ≤ yρ(α(x)) = 0→ ∃α ∈ 2N∀xρ(α(x)) = 0.

Adding a strong effective uniqueness hypothesis to WKL gives

WKL!: ∀y∃α ∈ 2N∀x ≤ yρ(α(x)) = 0 &

∀α ∈ 2N∀β ∈ 2N[∃xα(x) 6= β(x)→ ∃x [ρ(α(x)) 6= 0∨ρ(β(x)) 6= 0]]

→ ∃α ∈ 2N∀xρ(α(x)) = 0.

How “at most one” is expressed can be important intuitionistically.
If the uniqueness hypothesis in WKL! is weakened to

∀α ∈ 2N∀β ∈ 2N[∀xρ(α(x)) = 0 & ∀xρ(β(x)) = 0→ α = β]

a stronger Weak König’s Lemma with uniqueness WKL!! results.

Theorem 3. (JRM)

1. Over IRA: WKL ⇒ WKL!! ⇒ WKL!, and none of the
arrows can be reversed.

2. WKL!! is consistent with, but unprovable in, FIM.



The first modern formalization of Brouwer’s results on the
structure of the intuitionistic real numbers was by R. E. Vesley, in
Kleene-Vesley [1965]. His careful work influenced all that followed.

Theorem 4. The following are equivalent over IRA:

(i) The Detachable Fan Theorem ∆0-FT for 2N.

(ii) Each pointwise continuous function on [0, 1] with a modulus
of continuity is uniformly continuous.

(iii) The Heine-Borel Theorem: Each enumerable open covering of
[0, 1] by intervals with rational endpoints has a finite subcover.

(iv) Brouwer’s Approximate Fixed-Point Theorem for enumerable
continuous functions on U (= [0, 1]× [0, 1]).

(v) WKL!.

Proofs in recent literature are by J. Berger ((i) ⇔ (ii)); H. Ishihara,
I. Loeb, W. Veldman (independently) ((i) ⇔ (iii)); W. Veldman
((i) ⇔ (iv)); H. Ishihara and H. Schwichtenberg ((i) ⇔ (v)).



Theorem 5. (essentially Kleene) Over IRA the ∆0-FT for 2N is
equivalent to the version for fans with bounded branching:

∆0-FT: ∀α[∀xα(x) ≤ β(α(x))→ ∃xρ(α(x)) > 0]

→ ∃y∀α[∀xα(x) ≤ β(α(x))→ ∃x ≤ yρ(α(x)) > 0].

Simpson observed that classical WKL proves the corresponding
generalization of Weak König’s Lemma.

Since ∆0-FT is interderivable with WKL over the classical version
IRAc = IRA + (A ∨ ¬A) of IRA, it seems reasonable to conclude

I WFT = IRA + ∆0-FT is an intuitionistic analogue of WKL.

The next question is whether or not there is a natural intuitionistic
analogue of ACA. Since Kleene showed that FIM proves

¬∀α(∀xα(x) = 0 ∨ ¬∀xα(x) = 0)

the answer will require some thought.



Brouwer proved the Full Fan Theorem using a stronger principle of
bar induction on the universal spread NN.

A spread is (determined by) a binary function σ satisfying

1. σ(〈 〉) = 0,

2. σ(u) = 0↔ Seq(u) & ∃xσ(u ∗ 〈x〉) = 0.

The elements of a spread are its infinite branches:

α ∈ σ ≡ ∀xσ(α(x)) = 0.

A fan is a finitely branching spread, satisfying also

3. ∀u[σ(u) = 0→ ∃y∀x(σ(u ∗ 〈x〉) = 0→ x ≤ y)].

Let Spr(σ) ≡ (1) & (2) and Fan(σ) ≡ (1) & (2) & (3).

While the bounded fan theorem is equivalent to ∆0-FT over IRA,
the literal statement of the detachable fan theorem is stronger:

∆0-FTσ: Fan(σ)→
[∀α ∈ σ∃xρ(α(x)) > 0→ ∃y∀α ∈ σ∃x ≤ yρ(α(x)) > 0].



A formula is arithmetical if it contains no function quantifiers.
Parameters of both sorts are allowed.

Arithmetical countable comprehension (“unique choice”) is

AC−00!: ∀x∃!yA(x , y)→ ∃!α∀xA(x , α(x))

for arithmetical formulas A(x , y).

Proposition. (Vafeiadou) Over IRA the following are equivalent:

(i) Arithmetical countable comprehension AC−00!.

(ii) Every arithmetical relation A(x) satisfying the law of excluded
middle has a characteristic function:

CF−0 : ∀x(A(x) ∨ ¬A(x))→ ∃ζ∀x(ζ(x) = 0↔ A(x)).

With classical logic, IRA + CF−0 gives full arithmetical
comprehension. It seems reasonable to conclude that

I IAC ≡ WFT + AC−00! is an intuitionistic analogue of ACA.



To prove ∆0-FT ⇒ ∆0-FTσ one needs e.g. Veldman’s axiom

W-Π0
1-AC00: ∀x∃y∀z ≥ y α(x , z) = 0→ ∃β∀x α(x , β(x)) = 0.

This is an instance of AC−00! because ∃y∀z ≥ yα(x , z) = 0↔
∃!y [∀z ≥ yα(x , z) = 0 & (y > 0→ α(x , y−̇1) > 0)].

Theorem 6. (essentially Kleene-Vesley) In IAC one can prove

1. Every finitely branching spread σ has bounded branching.

2. The literal version ∆0-FTσ of the detachable fan theorem.

3. The fan theorem with a thin arithmetical bar A:

Fan(σ)→ [∀α ∈ σ∃!xA(α(x))→ ∃y∀α ∈ σ∃!x ≤ yA(α(x))].

4. Full bar induction on a fan with a thin arithmetical bar A:
Fan(σ)→
[∀α ∈ σ∃!xA(α(x)) & ∀u[σ(u) = 0 & A(u)→ C (u)] &

∀u[∀y(σ(u ∗ 〈y〉) = 0→ C (u ∗ 〈y〉))→ C (u)]→ C (〈 〉)].

Each of the last three is equivalent to ∆0-FT over IRA + AC−00!.



Proof of Theorem 6.3 in IAC:

Fan(σ)→ [∀α ∈ σ∃!xA(α(x))→ ∃y∀α ∈ σ∃x ≤ yA(α(x))].

Assume Fan(σ) and ∀α ∈ σ∃!xA(α(x)). Then ∀w [σ(w) = 0→
A(w) ∨ ¬A(w)], so ∃β∀w [σ(w) = 0→ (β(w) = 0↔ A(w))].
For such a β we have ∀α ∈ σ∃!xβ(α(x)) = 0 so by ∆0-FT:
∃y∀α ∈ σ∃x ≤ yβ(α(x)) = 0, so ∃y∀α ∈ σ∃!x ≤ yA(α(x)).

Proof of Theorem 6.4 in IAC:

Fan(σ)→ [∀α ∈ σ∃!xA(α(x)) & ∀u[σ(u) = 0 & A(u)→ C (u)] &

∀u[∀y(σ(u ∗ 〈y〉) = 0→ C (u ∗ 〈y〉))→ C (u)]→ C (〈 〉)].

Proof. Assume the hypotheses, so by Theorem 6.3 there is an n
such that ∀α ∈ σ∃!x ≤ nA(α(x)). If σ(u) = 0 and lh(u) ≤ n there
are two cases: (i) ∃x ≤ lh(u)A(u(x)) or (ii) otherwise. We want to
show that in each case ∃x ≤ lh(u)C (u(x)). Case (i) is no problem.
If σ(u) = 0 & ∀x ≤ lh(u)¬A(u(x)) then lh(u) < n, and we may
choose u so that n − lh(u) is as small as possible for case (ii).
Then for all y with σ(u ∗ 〈y〉) = 0: A(u ∗ 〈y〉), so C (u ∗ 〈y〉), so
C (u) after all. In particular, C (〈 〉).



Three parameters determine the strength of a fan theorem and its
corresponding fan induction principle:

(a) How is “finitely branching” expressed?

(b) What are the restrictions on the inductive predicate?

(c) What are the restrictions on the predicate defining the bar?

Intuitionistically there is more than one notion of finiteness.

Veldman calls a detachable set A ⊆ N finite if
∃y∀x(A(x)→ x ≤ y); or bounded-in-number if there is a y such
that A has no more than y elements. Formally, “A has no more
than y elements” can be expressed in Π0

1 form by

∀u[lh(u) = y + 1 & Inc(u)→ ∃i ≤ y¬A((u)i )],

where Inc(u) ≡ Seq(u) & ∀i(i + 1 < lh(u)→ (u)i < (u)i+1).

A set A ⊆ N is almost finite if ∀α[Inc(α)→ ∃x¬A(α(x))], where
Inc(α) ≡ ∀n(α(n) < α(n + 1)).



An approximate fan is a spread σ such that if σ(u) = 0 then the
set of all x such that σ(u ∗ 〈x〉) = 0 is bounded-in-number.

Veldman’s Approximate Fan Theorem is

AFT: EAF (σ) & ∀α[α ∈ σ → ∃!xρ(α(x)) > 0]

→ ∀β[Inc(β) & ∀xσ(β(x)) = 0→ ∃xρ(β(x)) = 0],

where EAF (σ) expresses: σ is an approximate fan, and there is a β
such that for each x the set of all finite sequence codes u with
lh(u) = x & σ(u) = 0 has no more than β(x) elements.

Theorem 7. (Veldman) Over IRA: AFT ⇒ ∆0-FTσ ⇒ ∆0-FT.
The first arrow cannot be reversed even over IRA + AC01.

Veldman proved the last statement by deriving in AFT an
intuitionistic version of the Ramsey Theorem, which entails the
Paris-Harrington formula, which is not provable in IRA + AC01 by
a result of Goodman. And Troelstra proved that ∆0-FTσ is
conservative over IRA + AC01 for arithmetical formulas.



Brouwer’s Bar Theorem (really an axiom, as Kleene showed) is
classically equivalent to transfinite recursion up to any countable
ordinal. The principle of Monotone Σ0

1-Bar Induction on NN is

Σ0
1-BI

m: ∀α∃x∃yβ(α(x), y) = 0

& ∀u[Seq(u) & ∀x∃yβ(u ∗ 〈x〉, y) = 0↔ ∃yβ(u, y) = 0]

→ ∃yβ(〈 〉, y) = 0.

The Principle of Open Induction on NN or 2N is

OI: ∀β[∀α(α < β → ∃yρ(α(y)) > 0)→ ∃yρ(β(y)) > 0]

→ ∀α∃yρ(α(y) > 0
where < is the lexicographic ordering on sequences.

Theorem 8. (T. Coquand) In IRA one can prove:

Σ0
1-BIm ⇒ OI on 2N (and [0, 1]) ⇒ Heine-Borel for [0, 1].

The proofs of OI actually used bar induction on a subspread of NN

with at most binary branching, an approximate fan!



Theorem 9. (Veldman) Over IRA:

OI on 2N ⇔ OI on [0, 1] ⇔ AFT

Corollary. Open Induction on 2N (and [0, 1]) is unprovable in IAC
but can be proved in IAC + Σ0

1-BIm.

Proof: By the proof of Theorem 7 with Troelstra’s conservativity
result (which holds for IAC); and by Theorems 8 and 9.

Veldman found other equivalents over IRA of Open Induction,
including contrapositive versions of the Bolzano-Weierstrass and
Monotone Convergence Theorems, and the following statement
(whose converse is provable in IRA):

If ∀α∃xβ(α(x)) > 0 then {u|Seq(u) & ∀x < lh(u)β(u(x)) = 0} is
well-founded under the Kleene-Brouwer ordering.

This suggests that perhaps

I ABI = IAC + Σ0
1-BIm is an intuitionistic analogue of ATR.



A Short Story. A few years ago R. Solovay wanted to prove that a
classical system S with arithmetical comprehension and bar
induction could be negatively interpreted in Kleene’s neutral
subsystem B of FIM. I pointed out that the negative interpretation
of arithmetical comprehension is not accepted intuitionistically.
Clearly Markov’s Principle in the form

MP1: ¬¬∃x α(x) = 0→ ∃x α(x) = 0

together with Kleene’s bar induction schema in the form x26.3b of
Kleene-Vesley:

BI1: ∀α∃xρ(α(x)) = 0 & ∀u[Seq(u) & ρ(u) = 0→ A(u)]

& ∀u[Seq(u) & ∀nA(u ∗ 〈n〉)→ A(u)]→ A(〈 〉)
proves the negative interpretation of BI1. (This was not obvious
for the other forms x26.3a,c,d.)

Finally Solovay finessed the issue of arithmetical comprehension,
and completed the proof of his theorem, by proving



Solovay’s Lemma. In IRA + BI1 + MP1 one can prove

∀α¬¬∃ζ∀x [ζ(x) = 0↔ ∃yT (x , x , α(y))]

with Kleene’s primitive recursive T -predicate.

Theorem 10. (Solovay) IRA + BI1 + MP1 proves:

1. ∀α¬¬∃ζ∀x [ζ(x) = 0↔ ∃yα(x , y) = 0].

2. ∀α¬¬∃ζ∀x [ζ(x) = 0↔ A(x , α)] for A(x , α) arithmetical.

3. Kuroda’s Principle (arithmetical double negation elimination):

DNS−0 : ∀x¬¬A(x)→ ¬¬∀xA(x) (A(x) arithmetical).

Theorem 11. (JRM) IRA + BI1 + MP1 proves

1. The constructive arithmetical hierarchy is proper.

2. An intuitionistic version of ∆1
1 comprehension:

∀x [¬¬∃α∀zβ(x , α(z)) = 0↔ ∀β∃zγ(x , α(z)) = 0]

→ ¬¬∃δ∀x [δ(x) = 0↔ ∀β∃zγ(x , α(z)) = 0].



Veldman’s EnDec?! is a logical principle equivalent to AFT over
IRA, hence derivable in IRA + Σ0

1-BIm. Working from Solovay’s
result and my observation that EnDec?! follows in IRA + MP1

from ∀α¬¬∃ζ∀x [ζ(x) = 0↔ ∃yα(x , y) = 0], Veldman proved

Theorem 12. (Veldman) Over IRA + MP1 :

EnDec?! ⇔ ∀α¬¬∃ζ∀x [ζ(x) = 0↔ ∃yα(x , y) = 0] ⇔ Σ0
1-BIm.

So with classical logic, Σ0
1-BIm would not add strength to IAC.

Markov’s Principle MP1, although not accepted by Brouwer, is
consistent with FIM relative to B + MP1, as Kleene showed using
function-realizability. F. Waaldijk and others have shown that MP1

settles many questions in intuitionistic analysis and topology.

So the proposal for ABI = IAC + Σ0
1-BIm as an intuitionistic

analogue of ATR must be considered tentative.

An intuitionistic analogue of Π1
1-CA is needed to complete this

proposed correspondence with Simpson’s five subsystems.



So far we have not considered the axioms of countable choice,
which were accepted by Brouwer and Kleene. Even to prove that
every Cauchy sequence of rationals has a modulus of convergence,
one seems to need full Π0

1 countable choice:

Π0
1-AC00: ∀x∃y∀zα(x , y , z) = 0→ ∃β∀x∀zα(x , β(x), y) = 0,

which does not follow from AC00!, as S. Weinstein showed in his
PhD dissertation.

Proposition. Over IRA the following are equivalent:

1. Veldman’s axiom W-Π0
1-AC00

2. ∆0-ACm
00: ∀x∃my α(x , y) = 0→ ∃β∀x α(x , β(x)) = 0

where ∃myB(y) ≡ ∃yB(y) & ∀y∀z(B(y) & y ≤ z → B(z))

3. Π0
1-AC00!.

Note that ∃myB(y) is in general stronger than ∃y∀x ≥ yB(y).
This will be important in the sequel.



Kleene implicitly incorporated a classically correct choice principle

(*): ∀α∃yR(α(y))→
∃σ∀α[∃!xσ(α(x)) > 0 & ∀x∀y(σ(α(x)) = y + 1→ R(α(y))],

into his version CC10 of Brouwer’s classically false axiom of
continuous choice. Troelstra’s “neighborhood function principle” is
another version of (*). Since classical bar induction conflicts with
continuous choice, the conclusion cannot be sharpened to
∃σ∀α[∃!xσ(α(x)) > 0 & ∀x(σ(α(x)) > 0→ R(α(x)))].

However, monotone bar induction holds intuitionistically:

BImon: ∀α∃myR(α(y)) & ∀u[Seq(u) & R(u)→ A(u)]

& ∀u[Seq(u) & ∀nA(u ∗ 〈n〉)→ A(u)]→ A(〈 〉).

Vafeiadou and I have suggested a monotone choice principle

ACm
1/2,0: ∀α∃myR(α(y))→

∃σ∀α[∃!xσ(α(x)) = 0 & ∀x(σ(α(x)) = 0→ R(α(x))].



Proposition.

1. BImon is interderivable with BI1 over IAC + ACm
1/2,0.

2. Σ0
1-BIm is interderivable with Σ0

1-BI1 in IAC + Σ0
1-ACm

1/2,0.

3. In IAC + Π0
1-ACm

00 one can prove that every Cauchy sequence
of rationals has a modulus of convergence.

4. In IAC + Π1
1-ACm

1/2,0 one can prove that every continuous

function from NN to N has a modulus of convergence and
every Cauchy sequence of reals has a Cauchy modulus.

I Is MBI = ABI + Π1
1-ACm

1/2,0 + Π1
1-BI1 a reasonable

intuitionistic analogue of Π1
1-CA?

The subsystem IRA + AC01 + BI1 + ACm
1/2,0 of Kleene’s FIM

properly extends his neutral basic system B, and proves BImon, the
full fan theorem FT and full fan induction FI.

I Does IRA + AC01 + BI1 + ACm
1/2,0 correspond to Z2?
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