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◮ Real numbers can be represented by convergent sequences of
rationals (coded by infinite sequences of natural numbers).

◮ Brouwer considered a reduced continuum of completed lawlike

sequences and a full continuum, of potentially infinite arbitrary
choice sequences, for which the law of excluded middle fails.

◮ In a recent lecture Kripke suggested viewing the intuitionistic
full continuum as an expansion in time of the classical
continuum, depending on the activity of a creating subject.

◮ Question: Would there be one continuum at the end of time?

◮ Classical analysis C (with countable choice) is classically
equivalent to its negative translation C

◦, and C
◦ is consistent

with Kleene’s 2-sorted system I of intuitionistic analysis.

◮ I and C prove “not every sequence is recursive,” but
I is consistent with “there are no non-recursive sequences.”

◮ Theorem: A 3-sorted extension IC of I and C
◦, with an end of

time axiom ET:“there are no non-classical sequences,” is con-
sistent. “Not every sequence is classical” is independent of IC.



The development of Brouwer’s intuitionistic analysis

In his dissertation “On the foundations of mathematics” (1907),
L. E. J. Brouwer agreed with Kant that the intuition of time is a
priori, and asserted that the possibility of distinguishing moments
in time was at the base of all mathematical reasoning.

Brouwer’s construction of mathematics began with the positive
integers 1, 2, 3, . . . , obtained by repeatedly taking the successor;
then 0, -1, -2, . . . (“continu[ing] the sequence of ordinal numbers
to the left”), then the rational numbers (pairs of ordinal numbers)
and “the usual irrationals (first of all the expressions containing
fractional exponents) . . . as symbolic aggregates of previously
introduced numbers . . . ” so “at each stage of development of the
theory the set of the numbers known remains denumerable.”

From the rationals on, the set of numbers known at each stage is
“everywhere dense in itself,” but never constitutes a continuum.



The dual fractions (rationals ±m/2n) form a denumerable dense
“scale . . . constructed on the continuum,” of the order type of the
rationals. Every point of the continuum can be approximated
arbitrarily closely by a sequence of dual fractions but “. . . we can
never consider the approximating sequence of a given definite point

as being completed, so we must consider it as partly unknown.”
“From the fact that every conceivable approximating sequence
occurs it can be deduced, following Cantor . . . , that it is
impossible to enumerate all the points of the continuum.”

In 1907 Brouwer relied on “the intuition of continuity, of ‘fluidity’”
to pass from the dual fractions to the “measurable continuum,”
constituting “a matrix of points to be considered as a whole.”

He allowed classical reasoning about the measurable continuum.
Every bounded infinite set of points “has at least one limit point
. . . otherwise there would be a shortest distance between points.”



In 1908 (the year after his dissertation) Brouwer published “The
unreliability of the logical principles,” arguing against the
unrestricted use of the law of excluded middle (LEM).

Ten years later he returned to the problem of constructing the
continuum, this time avoiding the LEM and admitting infinitely
proceeding sequences or “choice sequences” of natural numbers as
mathematical objects of a new kind. Every sequence of dual
fractions approximating a point on the measurable continuum is
expressible as a choice sequence of numbers coding dual fractions.

An arbitrary choice sequence α is potentially infinite but may be
unfinished. At any stage in the construction of α only a finite initial
segment α(n) = 〈α(0), . . . , α(n−̇1)〉 may have been determined.

Restrictions on further choices may be made at any stage. If all
subsequent choices are specified, the sequence becomes “lawlike.”

Every lawlike sequence is a choice sequence. But unless there are
uncountably many “laws,” not all choice sequences can be lawlike.



Classical Baire space is the set ωω of all infinite sequences of
natural numbers with the finite initial segment topology.
Brouwer’s universal spread is intuitionistic Baire space. His choice
sequences are potentially infinite branches of an ω-branching tree:
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Brouwer’s view of choice sequences as only potentially infinite led
him to accept the following principles, as interpreted by Kleene:

◮ Countable choice: If for every natural number n there is a
choice sequence α with the property A(n, α), then there is a
choice sequence β with the property that for each n the
property A(n, βn) holds, where βn(m) = α(2n · 3m) for all m.

◮ “The Bar Theorem”: A “thin bar” B(w) is a property of finite
sequences (nodes of the tree) such that every choice sequence
α has exactly one initial segment α(n) satisfying B(α(n)).
If A(w) is a property of finite sequences such that

◮ B(w) implies A(w), and
◮ “A propagates back across the nodes”: if A(u) holds of every

immediate successor u of w , then A(w) holds also,

then A(w) holds for every node above the bar, including 〈 〉.

◮ Continuous choice: If for every choice sequence α there is a
choice sequence β with the property A(α, β), then there is a
continuous function F from choice sequences to choice
sequences such that A(α,F (α)) holds for all α.



The Bar Theorem is derivable from countable choice using classical
logic, so both are classically reasonable assumptions.

Continuous choice, on the other hand, is not. Brouwer’s
intuitionistic analysis proves ∀α¬¬[∀xα(x) = 0 ∨ ¬∀xα(x) = 0],
but also ¬∀α[∀xα(x) = 0 ∨ ¬∀xα(x) = 0], contradicting the LEM.

If Brouwer could also prove ∀α[∀xα(x) = 0 ∨ ¬∀xα(x) = 0] he
would contradict himself. But intuitionistic logic replaces the
classical principle ¬¬A → A by ¬A → (A → B) (ex falso sequitur

quodlibet). Kleene developed a formal system I of intuitionistic
analysis and established its consistency by function realizability.

Intuitionistic negation expresses inconsistency: ¬A ≡ A → 0 = 1.

Intuitionistic double negation expresses persistent consistency:
If ¬¬A holds, then ¬A is inconsistent with the present state of
knowledge, so A will be consistent with every consistent extension
of the present state of knowledge. But ¬¬A does not entail A.



Intuitionistic analysis I vs. classical analysis C:

Classical analysis C has classical logic and all the mathematical
axioms of Kleene’s intuitionistic analysis I except the Bar Theorem
(derivable classically from countable choice) and continuous choice
(classically false). First, some reassuring similarities:

◮ I and C prove the same Π0
2 sentences, so they have the same

provably recursive functions.

◮ If either I or C is consistent, so is the other. The proof uses
function-realizability with Gödel’s negative interpretation.

◮ Classical first-order arithmetic is consistent with I by classical
relativized function-realizability.

◮ Both I and C prove that every function which is continuous
on a compact interval is uniformly continuous there.

◮ The Heine-Borel Theorem and the Jordan Curve Theorem can
be formulated and proved in I.



The usual statements of the Bolzano-Weierstrass and Intermediate
Value Theorems fail intuitionistically. Constructive versions are
awkward to use. But a classical proof of an existential statement
usually does not provide a witness (Σ0

1 statements are the
exception) while an intuitionistic proof of any existential statement
provides a recursive witness, by recursive function realizability.

Classical reasoning can be expressed intuitionistically without ∨
and ∃, by the Gödel-Gentzen negative interpretation. We can let

A
◦
∨ B ≡ ¬(¬A&¬B) and ∃◦ . . . ≡ ¬∀ . . .¬ for easier reading.

Constructive ∨ and ∃ retain their stronger interpretations.
The negative translation of the countable axiom of choice:

AC◦
01: ∀x∃◦αA◦(x, α) → ∃◦β∀xA◦(x, λy.β(2x · 3y))

is consistent with I by realizability, so intuitionistic and (negatively
expressed) classical reasoning can peacefully coexist in I + AC◦

01.
But in order to compare choice sequences with classical lawlike
sequences as objects, two sorts of sequence variables are required.



C
◦ is a negative version of classical analysis with countable choice,

in a language L(C◦) with variables i, j, . . . , q,w, x, y, z, i1, . . . over
natural numbers and a,b, c,d, e, a1, . . . over sequences of numbers;
constants for 0,′ ,+, · and additional primitive recursive functions
as needed; Church’s λ; equality = for numbers; parentheses, also
denoting function application; and the logical constants &,¬,→,∀.

C◦-terms (type 0) and C◦-functors (type 1) are defined inductively.
Number variables and 0 are C◦-terms. Sequence variables and ′ are
C◦-functors. If u is a C◦-functor and t is a C◦-term then (u)(t)
(also written u(t)) is a C◦-term and λx(t) (also written λx.t) is a
C◦-functor. If s, t are C◦-terms and u is a C◦-functor then s+ t,
s · t, st, ps (the sth prime), Σi≤tu(i), Πı≤tu(i), . . . are C◦-terms.

If s, t are C◦-terms then (s = t) is a prime formula. If A,B are
formulas so are (A&B), (A → B), (¬A), (∀xA), (∀bA).

The logical rules and axioms for &,¬,→,∀x,∀b are intuitionistic,
e.g. ∀bA(b) → A(u) where u is a C◦-functor free for b in A(b).



Mathematical axioms of C◦:

◮ = is an equivalence relation, x = y → a(x) = a(y),
0 is not a successor, and ′ is one-to-one.

◮ Primitive recursive defining equations for function constants.

◮ Mathematical induction: A(0)&∀x(A(x) → A(x′)) → A(x)
for formulas A(x) of L(C◦).

◮ λ-reduction: (λx.r(x))(t) = r(t) for C◦-terms r(x), t.

◮ Negative axiom of countable choice for formulas A of L(C◦):

ACC◦

01 : ∀x∃◦aA(x, a) → ∃◦b∀xA(x, λy.b(2x · 3y)).

Proposition. C◦ ⊢ ¬¬A → A for formulas A of L(C◦).

Proposition. Let B be the classically correct subsystem of I which
only omits continuous choice, and let C = B + ¬¬A → A.
There is a faithful negative translation A 7→ Atr from C to C

◦.



Finally, IC is a three-sorted formal system combining I and C
◦,

adding existential quantifiers ∃b over classical sequences, with
intuitionistic logic throughout, and with an end of time axiom

ET: ∀α¬¬∃b∀xα(x) = b(x)

(or ∀α¬∀b¬∀xα(x) = b(x), abbreviated ∀α∃◦b∀xα(x) = b(x)).

I and C
◦ have the same primitive recursive function constants.

Both classical sequence variables a,b, . . . and choice sequence
variables α, β, . . . are now functors. Terms or functors without
choice sequence variables are C-terms or C-functors respectively.

The logical axioms and rules of I are extended to the three-sorted
language L(IC). Intuitionistic axioms and rules for ∀b and ∃b are
added, e.g.: A(u) → B / ∃bA(b) → B, where u is a C-functor free
for b in A(b) and b is not free in B. The mathematical axioms of
IC are those of I extended to L(IC), plus ACC◦

01 (only for negative
C-formulas, as in C

◦), plus ET.

Proposition. IC ⊢ ∀b∃α∀xb(x) = α(x).



From now on, we assume M = (ω, C) is a classical ω-model of C.

Using M we can define a (modified) Crealizability interpretation,
using elements of C as the actual Crealizing objects and to
interpret free sequence variables of both sorts. The potential
Crealizing objects, and interpretations of free choice sequence

variables in the corresponding definition, are elements of ωω.
A sentence of L(IC) is Crealizable if and only if it has a recursive
Crealizer, and a formula is Crealizable if its universal closure is.
C is recursively closed since M is an ω-model of C.

Lemma. For every negative C-formula E of L(IC) with only Ψ free
there is a primitive recursive potential Crealizer τE for E such that
for each interpretation Ψ of Ψ by elements of C and ω:

1. If E is Crealized-Ψ by some ε ∈ C then E is true-Ψ in M.

2. If E is true-Ψ in M then τE
Crealizes-Ψ E.

A sentence E of L(C◦) is Crealizable if and only if E is true in M.



Theorem. If F1, . . . ,Fn,E are formulas of L(IC) such that
F1, . . . ,Fn ⊢IC E and F1, . . . ,Fn are all Crealizable, then E is
Crealizable. Since 0 = 1 is not Crealizable, IC is consistent.

Corollary. IC + NegTh(M) is consistent, where NegTh(M) is the
set of all sentences of L(C◦) which are true in M.

Theorem. ∀α∃b∀xα(x) = b(x) is independent of IC.

Proof. If C = ωω then ∀α∃b∀xα(x) = b(x) is Crealizable, so
IC 6⊢ ¬∀α∃b∀xα(x) = b(x), so IC + ∀α∃b∀xα(x) = b(x) is
consistent. If C 6= ωω then ¬∀α∃b∀xα(x) = b(x) is Crealizable, so
IC 6⊢ ¬¬∀α∃b∀xα(x) = b(x), so IC + ¬∀α∃b∀xα(x) = b(x) is
also consistent (assuming C has a proper ω-model).

Corollary. If M is a proper ω-model of C, then
IC + ¬∀α∃b∀xα(x) = b(x) + NegTh(M) is consistent.

Remark. By relativizing to Crealizability/C, all these results remain
true when all classically true sentences of arithmetic are added.



Markov’s Principle MP1: ¬¬∃xα(x) = 0 → ∃xα(x) = 0 is not
Crealizable/C, so ¬∀α[¬¬∃xα(x) = 0 → ∃xα(x) = 0] is consistent
with IC. By Vesley’s work, IC is consistent with Brouwer’s creating
subject counterexamples because the independence of premise

principle IP: (¬A → ∃βB(β)) → ∃β(¬A → B(β)) is Crealizable.

A weaker version ¬¬∃β[∀xβ(x) = 0 ↔ ¬A] (with β not free in A)
of (weak) Kripke’s schema is Crealizable, so consistent with IC.

Interpretation. Even if the creating subject (working according to
just the principles of IC) can prove all classically true arithmetical
sentences (including Markov’s Principle for recursive sequences)
and all true negative sentences about classical sequences,

◮ by ET, the creating subject will not be able to construct a
choice sequence which differs from every classical sequence;

◮ the creating subject will be unable to decide if every choice
sequence is extensionally equal to a classical sequence or not.
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