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In the early 20th century the Dutch mathematician L. E. J.
Brouwer questioned the universal applicability of the Aristotelian
law of excluded middle and proposed basing mathematical analysis
on informal intuitionistic logic, with natural numbers and choice
sequences (infinitely proceeding sequences of more or less freely
chosen natural numbers) as individual objects.

For Brouwer, numbers and choice sequences were mental
constructions which by their nature satisfied

◮ mathematical induction,

◮ countable and dependent choice,

◮ bar induction,

◮ and a continuity principle contradicting classical logic.

Brouwer disparaged efforts to justify mathematical theories by
proving consistency, but there is a consistency question here.
In 1930 A. Heyting formalized intuitionistic logic and arithmetic,
and attempted a complex formalization of intuitionistic analysis.



In 1965 S. C. Kleene and R. E. Vesley developed Brouwer’s
intuitionistic analysis in a formal system FIM extending
intuitionistic arithmetic, with quantifiers and variables over natural
numbers and one-place number-theoretic functions, constants and
axioms for finitely many primitive recursive functions and
functionals, and two-sorted intuitionistic logic.

Kleene’s function-realizability interpretation proved FIM consistent
relative to its classically correct basic subsystem B, and clarified
the relationship between intuitionistic and classical analysis:

◮ The mathematical axioms of B include full mathematical
induction, countable choice, and restricted bar induction.

◮ Classical analysis C is like B but with classical logic (which
incidentally removes the restriction on bar induction).

◮ Intuitionistic analysis FIM is B together with a strong axiom
of continuous choice (“Brouwer’s Principle for Functions”).



Logic and Language:

◮ Connectives &,∨,¬,→, and quantifiers ∀,∃ of both sorts.

◮ The classical axioms ¬¬A → A and A ∨ ¬A are replaced by
¬A → (A → B) and (A → B) → ((A → ¬B) → ¬A).

◮ Type-0 (number) variables are a, b, . . . , x , y , z , a1, . . .

◮ Prime formulas are equations s = t between terms of type 0.

The second sort of variables could range over sets (“species”) or
sequences. Detachable species have characteristic functions, so

◮ Type-1 variables α, β, γ, . . . , α1, . . . range over sequences.

◮ Schemas express properties of definable species A(α, x).

◮ Equality is extensional : α = β abbreviates ∀x(α(x) = β(x)).

Peculiar characteristics of intuitionistic logic:

◮ (A → B) → ¬(A & ¬B) is provable, but the converse is not.

◮ ∃x¬A(x) → ¬∀xA(x) is provable, but the converse is not.

◮ ¬¬(A ∨ ¬A) is provable, but ¬¬∀x(A(x) ∨ ¬A(x)) is not.



IA1 is 2-sorted intuitionistic arithmetic with λ-abstraction and
finitely many constants for primitive recursive functions and
functionals. The mathematical axioms of IA1 are

◮ the usual axioms for =, 0, ′, +, ·

◮ defining equations for the other function constants

◮ mathematical induction for all formulas A(x):

A(0) & ∀x(A(x) → A(x ′)) → ∀xA(x).

◮ (x = y → α(x) = α(y)) and

◮ λ-reduction: (λx .u(x)) (s) = u(s) where u(x), s are terms.

Easy Facts:

◮ IA1 proves ∀x∀y(x = y ∨ ¬(x = y)).

◮ In fact, if A(x) is quantifier-free or has only bounded number
quantifiers then IA1 proves ∀x(A(x) ∨ ¬A(x)).

◮ There is a classical model of IA1 in which the sequence
variables range over all primitive recursive functions.



Brouwer accepted countable choice:

AC01: ∀x∃αA(x , α) → ∃β∀xA(x , λyβ(2x · 3y ))

and bar induction with a detachable bar:

BI1: ∀α∃xρ(α(x)) = 0 & ∀w [ρ(w) = 0 → A(w)]

& ∀w [∀sA(w ∗ 〈s〉) → A(w)] → A(〈 〉)
where w ranges over codes for finite sequences of numbers, 〈 〉 =
α(0) codes the empty sequence, 〈α(0), . . . , α(x)〉 = α(x + 1)
codes the first x + 1 values of α, and ∗ expresses concatenation.

Bar induction is backwards induction on the nodes of a tree with
every branch finite but with countably infinite branching, from the
tips of the branches (where ρ(α(x)) = 0 so A holds), back along
the nodes (if A holds at every immediate successor of a node w ,
then A holds at w), proving finally that A holds at the root 〈 〉.

⋆ Kleene’s neutral basic analysis is B = IA1 + AC01 + BI1.



Observations:

◮ Although formulated with intuitionistic logic, Kleene’s basic
analysis B is logically neutral in the sense that all its theorems
are also correct with classical logic.

◮ From AC01 follows AC00: ∀x∃yA(x , y) → ∃α∀xA(x , α(x)).

◮ Bar induction justifies transfinite recursion up to a countable
ordinal, using the Kleene-Brouwer ordering on finite sequences.

◮ With classical logic, bar induction justifies König’s Lemma:
Every finitely branching tree with arbitrarily long finite
branches has an infinite branch.

◮ With intuitionistic logic, bar induction justifies the Fan
Theorem: If a finitely branching tree has only finite branches,
there is a finite upper bound n to the lengths of the branches.

The Fan Theorem is a strong generalization of the fact that there
is a longest possible game of chess under the usual rules.



Brouwer’s distinctive contribution to intuitionistic analysis, his
continuity principle, followed from his acceptance of arbitrary
choice sequences as legitimate mathematical objects. He
distinguished between “fundamental sequences, i.e. predeterminate
infinite sequences which like classical ones, proceed in such a way
that, from the beginning, the mth term is fixed for each m” and
“infinitely proceeding sequences p1, p2, . . . whose terms are chosen
more or less freely from mathematical entities previously acquired;
in such a way that the freedom of choice existing perhaps for the
first element p1 may be subjected to a lasting restriction at some
following pi and again and again to sharper lasting restrictions . . . ”

He reasoned that any function defined on all choice sequences α of
natural numbers must be continuous, because it assigns values to
sequences for which only a finite initial segment may have been
determined so far. In particular, if Φ: NN → N then

∀α∃x∀β(α(x) = β(x) → Φ(α) = Φ(β)).



In the two-sorted language of analysis this continuity principle can
be expressed only for definable functions Φ: NN → N.

Let ∃!xB(x) abbreviate ∃xB(x) & ∀x∀y(B(x) & B(y) → x = y)

so ∀α∃!yA(α, y) expresses that A defines a function from N
N to N.

Brouwer’s weak continuity principle can then be stated

WC10: ∀α∃!yA(α, y) → ∀α∃x∃y∀β(α(x) = β(x) → A(β, y)).

If the y is not required to be unique and the output includes a
modulus of continuity, a principle of continuous choice results:

CC10: ∀α∃yA(α, y) →
∃σ∀α[∃y{σ}(α) ≃ y &∀y({σ}(α) ≃ y → A(α, y))],

where {σ}(α) ≃ y ≡ ∃z [σ(α(z)) = y + 1 & ∀k < z σ(α(k)) = 0].

Continuous choice for functions from N
N to N

N is stronger:

CC11: ∀α∃βA(α, β) →
∃σ∀α[∃β{σ}[α] ≃ β & ∀β({σ}[α] ≃ β → A(α, β))].

⋆ Kleene’s Intuitionistic Analysis is FIM = B + CC11.



Kleene removed the mystery from intutionistic analysis by proving

◮ FIM proves ¬∀α(∀xα(x) = 0 ∨ ¬∀xα(x) = 0).
Even the weak continuity principle contradicts classical logic.

◮ FIM is consistent relative to its neutral subsystem B.
The proof used function-realizability, a precise implementation
of the “B-H-K interpretation” of intuitionistic logic.

◮ FIM can only prove the existence of recursive sequences.
If ∀x∃yA(x , y) is a closed theorem of FIM then there is a
gödel number e for which B proves ∃α∀x({e}(x) ≃ α(x))
and FIM proves ∀α[∀x({e}(x) ≃ α(x)) → A(x , α)].

◮ The recursive sequences do not form a classical model for B,
as they do not satisfy the Fan Theorem.

◮ Even the hyperarithmetical sequences do not form a classical
model for B, as they do not satisfy the Bar Theorem.

R. E. Vesley used FIM to analyze and formalize Brouwer’s results
on the structure of the intuitionistic real numbers.



Now in the 21st century, Wim Veldman and others are developing
an intuitionistic reverse analysis parallel to, but diverging
significantly from, both the classical reverse mathematics of H.
Friedman and S. Simpson and the constructive reverse analysis
being developed by followers of E. Bishop. To understand the
differences, first consider the constructive and classical versions.

D. Bridges stated the goals of constructive reverse mathematics as

◮ to determine which constructive principles are needed, in the
context of informal intuitionistic set theory, to prove particular
theorems of Bishop’s constructive mathematics, and

◮ to determine which additional nonconstructive principles
would be needed to prove particular classical theorems.

If a result is obtained informally over IZF, some work may be
needed to determine which axioms are strictly necessary for its
proof. This seems undesirable for reverse mathematics; H. Ishihara
recently proposed a precise, formal constructive reverse analysis.



The goal of classical reverse mathematics is to determine which set
existence axioms are needed to prove a particular theorem of
“ordinary” classical mathematics. S. Simpson distinguished five
main subsystems of classical second-order arithmetic Z2 extending
a fragment of Peano arithmetic with restricted induction, in a
language with variables and quantifiers over numbers and sets of
numbers, and with constants 0, 1, +, ·, =, < and ∈.
These subsystems have increasingly strong set existence axioms:

◮ RCA0 (recursive comprehension and Σ0
1-induction),

◮ WKL0 (“weak König’s Lemma”),

◮ ACA0 (arithmetical comprehension),

◮ ATR0 (arithmetical transfinite recursion),

◮ Π1
1-CA0 (Π1

1 comprehension).

The subscript 0 denotes restricted mathematical induction.

RCA, WKL, ACA, ATR, Π1
1-CA are the corresponding systems

with unrestricted mathematical induction.



Classical reverse mathematics uses the language of set theory but
intuitionistic reverse analysis should use the language of analysis.
Both implicitly assume a two-sorted primitive recursive arithmetic.

Primitive recursive arithmetic PRA0 is a quantifier-free subsystem
of first-order arithmetic, with constants and axioms for =, 0, ′ and
all primitive recursive functions, and mathematical induction for
quantifier-free formulas only. Since x = y ∨ ¬(x = y) is provable
intuitionistically using quantifier-free induction, there is no
difference between classical and intuitionistic PRA0.

In the context of PRA0, formulas with bounded quantifiers such as
∀x < y∃z < y(x + z = y) are considered to be quantifier-free.

A two-sorted version adds variables over number-theoretic
functions, with axioms allowing the definition of functions by
composition and primitive recursion. Two-sorted intuitionistic
primitive recursive arithmetic IA1 adds full mathematical induction.



One way to classify subsystems of intuitionistic analysis would be
by the strength of their countable choice axioms. When formalizing
intuitionistic analysis, Kleene assumed full countable choice:

AC01: ∀x∃αA(x , α) → ∃β∀xA(x , λy .β(2x · 3y )),

although he rarely needed more than its consequence

AC00: ∀x∃yA(x , y) → ∃α∀xA(x , α(x)).

AC00 is equivalent to the conjunction of a bounded choice schema:

BC00: ∀x∃y ≤ β(x)A(x, y) → ∃α∀xA(x, α(x))

and a bounding axiom schema:

AB00: ∀x∃yA(x , y) → ∃β∀x∃y ≤ β(x)A(x , y).

Quantifier-free countable choice is

qf-AC00: ∀x∃yα(x , y) = 0 → ∃β∀xα(x , β(x)) = 0.

⋆ Intuitionistic recursive analysis is IRA = IA1 + qf-AC00.



Kleene formalized recursive functional theory using the system
M1 = IA1 + AC00! with a comprehension (“unique choice”) axiom

AC00!: ∀x∃!yA(x , y) → ∃α∀xA(x , α(x))

where ∃! says “there is exactly one.” G. Vafeiadou observed that
AC00! is equivalent over IA1 to the conjunction of qf-AC00 and

CF0: ∀x(A(x) ∨ ¬A(x)) → ∃χ∀x(χ(x) = 0 ↔ A(x)),

which says that every detachable subset of the natural numbers
has a characteristic function. With classical logic CF0 gives full
comprehension, but with intuitionistic logic it is much weaker.

In the following diagram all arrows are strict with one exception:
The question if M1 + BC00 ⊢ AC00 seems to be open. J. van
Oosten proved M1 + AB00 6 ⊢ AC00. The other independence
results are due to S. Weinstein, G. Vafeiadou and JRM.



M1 + AC00

✙ ❥

✙ ✙❥ ❥

IA1 + CF0 IA1 + qf-AC00

❥ ✙

IA1

✙
✙❥ ❥

IA1 + AB00

M1 + AB00M1 + BC00

M1 = IA1 +AC00!IA1 + BC00



Most of these distinctions depend essentially on intuitionistic logic.

Let IAc
1 = IA1 + (A ∨ ¬A) and Mc

1 = M1 + (A ∨ ¬A). Then

◮ IAc
1 + CF0, for which the primitive recursively bounded

functions form a classical ω-model, is stronger than IAc
1 and

weaker than Mc
1.

◮ IAc
1 + qf-AC00, for which the recursive functions form a

classical ω-model, is stronger than IAc
1 and weaker than Mc

1.

◮ Mc
1 is equivalent to Mc

1 + AC00 so the rest of the diagram
collapses.

There are only two obvious points of contact with classical reverse
mathematics:

◮ Classical RCA corresponds to IRA = IA1 + qf-AC00.

◮ Classical ACA corresponds to the restriction AC−

00! of
intuitionistic “unique choice” AC00! to arithmetical predicates.



Simpson’s classical systems with full induction and their
characteristic axioms, in order of increasing strength, are

◮ RCA (recursive comprehension axiom),

◮ WKL (“weak König’s Lemma”),

◮ ACA (arithmetical comprehension axiom),

◮ ATR (arithmetical transfinite recursion),

◮ Π1
1-CA (Π1

1 comprehension axiom).

WKL should correspond to some version of the Fan Theorem.
I. Loeb, J. Berger and W. Veldman proved that the binary fan
theorem for a detachable predicate is equivalent over IRA to

◮ the Heine-Borel Theorem for an enumerable open cover of
[0, 1] by intervals with rational endpoints,

◮ the statement that a pointwise continuous function on [0, 1]
with a modulus of continuity is uniformly continuous,

◮ and Brouwer’s approximate fixed-point theorem for
enumerable continuous functions on the unit square.



So it is reasonable to conclude that

◮ Classical WKL corresponds to WFT = IRA + ∆0-FT.

ATR should correspond to a version of bar induction. T. Coquand
proved the Open Induction Principle for 2N and [0, 1] by bar
induction on a subtree of NN with at most binary branching.

Veldman defined an approximate fan to be a tree in which each
node has at most finitely many immediate successors, and
proposed a new axiom, the Approximate Fan Theorem

AFT: If every branch of an explicit approximate fan is finite, the
set of “leaves” (final nodes of the branches) is almost-finite.

He proved that AFT is equivalent over IRA to

◮ Monotone enumerable bar induction Σ0
1-BI

m.

◮ Open Induction on 2N and [0, 1].

◮ The set of all sequences not yet secured by a detachable bar
on N

N is well-founded under the Kleene-Brouwer ordering.

◮ A contrapositive version of the Bolzano-Weierstrass theorem.



So it is perhaps reasonable to conclude that

◮ Classical ATR corresponds to ABI = IAC + Σ0
1-BI

m.

We have proposed intuitionistic analogues of four of Simpson’s five
distinguished subsystems:

◮ IRA = IA1 + qf-AC00 as an intuitionistic analogue of RCA.

◮ WFT = IRA + ∆0-FT as an intuitionistic analogue of WKL.

◮ IAC = WFT + AC−

00! as an intuitionistic analogue of ACA.

◮ ABI = IAC + Σ0
1-BI

m as an intuitionistic analogue of ATR.

Is there an intuitionistic analogue of Π1
1-CA? A monotone choice

principle ACm
1/2,0 is provable in FIM; over B it justifies monotone

bar induction. Perhaps

◮ MBI = ABI + Π1
1-AC

m
1/2,0 + Π1

1-BI1 corresponds to Π1
1-CA?

◮ IRA + AC01 + ACm
1/2,0 + BI1 corresponds to Z2?

This is work in progress and many questions remain.


