Unavoidable Choice Sequences

Joan Rand Moschovakis

Occidental College (emerita) and MPLA

Oberwolfach Proof Theory and Constructive Math and Conference in Honor of Fred and Ray April 10 and May 10, 2008 Kleene's formalization of intuitionistic analysis **FIM** (Kleene and Vesley [1965], as extended by Kleene [1969]) includes bar induction, countable and continuous choice, but cannot prove that the constructive arithmetical hierarchy is proper.

Veldman showed that in **FIM** the constructive analytical hierarchy collapses at Σ_2^1 .

These are serious obstructions to interpreting the constructive content of classical analysis, just as the collapse of the arithmetical hierarchy at Σ_3^0 in **HA** + MP₀ + ECT₀ limits the scope and effectiveness of recursive analysis.

Question: Can we do better by working within classical extensions of nonclassical theories, or within classically correct theories obeying e.g. Church's Rule or Brouwer's Rule?

We work in a two-sorted language \mathcal{L} with variables over numbers and one-place number-theoretic functions (*choice sequences*). Our base theory \mathbf{M} – the minimal theory used by Kleene [1969] to formalize the theory of recursive partial functionals, function realizability and q-realizability – extends Heyting arithmetic to the two-sorted language, with extensional equality for functions.

M includes defining axioms for finitely many primitive recursive function constants, a λ -reduction schema, and the function comprehension schema $\forall x \exists ! y A(x, y) \rightarrow \exists \alpha \forall x A(x, \alpha(x)).$

An \mathcal{L} -theory is a consistent axiomatic extension of **M** in the language \mathcal{L} (possibly enriched by additional primitive recursive function constants). An \mathcal{L} -theory may be *intuitionistic*, *classical* or *intermediate* depending on its underlying logic.

The \mathcal{L} -theories **T** which have been proposed so far to express parts of constructive mathematics typically have one or more of the following properties:

An *explicit* \mathcal{L} -theory T provides explicit witnesses for existential theorems:

(a) If $\exists x A(x)$ is closed and $\vdash_T \exists x A(x)$ then $\vdash_T A(n)$ for some numeral n.

(b) If $\exists \alpha A(\alpha)$ is closed and $\vdash_{\mathsf{T}} \exists \alpha A(\alpha)$, then for some $B(\alpha)$ with only α free:

 $\vdash_{\mathsf{T}} \forall \alpha[\mathrm{B}(\alpha) \to \mathrm{A}(\alpha)] \& \exists! \alpha \mathrm{B}(\alpha).$

A Brouwerian \mathcal{L} -theory **T** satisfies Brouwer's Rule: "If $\vdash_{\mathbf{T}} \forall \alpha \exists \beta A(\alpha, \beta)$ then $\vdash_{\mathbf{T}} \exists \sigma \forall \alpha [\forall x \exists y(\{\sigma\}[\alpha](x) \simeq y) \& A(\alpha, \{\sigma\}[\alpha])].$ " A recursively acceptable \mathcal{L} -theory **T** satisfies Markov's Rule: "If $\vdash_{\mathbf{T}} \neg \neg \exists x A(x) \& \forall x [A(x) \lor \neg A(x)]$ then $\vdash_{\mathbf{T}} \exists x A(x)$ "

and Church's Rule:

"If
$$\vdash_{\mathsf{T}} \exists \alpha A(\alpha)$$
 with $\exists \alpha A(\alpha)$ closed, then
 $\vdash_{\mathsf{T}} \exists e[\forall x \exists ! y T(e, x, y) \& \forall \alpha [\forall x \forall y [T(e, x, y) \rightarrow \alpha(x) = U(y)] \rightarrow A(\alpha)]]$."

If **T** is both recursively acceptable and explicit, then **T** evidently satisfies the *Church-Kleene Rule*:

"If
$$\vdash_{\mathsf{T}} \exists \alpha A(\alpha)$$
 where $\exists \alpha A(\alpha)$ is closed, then for a suitable *e*:
 $\vdash_{\mathsf{T}} \exists \alpha [\forall x(\alpha(x) \simeq \{\mathbf{e}\}(x)) \& A(\alpha)]$."

No classical \mathcal{L} -theory has any of these properties (except, of course, closure under Markov's Rule).

FIM has all these properties. So do the \mathcal{L} -theory **FIM** + MP₁ and its (classically correct) \mathcal{L} -subtheory $T_1 \equiv M + BI_1 + MP_1$, which prove that the constructive arithmetical hierarchy is proper. Here BI₁ is the bar induction schema and MP₁ is

$$\forall \alpha (\neg \neg \exists x \alpha(x) = 0 \rightarrow \exists x \alpha(x) = 0).$$

In addition to "saving the constructive arithmetical hierarchy," ${\sf T}_1$ has "more classical sequences" than ${\sf FIM},$ in the following sense. If ${\sf T}$ is an ${\cal L}\text{-theory}$ and

 $\vdash_{\mathsf{T}} \neg \neg \exists \alpha \mathbf{A}(\alpha),$

then we say "a sequence α satisfying A(α) is unavoidable over T." Only recursive sequences are unavoidable over FIM (JRM [1971]) but the characteristic functions of all arithmetical relations (with or without sequence parameters), and of all classically Δ_1^1 relations, are unavoidable over FIM + MP₁ and over T₁ (Solovay, JRM, in JRM [2003]). Definition. T_2 comes from **FIM** by adding

- I. $\neg \neg \forall x[A(x) \lor \neg A(x)]$ for arithmetical A(x) (parameters of both sorts allowed, but no sequence quantifiers).
- II. "Only classically Σ_1^1 sequences are unavoidable": $\forall \alpha \neg \neg \exists e \forall x \forall y [\alpha(x) = y \leftrightarrow \neg \neg \exists \beta \forall z \neg T(e, x, y, \overline{\beta}(z))].$
- III. "Every Π_1^1 sequence is unavoidable":

$$\begin{split} &\forall e[\forall x \neg \neg \exists y \forall \beta \exists z T(e, x, y, \overline{\beta}(z)) \& \\ &\forall x \forall y \forall u (\forall \beta \exists z T(e, x, y, \overline{\beta}(z)) \& \forall \beta \exists z T(e, x, u, \overline{\beta}(z)) \rightarrow y = u) \rightarrow \\ &\neg \neg \exists \alpha \forall x \forall y [\alpha(x) = y \leftrightarrow \forall \beta \exists z T(e, x, y, \overline{\beta}(z))]]. \end{split}$$

 T_2 is consistent by a classical realizability interpretation (a modification of my old ^Grealizability) satisfying first-order Peano arithmetic **PA** but not MP₁.

Definition. A sequence ε agrees with an \mathcal{L} -formula E as follows.

- 1. Every ε agrees with a prime formula P.
- 2. ε agrees with A & B, if $(\varepsilon)_0$ agrees with A and $(\varepsilon)_1$ agrees with B.
- 3. ε agrees with $A \vee B$, if $(\varepsilon(0))_0 = 0$ implies that $(\varepsilon)_1$ agrees with A, while $(\varepsilon(0))_0 \neq 0$ implies that $(\varepsilon)_1$ agrees with B.
- 4. ε agrees with $A \to B$, if, whenever α agrees with A, $\{\varepsilon\}[\alpha]$ is defined and agrees with B.
- 5. ε agrees with $\neg A$, if ε agrees with $A \rightarrow 1 = 0$.
- 6. ε agrees with $\exists x A(x)$, if $(\varepsilon)_1$ agrees with A(x).
- 7. ε agrees with $\forall xA(x)$, if, for each x, $\{\varepsilon\}[x]$ is completely defined and agrees with A(x).
- 8. ε agrees with $\exists \alpha A(\alpha)$, if $\{(\varepsilon)_0\}$ is completely defined and $(\varepsilon)_1$ agrees with $A(\alpha)$.
- ε agrees with ∀αA(α), if, for each sequence α, {ε}[α] is completely defined and agrees with A(α).

Definition. Let ε be a Δ_1^1 sequence and E a formula of \mathcal{L} with at most Ψ free. Let Ψ be numbers and Δ_1^1 sequences interpreting Ψ .

- 1. $\varepsilon \Delta_1^1$ realizes- Ψ a prime formula P, if P is true- Ψ .
- 2. $\varepsilon \stackrel{\Delta_1^1}{\operatorname{realizes}} \Psi \to \mathbb{A} \otimes \mathbb{B}$, if $(\varepsilon)_0 \stackrel{\Delta_1^1}{\operatorname{realizes}} \Psi \to \mathbb{A}$ and $(\varepsilon)_1 \stackrel{\Delta_1^1}{\operatorname{realizes}} \Psi \to \mathbb{B}$.

4. $\varepsilon \stackrel{\Delta_1^1}{\text{realizes-}} \Psi \to B$, if ε agrees with $A \to B$ and, whenever $\alpha \stackrel{\Delta_1^1}{\text{realizes-}} \Psi \to A$, $\{\varepsilon\}[\alpha]$ (is defined and) $\stackrel{\Delta_1^1}{\text{realizes-}} \Psi \to B$.

5.
$$\varepsilon \overset{\Delta_1}{\sim} realizes \Psi \neg A$$
, if $\varepsilon \overset{\Delta_1}{\sim} realizes \Psi A \rightarrow 1 = 0$.

6.
$$\varepsilon \Delta_1^1$$
 realizes- $\Psi \exists xA(x)$, if $(\varepsilon)_1 \Delta_1^1$ realizes- Ψ , $(\varepsilon(0))_0 A(x)$.

- 7. $\varepsilon \xrightarrow{\Delta_1^1}$ realizes- $\Psi \forall xA(x)$, if, for each x, $\{\varepsilon\}[x]$ is defined and $\xrightarrow{\Delta_1^1}$ realizes- $\Psi, x A(x)$.
- 8. $\varepsilon \stackrel{\Delta_1^1}{\operatorname{realizes}} \Psi \exists \alpha A(\alpha)$, if $\{(\varepsilon)_0\}$ is defined and $(\varepsilon)_1 \stackrel{\Delta_1^1}{\operatorname{realizes}} \Psi, \{(\varepsilon)_0\} A(\alpha)$.
- 9. $\varepsilon \Delta_1^1$ realizes- $\Psi \forall \alpha A(\alpha)$, if ε agrees with $\forall \alpha A(\alpha)$ and, for each Δ_1^1 sequence α , $\{\varepsilon\}[\alpha]$ is defined and Δ_1^1 realizes- Ψ , $\alpha A(\alpha)$.

Definition. A closed formula E is Δ_1^1 realizable if and only if some Δ_1^1 sequence $\varepsilon \Delta_1^1$ realizes E. An open formula is Δ_1^1 realizable if and only if its universal closure is.

We need a number of lemmas, differing little from those for ${}^{\rm G}\mbox{realizability, e.g.}$

Lemma 4. For each formula E there is a primitive recursive sequence ε^E which agrees with E.

Lemma 7. Let E contain free only Ψ . Then E is ${}^{\Delta_1^1}$ realizable if and only if there is a recursive partial functional $\varphi[\Psi, \gamma] \simeq \lambda t. \varphi(\Psi, \gamma, t)$ such that, for some Δ_1^1 sequence δ : $\varphi[\Psi, \delta]$ is completely defined and agrees with E for every choice of Ψ , and if every sequence in the list Ψ is Δ_1^1 then $\varphi[\Psi, \delta] {}^{\Delta_1^1}$ realizes- Ψ E.

The $\varphi[\Psi, \delta]$ given by Lemma 7 is called a Δ_1^1 realizer for E.

Lemma 9. (a) For each arithmetical formula $A(\beta, x_1, \ldots, x_k)$ with no free variables other than β, x_1, \ldots, x_k , and for each Δ_1^1 sequence β , there is a Δ_1^1 function ϑ_β of t, x_1, \ldots, x_k such that if $\vartheta[x_1,\ldots,x_k] = \lambda t \cdot \vartheta_\beta(t,x_1,\ldots,x_k)$ then for all x_1,\ldots,x_k : (i) $\vartheta[x_1, \ldots, x_k]$ agrees with $A(\beta, x_1, \ldots, x_k)$. (ii) $\vartheta[x_1, \ldots, x_k] \stackrel{\Delta_1^1}{}$ realizes- β, x_1, \ldots, x_k A(β, x_1, \ldots, x_k) if and only if. under the intended classical interpretation, A(β , x₁,..., x_k) is true- β , x₁,..., x_k. (b) With the same conditions on $A(\beta, x_1, \ldots, x_k)$ and β , there is a Δ_1^1 sequence ψ which Δ_1^1 realizes- β $\forall x_1 \dots \forall x_k [A(\beta, x_1, \dots, x_k) \lor \neg A(\beta, x_1, \dots, x_k)]$. In particular, if $A(x_1, \ldots, x_k)$ is purely arithmetical, then $A(x_1, \ldots, x_k) \vee \neg A(x_1, \ldots, x_k)$ is Δ_1^1 realizable.

Theorem. If $\Gamma \vdash_{\mathsf{T}_2} E$ and the formulas Γ are ${}^{\varDelta_1^1}$ realizable, so is E. *Proof.* For each axiom E with only Ψ free we give a ${}^{\varDelta_1^1}$ realizer $\varphi[\Psi, \delta]$. Then, assuming that a ${}^{\varDelta_1^1}$ realizer exists for each premise of a rule of inference, we give a ${}^{\varDelta_1^1}$ realizer for the conclusion.E.g.

$$\begin{split} & \varphi[\Psi] \simeq \varphi[\Psi, \lambda t.0] \simeq \Lambda \sigma \lambda t.0 \text{ is a } {}^{\Delta_1^1} \text{realizer for an instance of (I)} \\ & \text{with only } \Psi \text{ free, since Lemma 9(b) gives a } {}^{\Delta_1^1} \text{realizer for} \\ & \forall x[A(x) \lor \neg A(x)], \text{ and (I) is the double negation of this formula.} \end{split}$$

 $\varphi \simeq \varphi[\delta] \simeq \varphi[\lambda t.0] \simeq \Lambda \alpha \Lambda \pi \lambda t.0$ is a ${}^{\Delta_1^1}$ realizer for the axiom (II) asserting that every sequence is classically Σ_1^1 . Agreement is obvious; and for each Δ_1^1 sequence α there exist numbers f and, by the Spector-Gandy Theorem, also e so that for all x, y:

$$\begin{array}{ll} \alpha(x) = y & \Leftrightarrow & (\gamma)(Ez)T(f,x,y,\overline{\gamma}(z)) \\ & \Leftrightarrow & (E\beta \in \Delta^1_1)(z)\overline{T}(e,x,y,\overline{\beta}(z)). \end{array}$$

 $\varphi \simeq \Lambda \sigma \Lambda \pi \lambda t.0 \ \Delta_1^1$ realizes axiom (III).

Corollary 1. T₂ is consistent, in fact every closed theorem of T₂ has a recursive Δ_1^1 realizer.

Proof. In the proof of the theorem, the parameter δ used in defining a Δ_1^1 realizer for an axiom of \mathbf{T}_2 can always be taken to be recursive, and this property is preserved by the rules of inference. 0 = 1 is not Δ_1^1 realizable so \mathbf{T}_2 is consistent.

Corollary 2. T_2 is Brouwerian and does not prove MP₁.

Proof. T_2 has Brouwer's continuous choice principle as an axiom schema. Vesley's Schema VS, which (proves Brouwer's creating subject counterexamples and) is Δ_1^1 realizable, contradicts MP₁.

Corollary 3. $T_3 = T_2 + PA$ is a Brouwerian \mathcal{L} -theory which is not recursively acceptable.

Proof. \mathbf{T}_3 is consistent by ${}^{\Delta_1^1}$ realizability. \mathbf{T}_3 proves $\forall x \exists ! y [y \leq 1 \& (y = 0 \leftrightarrow \exists z T(x, x, z))]$ and hence $\exists \alpha \neg \exists e \forall x \exists y (T(e, x, y) \& U(y) = \alpha(x))$, so violates Church's Rule.

References

Kleene, S. C. and Vesley, R. E. [1965]: *The Foundations of Intuitionistic Mathematics, Especially in Relation to Recursive Functions*, North-Holland, Amsterdam.

Kleene, S. C. [1969]: *Formalized Recursive Functions and Formalized Realizability*, Memoirs of the Amer. Math. Soc. **89**.

Moschovakis, J. R. [1971]: "Can there be no nonrecursive functions?," Jour. Symb. Logic **26** No. 2, pp. 309-315.

Moschovakis, J. R. [2003]: "Classical and constructive hierarchies in extended intuitionistic analysis," Jour. Symb. Logic **68** No. 3, pp. 1015-1043.

Vesley, R. E. [1970]: "A palatable substitute for Kripke's Schema," in *Intuitionism and Proof Theory*, North-Holland.