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Abstract. Reverse constructive mathematics, based on the pioneering
work of Kleene, Vesley, Kreisel, Troelstra, Bishop, Bridges and Ishihara,
is currently under development. Bishop constructivists tend to emulate
the classical reverse mathematics of Friedman and Simpson. Veldman’s
reverse intuitionistic analysis and descriptive set theory split notions in
the style of Brouwer. Kohlenbach’s proof mining uses interpretations and
translations to extract computational information from classical proofs.
We identify the classical content of a constructive mathematical theory
with the Gentzen negative interpretation of its classically correct part. In
this sense HA and PA have the same classical content but intuitionistic
and classical two-sorted recursive arithmetic with quantifier-free count-
able choice do not; Σ0

1 numerical double negation shift expresses the
precise difference. Other double negation shift and weak comprehension
principles clarify the classical content of stronger constructive theories.
Any consistent axiomatic theory S based on intuitionistic logic has a
minimum classical extension S+g, obtained by adding to S the nega-
tive interpretations of its classically correct consequences. Subsystems of
Kleene’s intuitionistic analysis and supersystems of Bishop’s construc-
tive analysis provide interesting examples, with the help of constructive
decomposition theorems.

1 There is virtue in simplicity.

The negative translations proposed by Gödel [7] and Gentzen [6] are straight-
forward syntactic methods for converting formulas of a full logical language into
classically equivalent formulas not involving ∨ or ∃. The Gentzen negative trans-
lation Eg of a formula E replaces ∨ and ∃ by their classical equivalents in terms
of ¬, & and ∀, but does not change→. The Gödel translation also replaces→ by
its classical equivalent in terms of ¬ and &, but the simpler Gentzen version is
more transparent and will be used in what follows. When necessary to guarantee
the intuitionistic equivalence of ¬¬Eg and Eg, prime formulas are replaced by
their double negations; this step is omitted in applications where prime formulas
are stable under double negation.

The negative translations of classical logical axioms and rules are correct by
intuitionistic logic, so if E follows from Γ by classical logic then Eg follows from
Γg by intuitionistic logic. With classical logic E and Eg are equivalent. Even with
intuitionistic logic, ¬¬Eg and Eg are equivalent.
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1.1 Classical content in arithmetic and analysis

In what follows, the “language of arithmetic” may be any first-order language
with equality, constants 0, ′, +, · and possibly other constants for primitive re-
cursive functions. Prime formulas are equations s = t between terms. Classical
arithmetic PA and intuitionistic arithmetic HA are expressed in this language.

The “language of analysis” is any two-sorted language extending the language
of arithmetic, with variables m,n, . . . , x, y, z over natural numbers and variables
α, β, γ, . . . over infinite sequences of natural numbers (i.e. one-place number-
theoretic functions), with constants for additional primitive recursive functions
and functionals. Function application is denoted by α(x), and equality at type 1
is defined extensionally. Troelstra’s EL and Kleene and Vesley’s I are expressed
in the language of analysis; cf. [19],[21], [12].

Some applications involve intuitionistic arithmetic of arbitrary finite types
HAω, an extension of HA in a language with variables over, and terms for,
primitive recursive functions of all finite types. Prime formulas are equations
between terms of the same type. There are intensional and extensional versions
of HAω; for details see [19].

Definition 1. The classical content of a formula E in the language of arith-
metic, analysis, or the arithmetic of finite types is its Gentzen negative transla-
tion Eg. The classical content Γg of a collection Γ of formulas consistent with
classical logic is the closure under intuitionistic logic of the set {Eg: E ∈ Γ}.

Remark 1. If S is a formal system, based on intuitionistic logic but consistent
with classical logic, and if T comes from S by adding one or more classically
correct logical axiom schemas, then Sg = Tg so the classical content of S is
determined by the negative translations of its mathematical axioms. Following
Kleene [11] we denote S + (¬¬A→ A) by S◦.

1.2 Minimum classical extension of a constructive theory

Definition 2. If S is a formal system based on intuitionistic logic, in a language
including &, ∨, →, ¬, and quantifiers ∀ and ∃ of one or more sorts, then the
classical subtheory cls(S) of S is the set of all classically correct theorems
of S; the classical content of S is (cls(S))

g
; and the minimum classical

extension S+g of S is the closure under intuitionistic logic of S ∪ (cls(S))
g
.

Remark 2. If S is an intuitionistic subsystem of a (consistent) classical theory
then cls(S) = S, so S+g is the closure under intuitionistic logic of S ∪ Sg. Intu-
itionistic arithmetic is its own minimum classical extension because the negative
interpretations of all the mathematical axioms of HA (and PA) are provable
in HA. The prime formulas of arithmetic are equations between terms of type
0, which do not change under the translation because HA proves that they are
decidable, hence stable under double negation.

However, the neutral (classically correct) “basic” subsystem B of Kleene and
Vesley’s formal system I for intuitionistic analysis does not contain its classical
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content, nor does Troelstra’s recursive analysis EL. In each of these cases the
classical content is nevertheless completely determined by the negative transla-
tions of the mathematical axioms of the system.

In the case that S is consistent but S◦ is not, cls(S) may include more than
the consequences of the classically correct axioms of S. Intuitionistic analysis I
differs from B by just one axiom schema (which conflicts with B◦), but I proves
monotone bar induction (which is consistent with B◦) while B does not. The
question then is how to determine the classical subtheory of a subsystem S of I
with a classically false continuity axiom or schema, in order to identify S+g.

2 Double negation shift and weak comprehension axioms

Double negation shift principles have long been studied as weaker alternatives to
constructively questionable axioms like Markov’s Principle (cf. [18], [1], [16], [5]).
In [2] Brouwer himself used double negation shift to prove that the intuitionistic
real numbers form a closed species, though he later rejected this argument.

The most general double negation shift schema, whose addition to intuition-
istic predicate logic would suffice to prove Glivenko’s Theorem, is

DNS : ∀x¬¬A(x)→ ¬¬∀xA(x).

The converse holds by intuitionistic predicate logic. The strength of an instance
of double negation shift depends on the logical complexity of the formula A(x)
and the domain of the variable x.

2.1 “Double negation shift for numbers” DNS0

DNS0 denotes the restriction of DNS to cases where x is a number variable. AC0

denotes the axiom schema of countable choice, which was accepted by Bishop and
Brouwer. Danko Ilik argues in [8] that HAω + AC0 + DNS0 “is a distinct variety
of Constructive Mathematics” because it satisfies existential instantiation, proves
the double negation of Bishop’s Limited Principle of Omniscience for numbers,
refutes the recursive choice principle CT0, and contains its classical content. He
also observes that DNS0 can replace Markov’s Principle in consistency proofs
for classical analysis (cf. [15]).

Proposition 1. HAω + AC0 + DNS0 is its own minimum classical extension.

Proof. (HAω + AC0 + DNS0)g = (HAω + AC0)g by Remark 1 since DNS0 is a
classical logical schema. (HAω)g ⊆ HAω and (AC0)g ⊆ HAω + AC0 + DNS0.

2.2 Σ0
1 double negation shift for numbers

Definition 3. In the language of arithmetic or analysis, Σ0
1-double negation

shift for numbers is the schema

Σ0
1-DNS0 : ∀x¬¬∃yA(x, y)→ ¬¬∀x∃yA(x, y)
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where A(x, y) is a formula with only bounded number quantifiers and no sequence
quantifiers, but perhaps containing additional free variables.

Proposition 2. EL + Σ0
1-DNS0 is its own minimum classical extension.

Proof. The only axiom or schema of EL + Σ0
1-DNS0 whose negative interpreta-

tion is not provable in EL is the quantifier-free countable choice schema

QF-AC00 : ∀x∃yA(x, y)→ ∃α∀xA(x, α(x))

where A(x, y) may have additional free variables of both sorts but only bounded
numerical quantifiers. Its negative interpretation is intuitionistically equivalent
to ∀x¬¬∃yAg(x, y)→ ¬¬∃α∀xA

g
(x, α(x)), which follows easily from Σ0

1-DNS0

and QF-AC00 by intuitionisitic logic.

Definition 4. Two-sorted intuitionistic arithmetic IA1 is the subsystem
of Kleene’s B obtained by omitting the axiom schemas of countable choice and
bar induction. Intuitionistic recursive analysis IRA comes from IA1 by
adding the recursive comprehension axiom

∀ρ[∀x∃yρ(〈x, y〉) = 0→ ∃α∀xρ(〈x, α(x)〉) = 0]1

Remark 3. This special case is equivalent, over IA1, to QF-AC00. Vafeiadou
proved in [23] that IRA and EL are mathematically equivalent, in the sense of
having a common definitional extension. See [17] for a precise description of IA1

and [22] for her comparison of EL with IRA.

Proposition 3. Over EL and IRA, Σ0
1-DNS0 is interderivable with the case

∀ρ[∀x¬¬∃yρ(〈x, y〉) = 0→ ¬¬∀x∃yρ(〈x, y〉) = 0].

Proof. Each formula A(x, y) of the language of analysis with only bounded num-
ber quantifiers and no sequence quantifiers expresses a primitive recursive rela-
tion of its free variables, such that EL and IRA both prove

∃ρ∀x∀y[A(x, y)↔ ρ(〈x, y〉) = 0].

Corollary 1. (to Propositions 2, 3):

(a) (EL0)+g = EL0, where EL0 comes from EL by omitting QF-AC00.
(b) EL+g = EL + Σ0

1-DNS0.
(c) (IA1)+g = IA1.
(d) IRA+g = IRA + Σ0

1-DNS0

Proof. EL0 and IA1 prove the converse of QF-AC00, and so Σ0
1-DNS0 follows

from (QF-AC00)
g

in EL and IRA.

1 〈x, y〉 = 2x · 3y is Kleene’s code for the ordered pair of x and y; similarly for n-tuples.
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2.3 Stronger restricted versions of DNS0

The full strength of DNS0 is not needed to negatively interpret AC0. In con-
structive or intuitionistic arithmetic and analysis, if A(x) is a negative formula
(i.e. has no occurrences of ∃ or ∨) then ¬¬A(x)↔ A(x) is provable, so double
negation shift holds trivially for all negative formulas A(x).

Definition 5. In the language of arithmetic or analysis, DNS−00 denotes the
restriction of DNS to the case where x is a number variable and A(x) is of the
form ∃yA(x, y) where A(x, y) is negative. In the language of analysis, DNS−01
denotes the restriction of DNS to the case where x is a number variable and
A(x) is of the form ∃αA(x, α) where A(x, α) is negative. In the language of
HAω, DNS−0∞ includes all DNS−0σ for finite types σ.

These restricted double negation shift schemas characterize the minimum
classical extensions of theories with AC00, AC01, or the collection AC0∞ of all
AC0σ for finite types σ. In particular, AC01 is the strong countable choice axiom
schema of Kleene’s B:

AC01 : ∀x∃αA(x, α)→ ∃α∀xA(x, λy.α(〈x, y〉))

where x is free for α in A(x, α), and AC00 is like QF-AC00 but with no restriction
on A(x, y) except that the substitution of α(x) for y must be free.

Proposition 4. Each of HAω + AC0∞ + DNS−0∞, EL0 + AC00 + DNS−00,
IA1 + AC00 + DNS−00, EL0 + AC01 + DNS−01 and IA1 + AC01 + DNS−01
is its own minimum classical extension.

Proof. As for Propositions 1 and 2.

Corollary 2. (to Proposition 4):

(a) (HAω + AC0∞)+g = HAω + AC0∞ + DNS−0∞.
(b) (EL0 + AC0i)

+g = (EL + AC0i)
+g = EL0 + AC0i + DNS−0i for i = 0,1.

(c) (IA1 + AC0i)
+g = (IRA + AC0i)

+g = IA1 + AC0i + DNS−0i for i = 0,1.

Proof. As for Corollary 1.

Remark 4. Many syntactic refinements of these results are possible. For exam-
ple, Proposition 15 in [4] shows that (b) holds for Π0

1-AC00 (with the hypothesis
∀x∃y∀zρ(〈x, y, z〉) = 0) and Σ0

2-DNS0 (with hypothesis ∀x¬¬∃y∀zρ(〈x, y, z〉) = 0)
in place of AC00 and DNS−00, respectively. Observe that Σ0

1-DNS0 and Σ0
2-DNS0

are instances of DNS−00, but e.g. Σ0
3-DNS0 is not.

2.4 Weak comprehension principles

Over EL or IRA, a number-theoretic relation A(x) (perhaps with number
and sequence parameters) has a characteristic function for x only if it satisfies
∀x(A(x) ∨ ¬A(x)). The weak comprehension schema

¬¬ CF0 : ¬¬∃ζ∀x(ζ(x) = 0↔ A(x))
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asserts only that it is consistent to assume that A(x) has a characteristic function
for x. Here we consider two restricted versions of ¬¬CF0. The first one is2

¬¬ Π0
1-CF0 : ∀α¬¬∃ζ∀x(ζ(x) = 0↔ ∀yα(〈x, y〉) = 0).

By formula induction, IRA + ¬¬Π0
1-CF0 proves ¬¬∃ζ∀x(ζ(x) = 0↔ A(x)) for

all negative arithmetical formulas A(x), with universal number quantifiers and
free variables of both types allowed. The same holds with EL in place of IRA.

The second is ¬¬CF−0 , the restriction of ¬¬CF0 to negative formulas A(x).
Over IA1 or EL0, ¬¬CF−0 is equivalent to the negative translation of the schema

CFd : ∀x(A(x) ∨ ¬A(x))→ ∃α∀x[α(x) ≤ 1 & (α(x) = 0↔ A(x))].

Over IA1 or EL0 the conjunction of CFd and QF-AC00 is equivalent (cf.
[23]) to the countable comprehension (“unique choice”) schema AC00! which is
like AC00 but with hypothesis ∀x∃!yA(x, y), where in general ∃!yB(y) abbrevi-
ates ∃yB(y) & ∀y∀z(B(y) & B(z)→ y = z). Over IA1 or EL0, AC00 is stronger
than AC00! (which is stronger than QF-AC00), but the negative translations of
AC00 and AC00! are equivalent. Putting these facts together gives refinements
of Corollary 2(b),(c) (for i = 0), and additional characterizations.

Theorem 1. Let ACAr00 be the restriction of AC00 to arithmetical predicates
A(x, y), with number quantifiers and free variables of both types allowed. Then

(a) (IA1 + ACAr00 )+g = IA1 + ACAr00 + Σ0
1-DNS0 + ¬¬Π0

1-CF0.
(b) (IA1 + AC00)+g = IA1 + AC00 + Σ0

1-DNS0 + ¬¬CF−0 .
(c) (IA1 + AC00!)+g = (IRA + CFd)+g = IRA + CFd + Σ0

1-DNS0 + ¬¬CF−0 .

Each of these results remains true with EL0 in place of IA1, and EL in place
of IRA.

3 Bar induction, a weak continuity principle, and BD-N

As Iris Loeb [13] observes, constructive reverse mathematics currently lacks a
unifying methodology. According to Ishihara [9] its aim is “to classify various
theorems in intuitionistic, constructive recursive and classical mathematics by
logical principles, function existence axioms and their combinations” over a weak
constructive base built on intuitionistic logic. Resulting decomposition theorems
can help to extract and compare the classical content of constructive and semi-
constructive theories. Two examples, one involving bar induction and the other
involving a weak continuity principle, illustrate the method.

Brouwer’s bar theorem, although not accepted by Bishop, is of interest to
constructive mathematicians. The fan theorem FT, which follows from the bar
theorem but is conservative over Heyting arithmetic by [20], has the property
that the minimum classical extension of IRA + FT proves that intuitionistic
predicate logic is complete for its intended interpretation ([3], [14]).

2 Over EL or IRA, ¬¬Π0
1-CF0 entails the principle ¬¬Π0

1-LEM in [5], and similarly
for ¬¬Σ0

1-CF0 and ¬¬Σ0
1-LEM.



Minimum Classical Extensions of Constructive Theories 7

3.1 Three versions of bar induction

Kleene chose to axiomatize his neutral basic system B by IA1 + AC01 + BId,
where BId is “decidable bar induction:”

BId : ∀α∃xR(α(x)) & ∀w(R(w) ∨ ¬R(w)) & ∀w(R(w)→ A(w))

& ∀w(∀xA(w ∗ 〈x + 1〉)→ A(w))→ A(1).
Classical bar induction BI◦ simply drops the premise ∀w(R(w) ∨ ¬R(w)), and
monotone bar induction (which is provable in I but not in B) is

BImon : ∀α∃xR(α(x)) & ∀w(R(w)→ ∀uR(w ∗ u)) & ∀w(R(w)→ A(w))

& ∀w(∀xA(w ∗ 〈x + 1〉)→ A(w))→ A(1).
Here α(0) = 1 and α(x + 1) = 〈α(0) + 1, . . . , α(x) + 1〉. We let w, u vary over
Kleene’s “sequence numbers” (so w determines the length lh(w) of the sequence
w codes); w ∗ v codes the concatenation of the sequences coded by w and v,
〈x + 1〉 codes the sequence whose only term is x, and 1 codes the empty sequence.

Kleene proved ([12] p. 79) that IA1 + AC00 + BImon ` BId, so BImon lies
between BId and BI◦ in strength over IA1 + AC00.

Proposition 5. BId has the same classical content as BI◦ over IA1 or EL0.

Proof. The only difference between BId and BI◦ is a classically provable premise
∀w(R(w) ∨ ¬R(w)) whose negative interpretation is provable intuitionistically.

3.2 A double negation shift principle for functions

In the absence of countable choice, the double negation shift principle

DNS−1 : ∀α¬¬∃xR(α(x))→ ¬¬∀α∃xR(α(x)),

where R(w) is a negative formula of the language of analysis, is a sufficient
addition to prove the double negation translation of BId and BImon.3

Theorem 2. The minimum classical extensions of B and its subsystems with
AC01 replaced by AC00 or by QF-AC00 or omitted altogether are computed as
follows. Similar results hold with EL0 in place of IA1.

(a) B+g ≡ (IA1 + AC01 + BId)
+g

= B + (AC01)
g

= B + DNS−01.

(b) (IA1 + AC00 + BId)
+g

= IA1 + AC00 + BId + DNS−00.

(c) (IRA + BId)
+g

= IRA + BId + (BI◦)
g
+ Σ0

1-DNS0 ⊆ IRA + BId + DNS−1 .

(d) (IA1 + BId)
+g

= IA1 + BId + (BI◦)
g⊆ IA1 + BId + DNS−1 .

Proof. IA1 + AC00 + (¬¬A→ A) ` BI◦ (∗26.1◦ on p. 53 of [12]) and therefore
(IA1 + AC00)

g` (BI◦)
g
. Proposition 5, Corollary 2(b),(c), Corollary 1(c),(d) and

the (easy) fact that IA1 + DNS−1 ` Σ0
1-DNS0 complete the argument.

3 Only the special case Σ0
1-DNS1 is needed for the version of bar induction labeled

x26.3b in [12]; cf. [14], [15].
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3.3 Applying a typical constructive decomposition theorem

Kleene proved (∗27.23 on p. 87 of [12]) that IRA + BI◦ entails the “weak limited
principle of omniscience” WLPO, which is inconsistent with I. In [4] Fujiwara
proved that BI◦ is equivalent over EL0 to BImon + CD, where CD is the constant
domain axiom schema ∀x(A(x) ∨ B)→ (∀xA(x) ∨ B) (with x not free in B).

Proposition 6. BImon has the same classical content as BI◦ over IA1 or EL0,
so (IA1 + BId)

g
= (IA1 + BImon)

g
= IA1 + (BI◦)

g
and similarly with EL0 in

place of IA1.

Proof. CD is a classical logical schema whose negative interpretation is provable
by intuitionistic logic. Use Fujiwara’s decomposition theorem and Proposition 5.

Remark 5. It follows that the neutral subsystem B of Kleene and Vesley’s intu-
itionistic analysis I has the same classical content as the variant B′ with BImon

replacing BId, and so (B′)
+g ≡ (IA1 + AC01 + BImon)

+g
= B′ + DNS−01.

3.4 Applying an atypical constructive decomposition theorem

In [10], over a constructive base theory EL′ ≡ EL + Π0
1-AC00, Ishihara and

Schuster decompose a restricted version
WC-N′ : ∀α∃n∀kσ(〈α(k),n〉) = 0

& ∀w∀m∀n(σ(〈w,m〉) = 0 & m ≤ n→ σ(〈w,n〉) = 0)
→ ∀α∃n∃m∀β ∈ α(m)∀kσ(〈β(k),n〉) = 0

of weak continuity into a classically correct mathematical principle
BD-N : ∀α∃m∀n ≥ mβ(α(n)) < n→ ∃m∀nβ(n) ≤ m

and a classically false logical principle ¬∀α(∃xα(x) 6= 0 ∨ ∀xα(x) = 0) negating
the limited principle of omniscience LPO.

Proposition 7. The minimum classical extensions of EL′ and EL′ + BD-N
are computed as follows, and similarly for IRA + Π0

1-AC00 (≡ IA1 + Π0
1-AC00)

in place of EL′.

(a) EL′+g ≡ (EL0 + Π0
1-AC00)+g = EL′ + Σ0

2-DNS0.
(b) (EL′ + BD-N)+g = EL′ + BD-N + Σ0

2-DNS0.

Proof. (a) holds by Corollary 1(a) and Remark 4. EL′ + BD-N is consistent
with classical logic and satisfies (b) because EL+g proves the contrapositive of
(BD-N)g, which is equivalent to (BD-N)g over EL.

Remark 6. IA1 + Π0
1-AC00 + WC-N′ is a subsystem of Kleene’s I which is

consistent (by [12]) but is not consistent with classical logic. The next theorems,
discovered by the second author, essentially trivialize the notion of minimum
classical extension for intuitionistic systems inconsistent with classical logic.

Theorem 3. (EL′ + WC-N′)
+g

= EL′ + WC-N′ + (Γ◦)
g

where Γ◦ is the set of
all classically true sentences in the language of EL′. A corresponding result holds
with IA1 + Π0

1-AC00 in place of EL′.
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Proof. EL′ + WC-N′ ` ¬LPO by Ishihara and Schuster’s decomposition theo-
rem, therefore EL′ + WC-N′ ` (¬LPO ∨ E) for every formula E. If E ∈ Γ0 then
(¬LPO ∨ E) ∈ Γ◦, so (¬LPO ∨ E) ∈ cls(EL′ + WC-N′). But (¬LPO ∨ E)

g
is just

¬(¬¬LPO
g
& ¬Eg), which is equivalent by intuitionistic logic to ¬¬Eg and hence

to Eg. So (Γ◦)
g⊆ (cls(EL′ + WC-N′))

g
, and the reverse inclusion is immediate

from the definitions.

Theorem 4. I+g= I + (Γ◦)
g

where now Γ◦ is the set of all classically true
sentences in the language of I.

Proof. (cls(I))g = (Γ◦)
g

by an argument similar to the proof of Theorem 3, but
with WLPO (≡ ∀α(∀xα(x) = 0 ∨ ¬∀xα(x) = 0)) in place of LPO, using the fact
that I ` ¬WLPO by ∗27.17 on p. 84 of [12]. Thus I+g = I + (Γ◦)

g
.

Remark 7. By Lemma 8.4a in [12] every classically true negative sentence of
the language of analysis is realizable by a primitive recursive function, so (by
Theorem 9.3 of [12]) Kleene’s function-realizability guarantees the consistency
of (EL′ + WC-N′)

+g
and of S+g for every subsystem S of I.

4 Conclusion

We have suggested a way to define the minimum classical extension S+g of a
mathematical theory S based on intuitionistic logic, with examples from arith-
metic, analysis and the arithmetic of finite types. If S + (¬¬A→ A) is consistent,
then classical and constructive mathematics coexist in S+g exactly as far as the
mathematical axioms of S permit.

For example, if S is a classically correct subsystem of Kleene’s intuitionistic
analysis I ≡ B + CC11, then by viewing the choice sequence variables α, β, . . .
alternatively as variables over classical one-place number-theoretic functions,
restricting the language and logic by omitting the symbols ∨ and ∃ with their
axioms and rules, and replacing each mathematical axiom of S by its negative
translation, one obtains a faithful copy of S◦ ≡ S + (¬¬A→ A) within the
extended intuitionistic system S+g. In particular, B+g includes the negative
translation of a system C ≡ B◦ of classical analysis with countable choice.

On the other hand, if S refutes a classical logical principle, then S+g includes
the negative translations of all classically true sentences in the language of S.
In particular, I+g contains a negative version of true classical analysis.

We conclude that only constructive and semi-constructive systems consistent
with classical logic have interesting minimum classical extensions, and typical
constructive decomposition theorems assist in comparing their classical content.
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