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What is the point of reverse mathematics?

S. Simpson: The goal of classical reverse mathematics is to
determine which set existence axioms are needed to prove a
particular theorem of “ordinary” (classical) mathematics [CLASS].

D. Bridges: Constructive reverse mathematics asks

1. Which constructive principles are needed to prove particular
theorems of Bishop’s constructive mathematics [BISH]?

2. Which nonconstructive principles must be added to
constructive mathematics in order to prove particular classical
theorems?

W. Veldman: Intuitionistic reverse mathematics asks which
intuitionistic axioms (countable choice AC, continuous choice CC,
bar induction BI, Brouwer’s fan theorem FT) are needed to prove a
particular theorem of intuitionistic analysis [INT]. >



Russian reverse mathematics may ask which of the following
axioms are needed to prove a particular theorem of [RUSS]:

I Church’s Thesis CT0: “Every constructive function is
recursive”

I Markov’s Principle MP0: “If a recursive algorithm cannot fail
to converge, then it converges”

For analysis, BISH ⊆ CLASS ∩ INT ∩ RUSS but no two of
CLASS, INT and RUSS are compatible.

Reverse mathematics must be formalizable. Reverse constructive
analysis needs intuitionistic logic and precise mathematical axioms.

Two highly developed formal systems for intuitionistic analysis
(Kleene and Vesley’s FIM, Troelstra’s EL + BI + CC) have been
in use for decades, while BISH was developing informally. We seek
a suitable formal framework for reverse constructive analysis.

>



What are the objects of constructive mathematics?

E. Bishop: A set is defined by describing exactly what must be
done in order to construct an element of the set and what must be
done in order to show that two elements are equal.

It is not required that the equality relation be decidable, or that
the set be enumerable.

Mathematical Folklore: A function ϕ is a rule or correspondence
which assigns to each element x of a set S a unique element ϕ(s)
of a set T . (Notation: ϕ: S → T .) The collection of all such ϕ is
denoted by T S , and considered to be a set.

Constructive Refinement: A function ϕ is a rule or correspondence
which produces, for each element x (the argument) of a set S , a
unique element ϕ(x) (the value) in a set T .

An extensional function produces equal values when applied to
equal arguments. T S denotes the set of all extensional functions ϕ
from S to T , with ϕ = ψ ↔ ∀s ∈ S (ϕ(s) = ψ(s)).
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The natural numbers 0, 1, 2, . . . constitute a set N with a
decidable equality relation:

∀m, n ∈ N (m = n ∨ ¬m = n).

A natural number n can represent the set of its predecessors, so
x ∈ n means x < n.

The Cartesian product N×N is the set of all pairs (m, n) of
natural numbers, so if (m, n) is coded by a natural number such as
2m · 3n then ϕ : N×N → N can be coded by an element of NN.

Constructive analysis focuses on NN (Baire space), {0, 1}N

(Cantor space 2N) and R (the constructive real numbers), each
with a well-understood topology.

Working Hypothesis: The goal of reverse constructive analysis is
to determine which function existence axioms are needed to prove
a particular mathematical theorem about N, NN, 2N, R, 2R, NR,
RR, RN, . . . using intuitionistic logic.



Basic Constructive Function Existence Assumptions

Assumption (PR): Primitive recursive functions with arguments
from N ∪NN and values in N are constructive in their parameters.

Assumption (CF): Each detachable subset D of a set S has a
characteristic function:

∀s ∈ S(D(s) ∨ ¬D(s)) → ∃χ ∈ {0, 1}S∀s ∈ S(χ(s) = 0 ↔ D(s)).

Assumption (AC!): If S and T are sets and A ⊆ S × T is of
functional character, then A determines a function from S to T :

∀s ∈ S ∃!t ∈ T A(s, t) → ∃ϕ ∈ T S ∀s ∈ S A(s, ϕ(s)),

where ∃!t ∈ T A(s, t) abbreviates
∃t ∈ T A(s, t) & ∀x , t ∈ T (A(s, x) & A(s, t) → x = t).

For (CF) or (AC!), the χ or ϕ is unique, and is constructive in the
parameters relative to a justification of the hypothesis.
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Choice of Language, Logic and Minimal Axioms

Any well-founded reverse mathematics demands agreement on the
language and logic to be used, and on a basic axiomatic theory.
Two general principles expressible in the language are considered
equivalent for this kind of mathematics, if each can be derived
from (instances of) the other using the logic and basic axioms.

It is possible to formalize RUSS in the language of arithmetic, and
BISH or INT in a two-sorted language – but only at the cost of
arbitrary assumptions about the representation of functions with
arguments in NN. The natural statement of the Uniform
Continuity Theorem needs a variable over functions from {0, 1}N

to N, but constructive analysis doesn’t need all of HAω or CZF.

A three-sorted language simplifies reverse constructive
mathematics, relativization and comparison with CLASS.
The logic and basic axioms will prove the existence of
continuous (in fact recursive) functions only. >



The logic is three-sorted intuitionistic logic with number-theoretic
equality. Equality between functions is defined extensionally:
α = β abbreviates ∀x(α(x) = β(x)) and F = G abbreviates
∀α(F (α) = G (α)).

Terms s,t,. . . (of type 0), and functors u,v,. . . of type 1 and
U,V,. . . of type 2 are defined from the variables and primitive
recursive function constants using application and Church’s λ.
If U and v are functors and s is a term, then for example

I U[v] + v(s) is a term,

I λx .(U[v] + v(x)) is a functor of type 1, and

I λα.(U[α] + α(s)) is a functor of type 2.

If t is a term and x a number variable, we write t(x) for t, and t(s)
for the result of substituting s for every free occurrence of x in t.
There are two λ-conversion axiom schemas:

I (λx .t(x))(s) = t(s), and

I (λα.U[α])[v] = U[v].



Restricted to the two-sorted language, the minimal mathematical
axioms should be those of EL or the minimal theory M1 in which
Kleene formalized recursion, both essentially based on two-sorted
intuitionistic (Heyting) arithmetic HA1 with the mathematical
induction schema

A(0) ∧ ∀x(A(x) → A(x + 1)) → A(x)

for any formula A(x). Both have axioms for primitive recursion and
λ-reduction, but there is one important difference:

I EL assumes quantifier-free countable choice qf-AC00:

∀x∃yA(x , y) → ∃α∀xA(x , α(x))

where A(x , y) is quantifier-free and has no free α.

I M1 assumes countable function comprehension AC00!:

∀x∃!yA(x , y) → ∃α∀xA(x , α(x))

for every formula A(x , y) in which α and x are free for y .
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Proposition 1. qf-AC00! can replace qf-AC00 in EL, since

(a) HA1 proves that quantifier-free formulas are decidable.

(b) HA1 proves, for every formula B(y):

∀y(B(y) ∨ ¬B(y)) & ∃yB(y) → ∃!y(B(y) & ∀z < y¬B(z)).

Thus EL really doesn’t assume any kind of countable choice.

Proposition 2.

(a) HA1 proves ∃!yB(y) → ∀y(B(y) ∨ ¬B(y)), but

(b) HA1 does not prove ∃!αB(α) → ∀α(B(α) ∨ ¬B(α))

or even ¬¬(∃!αB(α) → ∀α(B(α) ∨ ¬B(α))).

Proposition 3. M1 proves

AC01!: ∀x∃!αA(x , α) → ∃β∀xA(x , λy .β(x , y)),

where A(x , α) is any formula in which β and x are free for α, and
β(x , y) abbreviates β(2x · 3y ). >



Proposition 4. M1 proves

CF0: ∀x(A(x) ∨ ¬A(x)) → ∃χ∀x(χ(x) = 0 ↔ A(x)),

where A(x) is any formula.

Theorem 5. (gv)

(a) EL does not prove CF0. That is, EL cannot prove that every
detachable subset of N has a characteristic function.

(b) EL + CF0 proves AC00!.

If EL+ is the definitional extension of EL obtained by adding the
symbols and defining axioms for the finitely many constants of M1,
then

(c) EL+ + CF0 is a conservative extension of M1.

(d) Every theorem of EL+ + CF0 is equivalent in EL+ + CF0 to
a theorem of M1, by a uniform translation.

Observe that the theory M−
1 obtained from M1 by replacing AC00!

by qf-AC00! (or qf-AC00) has essentially the same strength as EL.



Neither EL nor M1 proves the countable axiom of choice AC00

(like qf-AC00 but without the restriction to quantifier-free A(x , y)),
as Scott Weinstein essentially showed in his PhD thesis.

The neutral basic theory B of Kleene and Vesley’s Foundations of
Intuitionistic Mathematics includes the countable choice schema

AC01: ∀x∃αA(x , α) → ∃β∀xA(x , (λy .β(x , y)).

instead of countable function comprehension AC00!
B obviously proves AC00 (and AC00!), so M1 ( B.

Although Brouwer and Bishop accepted countable choice, some
constructivists (e.g. Fred Richman) doubt it. Reverse constructive
analysis treats countable choice as an optional general function
existence principle. Even if we believe countable choice, there is no
harm in noting where it is needed and where it is not.



In addition to AC00!, from which AC01! is derivable, our
three-sorted minimal theory M2 has a type-2 function
comprehension axiom schema

AC10!: ∀α∃!mA(α,m) → ∃F∀αA(α,F (α)).

which guarantees the existence of all primitive recursive functions
of type 2 and provides a characteristic function for each detachable
subset of NN. That is, M2 proves

CF1: ∀α(A(α) ∨ ¬A(α)) → ∃H∀α(H(α) = 0 ↔ A(α)).

Proposition 6. (gv) Let M−
2 be the theory resulting from M2 by

replacing AC10! by qf-AC10 (or equivalently by qf-AC10!). Then

(a) M2 = M−
2 + CF1.

(b) HA2 + qf-AC10 + CF1 entails AC10!, where HA2 has symbols
and axioms for all primitive recursive functions of type 2, with
extensional equality.



Additional Constructive Axioms: The Fan Theorem

N∗ is the tree of all finite sequences of natural numbers, with the
empty sequence as root, and the predecessor relation determined
by proper initial segments. A spread is a rooted subtree of N∗ in
which each node has at least one immediate successor; a fan is a
spread in which only finite branching is allowed. Nodes are coded
by natural numbers; a spread is coded by the characteristic
function σ of the (detachable) set of its node codes.

Finite sequences of natural numbers are coded by sequence
numbers, using primitive recursive functions lh, 〈. . .〉, 〈.〉n, ∗:

I lh(〈 〉) = 0 and 〈〈 〉〉0 = 0.

I If Seq(u) and lh(u) > 0 then u = 〈〈u〉0, . . . , 〈u〉lh(u)−1〉.
I If Seq(u) and Seq(v) then u ∗ v codes the concatenation of

the sequences coded by u and v , in that order.

I If α ∈ NN then α(0) = 〈 〉 and α(n + 1) = 〈α(0), . . . , α(n)〉.



For ease of reading, we use u, v ,w as metavariables ranging over
the set Seq of codes for finite sequences. Let u ∈ 2∗ abbreviate
∀n < lh(u) 〈u〉n ≤ 1, and α ∈ 2N abbreviate ∀xα(x) ≤ 1.

INT accepts the Fan Theorem (FT) and the principle of monotone
Bar Induction (BI). Restricted versions of both are of interest for
reverse constructive analysis.

The full fan theorem for the binary fan {0, 1}N is the schema

FT: ∀α ∈ 2N∃xA(α(x)) → ∃y∀α ∈ 2N∃x ≤ yA(α(x)).

Adding the hypothesis
∀w[w ∈ 2∗ & A(w) → A(w ∗ 〈0〉) & A(w ∗ 〈1〉)]

to FT gives a schema FTmon which is constructively equivalent to
FT, because the conclusion of the fan theorem is monotone and
HA1 proves

∃xA(α(x)) ↔ ∃y∃u∃v(α(y) = u ∗ v & A(u)).



The decidable fan theorem FTd for the binary fan is the schema

∀α ∈ 2N∃x A(α(x)) & ∀w ∈ 2∗(A(w) ∨ ¬A(w))
→ ∃y∀α ∈ 2N∃x ≤ y A(α(x)).

Proposition 7. Over HA1, EL or M−
1 , FTd is interderivable with

each of the schemas

(a) FT!:

∀α ∈ 2N∃!x A(α(x)) → ∃y∀α ∈ 2N∃x ≤ y A(α(x))

(b) and FTµ:

∀α ∈ 2N∃µx A(α(x)) → ∃µy∀α ∈ 2N∃x ≤ y A(α(x))

(where ∃µxB(x) abbreviates ∃x(B(x) & ∀y < x¬B(y)))

and entails the single axiom FT1:

∀α ∈ 2N∃x ρ(α(x)) = 0 → ∃y∀α ∈ 2N∃x ≤ y ρ(α(x)) = 0.

In M1 or HA1 + CF0, FT1 is interderivable with FTd .



Recently, Bishop constructivists have explored the reverse
mathematics of two restricted versions, FTc and FTΠ0

1
, of the

monotone fan theorem. They have derived FTd from FTc , and
FTc from FTΠ0

1
, and have asked which of these consequence

relations are strict.

Using CF0 we can state each of their new versions efficiently as a
single axiom with a free sequence variable. Thus FTc becomes

∀α ∈ 2N∃y∀u ∈ 2∗ρ(α(y) ∗ u)) = 0

→ ∃y∀α ∈ 2N∀zρ(α(y + z)) = 0.

In the presence of CF0, FTΠ0
1

can be stated

∀w ∈ 2∗∀m(ρ(w ,m) = 0 → ρ(w ∗〈0〉,m) = 0 & ρ(w ∗〈1〉,m) = 0)

& ∀α ∈ 2N∃y∀n ρ(α(y), n) = 0
→ ∃y∀α ∈ 2N∀nρ(α(y), n) = 0.



The Uniform Continuity Theorem for functions from 2N into N is
naturally stated in the three-sorted language as UCT(N) :

∀F
[
∀α ∈ 2N∃y∀β ∈ 2N(β(y) = α(y) → F (β) = F (α))

→ ∃y(∀α ∈ 2N∀β ∈ 2N(β(y) = α(y) → F (β) = F (α)))
]
.

The definable version in the two-sorted language is UCTdef (N):

∀α ∈ 2N(∃!xA(α, x)

& ∃y∀β ∈ 2N(β(y) = α(y) → ∀x(A(β, x) ↔ A(α, x))))

→ ∃y∀α ∈ 2N∀β ∈ 2N(β(y) = α(y) → ∀x(A(β, x) ↔ A(α, x))).

Proposition 8. M1 + UCTdef (N) proves FTd , and M2 + UCT(N)
proves FTd in the three-sorted language.

J. Berger has shown that FTc and UCT(N) are interderivable,
using only the resources of M1.



Additional Constructive Axioms: The Bar Theorem

BI1 is “bar induction,” a version of Brouwer’s Bar Theorem,
enabling backward induction on the universal spread:

∀α∃xρ(α(x)) = 0 & ∀w [ρ(w) = 0 → A(w)]

& ∀w [∀sA(w ∗ 〈s〉) → A(w)] → A(〈 〉).

The decidable bar induction schema BId is

∀α∃xR(α(x)) & ∀w [R(w) ∨ ¬R(w)] & ∀w [R(w) → A(w)]

& ∀w [∀sA(w ∗ 〈s〉) → A(w)] → A(〈 〉).

Proposition 9.

(a) Over HA1, EL or M−
1 , BId entails BI1.

(b) In M1 or HA1 + CF0, BI1 entails BId .



Monotone bar induction BImon is the schema

∀α∃xR(α(x)) & ∀w [R(w) → A(w) & ∀nR(w ∗ 〈n〉)]
& ∀w [∀sA(w ∗ 〈s〉) → A(w)] → A(〈 〉).

INT accepts BImon, which follows from BId or BI1 using strong
continuous choice CC10. Full bar induction BI contradicts CC10.

Some years ago Coquand showed that BId entails the principle of
Open Induction OI1 on Cantor space, and asked if the converse
holds. Veldman recently explored the relationship between OI1 and
FTd . Determining and separating the fundamental theories for
reverse constructive mathematics is an adventure in progress.

This is a corrected version of the talk, with G. Vafeiadou’s results
unchanged.


