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Four kinds of “reverse mathematics”

From “Subsystems of Second-Order Arithmetic” (S. Simpson):
The goal of reverse mathematics is to determine which set
existence axioms are needed to prove a particular theorem of
“ordinary” (classical) mathematics [CLASS].

From a recent lecture by D. Bridges:
Constructive reverse mathematics has two aims:

1. Determining which constructive principles are needed to prove
particular theorems of constructive mathematics in the style of
Bishop [BISH].

2. Determining which nonconstructive principles need to be
added to constructive mathematics in order to prove particular
classical theorems.
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Russian reverse mathematics, started by Markov and his
followers more than fifty years ago, is part of “Russian recursive
mathematics” [RUSS]. Based on intuitionistic logic, it accepts
Church’s Thesis CT0 (“Every constructive function is recursive”)
and Markov’s Principle MP0 (“If a recursive algorithm cannot fail
to converge, then it converges”).

Wim Veldman, who does intuitionistic mathematics [INT] in the
style of Brouwer, says intuitionistic reverse mathematics should
determine which intuitionistic axioms (countable choice AC,
continuous choice CC, bar induction BI, Brouwer’s fan theorem
FT) are needed to prove the theorems of intuitionistic analysis.

For analysis, BISH ⊆ CLASS ∩ INT ∩ RUSS so they overlap.
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What are the essential parts of a reverse mathematics program?

I Decide on the basic objects of the mathematics to be studied.

I Decide on a representation of those objects.

I Decide on the logic to be studied (and the logic to be used).

I Fix a minimal or basic and a (possibly temporary) maximal
formal or informal axiomatic theory to study.

I Identify interesting intermediate theories and use these to
classify (over the basic theory) results which hold in the
maximal theory.
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Choosing and representing the basic objects

I CLASS, BISH, RUSS and INT all study
I natural numbers
I rational numbers (which can be coded by natural numbers)

I CLASS studies sets of numbers.

I BISH studies (constructive) real numbers presented as regular
sequences of rationals, and constructive functions. A sequence
{xn} of rationals is regular if

∀n∀m[ |xn − xm| ≤ n−1 + m−1 ] .

I RUSS studies (recursive) real numbers presented as recursively
Cauchy sequences of rationals, and recursive operators.
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INT studies

I infinitely proceeding sequences or choice sequences
n0, n1, n2, . . . of numbers

I real numbers presented as real-number generators, either
I converging sequences of (integer codes of) overlapping closed

intervals with rational endpoints (Brouwer, Veldman) or
I Cauchy sequences of rationals (Heyting, Kleene-Vesley)

I continuous functions on spreads or structured sets, such as
I the binary fan 2ω (Cantor space)
I the universal spread ωω (Baire space)
I the spread of canonical real number generators, infinitely

proceeding sequences of rationals {xn} satisfying

∀n |xn − xn+1| ≤ 2−(n+1).
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Choosing the Logic

CLASS: classical second-order logic with extensional set equality.

BISH and INT: intuitionistic two-sorted logic with decidable
equality for numbers and extensional equality (which is not
decidable) for number-theoretic functions:

(α = β) ≡ ∀x [α(x) = β(x)].

In the intended interpretation α, β range over all constructive
sequences (BISH) or all choice sequences (INT).

RUSS: just intuitionistic first-order logic with decidable equality for
numbers, since gödel numbers can be used to represent the
(recursive) functions. (Because {e}(m) ' n is only r.e., RUSS
needs extra care in dealing with number-theoretic functions.)
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Why are functions preferred to sets in constructive mathematics?

I Only definable sets (species) play a significant role in CM.

I Set membership need not be constructively decidable, e.g.

x ∈ A ⇔ [x = 0 ∨ ∀y¬T (x , x , y)]

defines a property of numbers which is satisfiable (by 0) but
not recursively decidable. In contrast,

∀m∀n[α(m) = n ∨ ¬(α(m) = n)]

holds in BISH and INT, as in CLASS.

I Constructive Zermelo-Fraenkel set theory CZF, which BISH
accepts, uses AB instead of P(A).

>



Choosing Basic and Maximal Axioms for Analysis

CLASS works within second order arithmetic Z2:

I Basic arithmetic of natural numbers.

I Induction axiom
∀X [0 ∈ X ∧ ∀n(n ∈ X → n + 1 ∈ X ) → ∀n(n ∈ X )].

I Comprehension schema ∃X∀n[n ∈ X ↔ ϕ(n)] where ϕ(n)
may be any formula without X free.

The minimal theory for CLASS is RCA0:

I Restrict induction to Σ0
1 sets (with parameters).

I Restrict ϕ(n) to have only bounded quantifiers. (This gives
the recursive comprehension schema ∆0

1-CA.)

>



For BISH, “all constructive mathematics” lies within the common
part of CLASS, RUSS and INT, possibly extended to Aczel’s CZF.

Troelstra and van Dalen provide a minimal theory EL for BISH:

I Two-sorted intuitionistic (Heyting) arithmetic with the
induction schema

A(0) ∧ ∀s(A(x) → A(x + 1)) → A(x)

where A(x) may be any formula.

I λ-conversion: (λx .t)(s) = t[x/s].

I Primitive recursion.

I Quantifier-free countable choice QF-AC00:

∀x∃yA(x , y) → ∃α∀xA(x , α(x))

where A(x , y) is quantifier-free and has no free α.
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For RUSS the minimal theory is intuitionistic first-order arithmetic
HA. Troelstra proposes HA + MP0 + ECT0 as a maximal theory,
where

I MP0 is Markov’s Principle

∀x [¬¬∃yR(x , y) → ∃yR(x , y)]

where R(x , y) is primitive recursive and hence decidable.

I ECT0 is an extended version of the classically false form CT0

of Church’s Thesis used by RUSS. It says that every partial
number-theoretic function whose domain can be defined from
Σ0

1 predicates without using ∨ or ∃ can be extended to a
partial recursive function. >



The first minimal theory proposed for INT was the two-sorted
theory M Kleene used in [1969] to formalize the theory of partial
recursive functionals and his function-realizability interpretation for
intuitionistic analysis. M consists of

I Two-sorted intuitionistic arithmetic, formalized using finitely
many primitive recursive function constants and Church’s λ,
with unrestricted induction schema.

I Countable comprehension for functions (“non-choice”) AC00!:

∀x∃!yA(x , y) → ∃α∀xA(x , α(x)),

from which follows also by intuitionistic logic (with the
decidability of first-order equality) the schema AC01!:

∀x∃!αA(x , α) → ∃β∀xA(x , (β)x)

where (β)x is λyβ(〈x , y〉) (the xth section of β). The only
restrictions are the obvious ones on the variables.
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The maximal theory for INT is Kleene and Vesley’s FIM, which
can be axiomatized as M + AC01 + BI1 + CC11 where

I AC01 is countable choice

∀x∃αA(x , α) → ∃β∀xA(x , (β)x),

from which AC00! is derivable.

I BI1 is “bar induction,” a version of Brouwer’s Bar Theorem,
enabling backward induction on the universal spread:

∀α∃xρ(α(x)) = 0 ∧ ∀w [ρ(w) = 0 → A(w)]

∧ ∀w [∀sA(w ∗ 〈s〉) → A(w)] → A(〈 〉).

(Notation: ∗ concatenates codes for finite sequences, α(x) is
the code for α(0), . . . , α(x − 1), and so α(0) = 〈 〉 codes the
empty sequence.)
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I CC11 is Brouwer’s Principle of Continuous Choice, abbreviated

∀α∃βA(α, β) → ∃σ∀α[∃β {σ}[α] ' β

∧ ∀β( {σ}[α] ' β → A(α, β) )].

Here σ codes a continuous functional with a modulus of
continuity for it. Precisely, {σ}[α](x) ' y abbreviates

σ(〈x〉 ∗ α(µz .σ(〈x〉 ∗ α(z)) > 0)) = y + 1.

There is no restriction on the logical complexity of any of the
formulas A(x , y), A(w), A(α, β), which may contain free number
and/or function variables.
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Intermediate theories and mathematical equivalents

CLASS works mostly with the theories

RCA0 ( WKL0 ( ACA0 ( ATR0 ( Π1
1 − CA.

Simpson’s “Subsystems of Second Order Arithmetic” [1999] and
“Reverse Mathematics 2001” (reviewed by U. Berger in the March
2007 BSL) give many details.

Weak König’s Lemma WKL0 (“Every infinite subtree of the binary
tree has an infinite branch”) is equivalent over RCA0 to

I the Intermediate Value Theorem on [0,1]

I the Heine-Borel Theorem on [0,1]n

I Brouwer’s fixed point theorem for uniformly continuous
operators on [0,1]n.
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ACA0 (arithmetical comprehension plus full second-order
induction) is equivalent over RCA0 to

I Every bounded sequence of real numbers has a least upper
bound.

I the Bolzano-Weierstrass Theorem: Every bounded sequence
of real numbers has a convergent subsequence.

I König’s Lemma: Every infinite, finitely branching tree has an
infinite path.
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The main aim of reverse mathematics in BISH seems to be to
classify, over EL or over EL + AC00, the nonconstructive theorems
of classical mathematics. Bridges and Richman’s “Varieties of
Constructive Mathematics” [1987] studies e.g.

I Π0
1-LEM:

∀n(α(n) = 0 ∨ α(n) = 1) → ∀nα(n) = 0 ∨ ¬∀nα(n) = 0.

I LPO (“Limited Principle of Omniscience”):

∀n(α(n) = 0 ∨ α(n) = 1) → ∀nα(n) = 0 ∨ ∃nα(n) = 1.

I LLPO (“Lesser LPO”): Every binary sequence α with at most
one 1 has the property that ∀xα(2x) = 0 ∨ ∀xα(2x + 1) = 0.

Each is in fact a function existence axiom; e.g. LPO asserts that
the Σ0

1 predicate ∃nα(n) 6= 0 has a characteristic function.

Each is refutable in INT, by continuity.
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H. Ishihara, who initiated informal reverse mathematics in BISH,
has introduced and studied other axioms including Weak Markov’s
Principle” WMP (cf. “Techniques of Constructive Analysis” [2006]
by Bridges and Vita), and a boundedness principle BD-N:

∀α[∀nA(α(n)) → ∃m∀n[α(m + n) < m + n]]

→ ∃m∀n[A(n) → n < m]

which is equivalent over EL + AC00 to

I a form of the Banach Inverse Mapping Theorem

I Every sequentially continuous function from a separable
metric space to a metric space is pointwise continuous.
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The constructive analogue of WKL0 is Brouwer’s Fan Theorem FT
(“If a subtree of the binary tree has only finite branches, then there
is a finite bound to the lengths of the branches”) to which it is
classically equivalent. FT holds in INT but contradicts RUSS, so is
independent over BISH.
Over EL + AC00, FT is equivalent to

I WKL0!: Each infinite subtree T of the binary fan with the
property

∀α∀β[∃n¬(α(n) = β(n)) → ∃n[¬T (α(n)) ∨ ¬T (β(n))]]

has an infinite path. (J. Berger and H. Ishihara [2005])

I Dini’s Theorem for compact (complete and totally bounded)
metric spaces. (J. Berger and P. Schuster [2006])
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RUSS considers intermediate theories obtained by adding to HA
one or more of MP0, CT0, ECT0.

Beeson [1975] showed that the Kreisel-Lacombe-Shoenfield and
Myhill-Shepherdson Theorems are independent over HA + ECT0

but provable in HA + MP0 + ECT0. He found a version KLS∗ of
KLS which is equivalent to MP0 over HA.

Number-realizability (Kleene [1945], D. Nelson [1947]) establishes
the consistency of HA + MP0 + ECT0.

Troelstra [1973] proved that if T is HA or HA + MP0 then ECT0

is equivalent over T to “number-realizability = truth.”
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INT considers three kinds of principles over M:

I Axioms of countable choice AC00, AC01 and dependent choice
DC00, DC11.

I Principles of fan induction (or “Brouwer’s Fan Theorem” FT)
and bar induction BI, in several versions.

I Continuity principles: continuous comprehension CC10!, weak
continuity WC10 and WC11, continuous choice CC10 and
CC11, and Troelstra’s ‘generalized continuity’ principles GC10

and GC11, all conflicting with CLASS.

All but DC00, DC11, GC10 and GC11 are theorems of FIM. Most
relative independence questions have been solved. The resulting
lattice of theories forms a framework for intuitionistic reverse
mathematics.
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Over M (or EL + AC00) with intuitionistic logic, FT entails the
Heine-Borel Theorem for [0, 1] and is equivalent to each of the
following:

I uniform continuity of continuous functions on a compact
metric space,

I Riemann integrability of continuous real-valued functions on
[0, 1],

I boundedness of continuous real-valued functions on [0, 1].

For detailed proofs see e.g. I. Loeb [2005].

FT does not entail the usual classical form of the
Bolzano-Weierstrass or Intermediate Value Theorem.

>



Some variants of INT accept at least the weak form KS−

∃α[(∃xα(x) 6= 0 → A) ∧ (∀xα(x) = 0 → ¬A)]

(with α not free in A) of “Kripke’s Schema,” which was inspired
by Brouwer’s late philosophy but conflicts with CC11 (Myhill).

A few intuitionists see nothing wrong with Markov’s Principle
MP0, or even with the form MP1:

∀α[¬¬∃xα(x) = 0 → ∃xα(x) = 0],

because `M ∀x(α(x) = 0 ∨ ¬α(x) = 0). A constructive theory
can’t have both, since M + MP1 + KS− = M + (A ∨ ¬A).

MP1 is consistent with FIM + DC11 + GC.
>



Questions for constructive reverse mathematics

Beeson [1975] identified two fundamental questions in the
foundations of constructive mathematics:

1. Are all extensional functions continuous?

2. What general principles for defining sets (or species) are
constructively justifiable?

He found strong evidence for their independence over HA (and
HAS, the intuitionistic arithmetic of species).
Reconsidering Simpson’s question, we may ask:

3. What general principles for asserting the existence of
(extensional) functions are constructively justifiable?

4. Which function existence axioms are needed to prove classical
theorems consistent with FIM?
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Some things we know about arithmetic

HA and PA prove the same Π0
2 sentences by Markov’s Rule:

If `HA ∀x(R(x) ∨ ¬R(x)) ∧ ¬¬∃xR(x) then `HA ∃xR(x).

So HA and PA have the same provably recursive functions, in the
strong sense given by the

Church-Kleene Rule for arithmetic:

If `HA ∀x∃yA(x , y) where ∀x∃yA(x , y) is closed, then for some
gödel number e:

`HA ∀x [{e}(x)↓ ∧ A(x , {e}(x))].

And of course PA can be interpreted in HA by the Gödel-Gentzen
negative translation E 7→ E g . >



Arithmetic in the context of analysis

Observation. All of (first-order) PA is consistent with FIM, by
Kleene’s classical function-realizability interpretation, since every
classically true arithmetical sentence can be realized by some
function.

Goodman [1976]: EL + AC01 is conservative over HA for
arithmetical sentences.

Troelstra [1974]: EL + AC01 + FT + CC11 is conservative over
EL + AC01 (hence also over HA) for arithmetical sentences.

So FIM− (like FIM but with FT replacing BI1) is conservative
over HA for arithmetical sentences, so has the same consistency
strength as HA and PA.
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Observations.

I M + BI1 proves some arithmetical sentences which are not
number-realizable and hence not provable in HA.

I M + BIc proves all of PA, where BIc is

∀α∃xR(α(x)) ∧ ∀w [R(w) → A(w)]

∧ ∀w [∀sA(w ∗ 〈s〉) → A(w)] → A(〈 〉)

with R(w),A(w) strictly arithmetical.

Note: BIc with sequence parameters conflicts with FIM (Kleene
[1965]).

Questions:

I Is M + BIc conservative over PA for arithmetical sentences?

I If not, what is its consistency strength?
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Some admissible rules for constructive theories

Kleene [1969]: If T is M + BI + MP or FIM + MP, and Tc is its
classically correct part, then T satisfies the Church-Kleene Rule
for analysis:

If `T ∃αA(α) where ∃αA(α) is closed, there is a gödel number e
such that `Tc ∀x{e}(x) ↓ and `T A({e}).

Beeson [1980] claimed that “Every known constructive theory”
satisfies Markov’s Rule and the (closed) disjunction and existence
rules. (A theory T satisfies the disjunction rule if, whenever
`T A ∨ B where A,B are closed, then `T A or `T B.) The same
holds for the appropriate Church-Kleene Rule, which implies the ∨
and ∃ rules.
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Definition: A theory T extending HA or M, with intuitionistic
logic, is recursively acceptable if and only if

I T satisfies the Church-Kleene Rule,

I T satisfies Markov’s Rule (with parameters), and

I T is consistent with Markov’s Principle.

Constructive theories are recursively acceptable, i.e.:

I The arithmetical theories HA ± MP0 ± CT0 ± ECT0 are
recursively acceptable. Beeson [1975] showed that they are
also closed under the Kreisel-Lacombe-Shoenfield rule.

I The analytical theories M ± AC00 ± AC01 ± MP1 ± BI1 ±
CC10 ± CC11 ± GC10 ± GC11, hence in particular EL ± AC00

and FIM, are all recursively acceptable. Troelstra has checked
that they satisfy the rules corresponding to GC10, GC11.
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Observations:

I HA + MP0 proves that every ∆0
1 relation has a recursive

characteristic function. (Only the converse, that every
recursive relation is ∆0

1, holds in HA.)

I HA + MP0 + ECT0 proves that the constructive arithmetical
hierarchy collapses at Σ0

3.

I M + BI1 + MP1 proves that every ∆0
1 relation has a

characteristic function recursive in the sequence parameters.

I M + BI1 + MP1 proves the constructive arithmetical
hierarchy (with or without sequence parameters) is proper.
(FIM can’t prove this.)

So bar induction and Markov’s principle save the arithmetical
hierarchy. However,

>



Veldman [1981]: In FIM the constructive analytical hierarchy
collapses at Σ1

2.

So the continuity principle (as an axiom schema) destroys the
analytical hierarchy, just as Church’s Thesis (as an axiom schema)
destroys the arithmetical hierarchy.

There are other parallels between Church’s Thesis in arithmetic
and Brouwer’s Thesis (“Every constructive function is
continuous”) in analysis. For example, M + GC11 axiomatizes
function-realizability over M (Troelstra) just as HA + ECT0

axiomatizes number-realizability over HA.
>



Since recursive functions are continuous, a recursively acceptable
theory can only prove the existence of continuous functions.
Maybe we should call this requirement, e.g.

I If ` ∀α∃xA(α, x) then
` ∀α∃m∃x∀β[β(m) = α(m) → A(β, x)], or

I If ` ∀α∃βA(α, β) then ` ∃σ∀α[ {σ}[α]↓ ∧A(α, {σ}[α]) ]

Brouwer’s Rule and use it (rather than a continuity axiom) as a
guide for formalizing Brouwer’s intuitionistic mathematics.

Then we could look for intuitionistically and classically acceptable
axioms (possibly in the theory of functionals) which, if added to M
+ BI1, would save the analytical hierarchy too.

Note: Myhill [1975] asked if his intuitionistic set theory obeyed a
version of Brouwer’s Rule. Beeson credited Kreisel with
emphasizing derived rules for constructive theories.
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Classical, as opposed to constructive, existence

Brouwer [1908] famously wrote that “the theorems which are
usually considered as proved in mathematics, ought to be divided
into those that are true and those that are non-contradictory.”

Thus he distinguished between proving that a mathematical object
exists and proving that it cannot fail to exist. This corresponds
formally to the distinction between ∃x or ∃α, and ¬¬∃x or ¬¬∃α.
The doubly negated forms are Krauss’ classical existential
quantifiers.

The corresponding classical universal quantifiers are ∀x¬¬ and
∀α¬¬. This double negation breaks the algorithmic dependence,
on x or on α, of the scope of the quantifier.
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Can there be no non-recursive functions?

In a recursively acceptable theory, only recursive sequences can be
proved to exist. But if “α is general recursive” is expressed by

GR(α) : ∃e∀x [{e}(x) ' α(x)],

then ∀αGR(α) obviously contradicts continuity. Moreover, fan and
bar induction fail on the recursive sequences. But

Vesley [1971] proposed a schema VS which entailed all of
Brouwer’s weak counterexamples and was consistent with FIM and
(JRM [1973]) also with “Weak Church’s Thesis” ∀α¬¬GR(α).

So INT can’t prove that nonrecursive sequences exist, not even in
the classical sense of ¬¬∃α¬GR(α).
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How about Markov’s Principle?

RUSS accepts MP0; BISH works consistently with MP1; in the
context of FIM, MP1 is recursively acceptable. While Brouwer
didn’t accept Markov’s Principle, he gave no counterexample
(Luckhardt [1976,1977]).

Solovay, JRM [2003]: M + BI1 + MP1 proves that no arithmetical
predicate A(x) (with or without sequence parameters), in fact no
classically ∆1

1 predicate, can fail to have a characteristic function.
So MP1 is a classical function existence axiom for intuitionistic
analysis.

Over M, BI1 + MP1 is equivalent to the result BI∗1 of replacing
∀α∃x [ρ(α(x)) = 0] in BI1 by ∀α¬¬∃x [ρ(α(x)) = 0].

>



Other recursively acceptable classical function existence axioms
include the classical axioms of countable choice AC∗00:

∀x¬¬∃yA(x , y) → ¬¬∃β∀x¬¬A(x , β(x))

and AC∗01:

∀x¬¬∃αA(x , α) → ¬¬∃β∀x¬¬A(x , (β)x).

Over M, AC∗00 is equivalent to a version of bar induction:

∀α¬¬∃xR(α(x)) ∧ ∀w [(R(w) → ¬A(w)) ∧
(∀s¬A(w ∗ 〈s〉) → ¬A(w))] → ¬A(〈 〉).

>



JRM [2008]: FIM is consistent simultaneously with

I A ∨ ¬A for purely arithmetical A.

I AC∗00 for arithmetical A(x , y) and hence

I ¬¬∀x [A(x) ∨ ¬A(x)] for arithmetical A(x) (with parameters
allowed), for example

∀ρ¬¬∀x [∃yρ(< x , y >) = 0 ∨ ∀yρ(< x , y >) 6= 0].

I “There are no functions which are not classically Σ1
1”:

∀α¬¬∃e∀x∀y [α(x) = y ↔ ¬¬∃β∀z¬T (e, x , y , β(z))]

(proof uses Spector-Gandy Theorem) and hence

I “There are no functions which are not classically ∆1
1.”

The theory obtained by adding all these axioms to FIM is not
recursively acceptable (it contains PA) but it obeys Brouwer’s Rule.
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