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Abstract. This is a survey of formal axiomatic systems for the three main
varieties of constructive analysis, in a common language and with intuitionistic
logic, which are as nearly as possible compatible with classical analysis and
with one another. Classically sound consequences of principles of intuition-
istic mathematics are emphasized. Compatibility with classical analysis is of
two kinds. On the one hand, Bishop’s constructive mathematics and a very
substantial part of intuitionistic analysis are classically correct, sharing with
constructive recursive mathematics a neutral subsystem adequate for recursive
function theory and elementary real analysis. On the other, each constructive
system considered here is separately consistent with the negative interpretation
of each of its classically sound subsystems, establishing internal compatibility
with the classical context it is intended to refine. A possibly new criterion for
the transposability of unique existential quantifiers, and a recent theorem by
Vafeiadou on the internal compatibility of classical and intuitionistic analysis,
are included.

1. Introduction

Much attention has been paid to the effective constructive content of classical
mathematics. Constructive mathematicians, working with intuitionistic logic and
carefully stated versions of classical mathematical axioms, formulate and prove
constructively meaningful classical equivalents of theorems of classical arithmetic,
analysis and algebra ([2],[9],[19]). Constructive recursive mathematicians accept
Markov’s principle and Church’s Thesis; Markov’s Rule and the Church-Kleene
Rule are generally admissible for formal systems for all varieties of constructive
mathematics (cf. [4],[33],[13]) Applied proof theorists use constructive and semi-
constructive interpretations and translations to extract computational information
from classical proofs ([15],[1]).

Recent vigorous development of constructive reverse mathematics establishes
precise equivalences, over weak neutral axiomatic systems with intuitionistic logic,
between constructively meaningful principles and versions of classical and con-
structive mathematical theorems. A refinement of classical reverse mathematics
[28] results if these principles and theorems are required to be classically sound.

Intuitionistic analysis and constructive recursive mathematics, unlike Bishop’s
constructive mathematics, include some principles which conflict with classical
logic, although some of their constructive consequences are classically sound. From
a neutral viewpoint, classically sound consequences of Brouwer’s [bar and fan
theorems and] continuity principles express common features of intuitionistic and
classical Baire space; classically sound consequences of [Markov’s principle and]
Church’s thesis are properties of recursive sequences; and the Gentzen negative
interpretation makes faithful copies of true classical analysis and classical recursive
mathematics which are separately consistent with intuitionistic principles.
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This article explores the classical consequences of formal systems, based on
two-sorted intuitionistic logic, which extend intuitionistic first-order arithmetic
by adding variables and terms for infinite sequences of natural numbers together
with axioms for Bishop constructive analysis, intuitionistic analysis or constructive
recursive mathematics. Fundamental work by Kleene, Vesley, Troelstra, Ishihara
and Veldman is featured, but many others have contributed richly to this subject.

2. Challenges and Possibilities

The first problem is to find a coherent definition of the classical content of a
constructive formal system S based on intuitionistic logic. The classical equiva-
lences ∃xA(x)↔ ¬∀x¬A(x) and (A ∨ B)↔ ¬(¬A & ¬B) clearly indicate that the
classical content of a formula E includes its Gentzen negative interpretation Eg,
and the classical content of S includes Sg ≡df {Eg : S ` E}.

If S is a formal system based on intuitionistic logic, let us follow Kleene in
defining S◦ ≡df S + (¬¬A→ A). If prime formulas P are stable in S under
double negation (that is, if S ` (¬¬P→ P) when P is prime), then the negative
interpretation of S includes all theorems of S not involving ∃ or ∨. If S◦ is
consistent, so is S ∪ Sg (which does not prove (¬¬A→ A) by intuitionistic logic).

It may happen, as for intuitionistic arithmetic, that Sg ⊆ S, so S includes its
classical content. However, this is not the case even for weak constructive systems
like Troelstra’s EL (cf. [30]) or Veldman’s BIM (cf. [36]) which assume countable
choice for quantifier-free relations.

2.1. Definition. If S is a formal system based on intuitionistic logic, then (as in
[25]) the minimum classical extension S+g of S is the closure under intuitionistic
logic of S ∪ Sg. If, in addition, S◦ is consistent, then S+g is also the (maximum)
classical content of S.

2.2. What to do if S◦ is inconsistent. Formal systems S for Brouwer’s intu-
itionistic analysis or constructive recursive mathematics which refute instances of
(¬¬A → A) are more challenging. If the mathematical axioms of S are of the
form Γ1 + Γ2, where Γ1 are classically sound (in the sense of holding for a clas-
sical model M◦ which corresponds by convention to the intended interpretation
M of S) and Γ2 are not, S may prove properties of M◦ which do not follow from
Γ1 by classical logic. One possibility is to strengthen the classically acceptable
axioms of S and weaken the classically false ones, improving the modularity of the
axiomatization without changing the theory. This is the focus of Sections 3 - 5.

A separate question is whether any notion of maximum classical content of an
intuitionistic system S makes sense, in the case that S + (¬¬A → A) ` 0 = 1.
Section 6 presents a possible solution, including a recent result by Vafeiadou.

Section 7 proposes axiomatizing constructive recursive mathematics using the
language of analysis with intuitionistic logic. A basic system, consistent with the
axiom Veldman [36] calls “Kleene’s alternative (to the fan theorem),” contains its
negative interpretation and has a classical omega-model K◦ in which the type-1
objects are all recursive sequences. The negative interpretation of the basic system
is consistent with Kleene’s intuitionistic analysis.

3. Axiomatizing Brouwer and Bishop

Brouwer and Bishop worked informally, but they gave plenty of clues about
how to build formal systems, based on two-sorted intuitionistic predicate logic with
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variables for natural numbers and infinite sequences of natural numbers, extending
Heyting arithmetic, with mathematical induction for all formulas of the language,
recursive comprehension and countable and dependent choice. Negative integers
and rational numbers are easily coded by pairs of natural numbers. Real number
generators are Cauchy sequences of rationals ([2] and [14]) or nested sequences of
rational intervals ([38]). With addition, subtraction, multiplication, and positive
ordering < of reals r, s defined so that the rationals are dense in <, R is an
Archimidean partially ordered field and a complete, separable metric space with
ρ(r, s) ≡df |r − s|. Trichotomy fails but < is co-transitive:

(r < s)→ (r < t) ∨ (t < s).

Apartness (positive difference) # is defined by (r # s) ≡df (r < s) ∨ (s < r),
and (r ≤ s) ≡df ¬(s < r), so with (r = s) ≡df (r ≤ s) & (s ≤ r) it follows by
intuitionistic logic that ¬(r # s)↔ (r = s).

3.1. Kleene’s and Vesley’s Foundations of Intuitionistic Mathematics.
Intuitionistic two-sorted arithmetic, with full induction and an expandable finite
list of constants and axioms for primitive recursive functions and functionals, is the
base over which Kleene and Vesley [14] axiomatized intuitionistic analysis. Kleene
clarified Brouwer’s principles of bar induction and continuous choice, weakening
the former and strengthening the latter, and proved that the full intuitionistic
system I is consistent relative to a classically sound subsystem B with countable
choice and bar induction. Vesley developed in I a significant portion of Brouwer’s
mathematical analysis, in sufficient detail to convince the classical mathematical
community of its formal correctness. Two years later Bishop published his treatise
[2] on a less controversial version of constructive mathematics, consistent with the
classical,1 and others followed.

In [13] Kleene formalized his relative consistency proof, based on a recursive
function-realizability interpretation, over a weaker subsystem M with countable
choice AC01 (defined in §3.5 below) replaced by countable comprehension AC00!.
Formalization of a stronger interpretation, combining function-realizability with
truth, led to the corollary that I and all subsystems S of I extending M satisfy
the following form of Church’s Rule.

Church-Kleene Rule: For every closed formula E of the form ∃αA(α) such
that S ` E, a number e can be found so that S ` ∃α(∀x(α(x) ' {e}(x)) & A(α)),
while ∀x∃y({e}(x) ' y) is provable in a classically sound subsystem of S.

It is a curious fact that while Brouwer and Bishop did not restrict the continuum
to its recursive points, every point I or B can prove to exist is recursive.

3.2. Three parallel extensions of primitive recursive arithmetic. In [30]
Troelstra observed that Kleene’s arguments in [13] used countable comprehension
only for formulas which are “quantifier-free” (contain no sequence quantifiers and
only bounded number quantifiers) and therefore satisfy the law of excluded middle
over primitive recursive arithmetic. He defined a two-sorted extension EL (for
“elementary analysis”) of primitive recursive arithmetic with intuitionistic logic,

1Bishop agreed with Brouwer on the use of intuitionistic logic and unrestricted mathematical
induction. However, by defining a continuous function to be “one that is uniformly continuous on
compact intervals” ([2] p. x) and restricting attention to these, Bishop sidestepped the notion of
pointwise continuity and with it, Brouwer’s fan and bar theorems and continuous choice principle.



4

full induction and quantifier-free countable choice as his base for developing the
constructive theory of partial recursive functions.2

Veldman’s BIM (for “basic intuitionistic mathematics,” cf. [36]) has a parallel
structure, as does the subsystem IRA (for “intuitionistic recursive analysis,” cf.
[24]) of Kleene’s B described in §3.5 below. In [34] Vafeiadou made a detailed
comparison of weak constructive systems such as these, showing that their differ-
ences are essentially definitional so metamathematical results over any one of EL,
BIM or IRA generally hold over the others.

3.3. A weaker system IA1 which proves its own negative interpretation.
IA1 is a formal system for intuitionistic two-sorted arithmetic, with variables and
metavariables i, j, k,m, n, . . . , y, z,m0, n0,m1, . . . of type 0 and α, β, . . . of type 1,
constants and axioms for 0, successor ′, +, ·, and a sufficient selection of other
primitive recursive functions and functionals.3 Church’s lambda makes it possible
to form terms λx.s of type 1 from terms s of type 0, and the λ-reduction axiom
schema (λx.s(x))(t) = s(t) is assumed, along with (x = y→ α(x) = α(y)) and the
axiom schema of mathematical induction for all formulas of the language.

The prime formulas of IA1 are equations s = t where s, t are terms of type 0.
IA1 ` ∀x∀y(x = y ∨ ¬(x = y)), so prime formulas are (equivalent to) their negative
interpretations. Equality at type 1 is defined extensionally: α = β may abbrevi-
ate ∀x(α(x) = β(x)) but IA1 6` ∀α∀β(α = β ∨ ¬(α = β)). Adding quantifier-free
countable choice to IA1 produces IRA; removing it from EL or BIM results in
a subsystem essentially equivalent to IA1.

3.4. Notational conventions. It doesn’t really matter which primitive recursive
functions are used to code and decode pairs and sequences of integers, but some
conventions are necessary. Kleene coded pairs by 〈n,m〉 = 2n · 3m and finite
sequences by 〈n0, n1, . . . , nk〉 = Πk

j=0 p
nj

j where pj is the jth prime, and denoted

by (n)j the exponent of the jth prime in the prime factorization of n. Respecting
his notation, let 〈 〉+ ≡df 1 and 〈n0, n1, . . . , nk〉+ ≡df 〈n0 + 1, n1 + 1, . . . , nk + 1〉 so
α(k + 1) = 〈α(0), . . . , α(k)〉+ represents the (k + 1)st finite initial segment of α,
and α(0) = 1. If w is such a sequence number (abbreviated by Seq(w)) then lh(w)
is the length of the sequence w codes, and its jth element is (w)j − 1 if j < lh(w).
If w, v are sequence numbers then w ∗ v codes their concatenation.

3.5. Axioms of countable choice and countable comprehension. Brouwer
and Bishop used countable and dependent choice routinely.4 As their axiom
schema of countable choice (x2.1 in [14]) Kleene and Vesley assumed

AC01. ∀x∃αA(x, α)→ ∃β∀xA(x, λy.β(〈x, y〉))
for all formulas of the language, with free variables of both types allowed, and
with conditions on the distinguished variables guaranteeing that the substitution
of λy.β(〈x, y〉) for α in A(x, α) is free. While AC01 may be assumed to hold in
constructive analysis, they showed that for all but one of their applications it could
be replaced by

AC00. ∀x∃yA(x, y)→ ∃α∀xA(x, α(x))

2Kreisel’s and Troelstra’s EL in [16] includes Kleene’s countable comprehension axiom, but
[33] agrees with [30]. Cf. [32]

3Kleene’s list f0 - f26, repeated with definitions in [24], is intended to be expanded as needed.
4A referee correctly observed that the use of choice in constructive mathematics indicates that

some data is missing, and that Richman [27] works in Bishop-style mathematics without choice.
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(∗2.2 in [14]), which is equivalent over IA1 to dependent choice for numbers

DC0. ∀x∃yA(x, y)→ ∀x∃α[α(0) = x & ∀nA(α(n), α(n + 1))].

With intuitionistic logic countable comprehension or “unique choice”

AC00!. ∀x∃!yA(x, y)→ ∃α∀xA(x, α(x))

is weaker than AC00 over IA1 by [39] although they are equivalent over IA◦1. Here
∃!yA(x, y) abbreviates ∃yA(x, y) & ∀y∀z(A(x, y) & A(x, z)→ y = z) and similarly,
∃!αA(x, α) abbreviates ∃αA(x, y) & ∀α∀β(A(x, α) & A(x, β)→ α = β). AC01 is
apparently a stronger axiom than AC00, but IA1 + AC00! ` AC01! by [20].

QF-AC00 (quantifier-free countable choice) restricts AC00 to formulas A(x, y)
containing no sequence quantifiers, and only bounded numerical quantifiers. IA1

has a classical omega-model with the primitive recursive functions as its type-1
objects, but IRA ≡df IA1 + QF-AC00 proves the existence of general recursive
functions and can be axiomatized equivalently by adding to IA1 a single axiom

∀ρ[∀x∃y ρ(〈x, y〉) = 0→ ∃α∀x ρ(〈x, α(x)〉) = 0]

asserting that the universe of sequences is closed under unbounded effective search.
Veldman chooses this axiom, rather than the schema QF-AC00, for his BIM.

3.6. Brouwer’s bar and fan theorems. Brouwer believed he could justify a
principle of backwards induction on finite sequences of natural numbers, his “bar
theorem.” Kleene formulated this principle as a schema

BI◦. ∀α∃xR(α(x)) & ∀w(Seq(w) & R(w)→ A(w)) &

∀w(Seq(w) & ∀sA(w ∗ 〈s + 1〉)→ A(w))→ A(1)

and showed that, while BI◦ is classically equivalent to AC00, from Brouwer’s view-
point it is too strong.5 Kleene added the hypothesis ∀w[Seq(w)→ R(w) ∨ ¬R(w)]
and adopted the resulting detachable bar theorem BId as an axiom schema (x26.3a
in [14]) to express Brouwer’s bar theorem in B and I.6

Brouwer used bar induction to prove his “fan theorem,” which allowed him to
establish that (if every total function is pointwise continuous, then) every function
completely defined on the closed unit interval is uniformly continuous. Brouwer’s
full fan theorem ([14] ∗27.9) is simply

FT. ∀αB(α)∃x R(α(x))→ ∃n∀αB(α)∃x ≤ n R(α(x)),

where B(α) abbreviates ∀xα(x) ≤ β(α(x)); a special case, the binary fan theorem
with B(α) ≡ ∀xα(x) ≤ 1, is equally strong over IRA. FT proves a corresponding
principle of fan induction, with no restriction on the predicates (cf. [36]).

Kleene considered four intuitionistically correct versions (x26.3a-d) of the bar
induction schema with different restrictions on the basis predicate R(w). Three
are equivalent over IRA, but one (x26.3b) assumes that a characteristic function
for the basis exists. This version of bar induction,

BI1. ∀α∃xρ(α(x)) = 0 & ∀w(Seq(w) & ρ(w) = 0→ A(w)) &

∀w(Seq(w) & ∀sA(w ∗ 〈s + 1〉)→ A(w))→ A(1),

5In fact, IRA + BI◦ ` WLPO (∗27.23 in [14]).
6Over IA1 + AC00! (but not over IRA) this restriction is equivalent to requiring R(w) to be

quantifier-free.
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is weaker than BId in the absence of countable comprehension. Solovay proved (cf.
[23]) that arithmetical countable choice ACAr

00 (AC00 restricted to A(x, y) without
sequence quantifiers) can be negatively interpreted in IA1 + BI1 + MP1, where

MP1. ∀α[¬¬∃xα(x) = 0→ ∃xα(x) = 0].

The version of the binary fan theorem corresponding to BI1 is

FT1. ∀αB(α)∃x ρ(α(x)) = 0→ ∃n∀αB(α)∃x ≤ n ρ(α(x)) = 0.

In Theorem 9.6 and Corollary 9.8 of [36], Veldman has compiled a long list of
theorems of intuitionistic mathematics equivalent to FT1 over his minimal formal
system BIM (hence over IRA). In particular, FT1 is equivalent to the version of
FT with R(w) ≡ ∃y(β(y) = w + 1) which he calls the enumerable fan theorem.

The monotone bar theorem (∗27.13 in [14]) makes it possible to combine the bar
and inductive predicates, and may be succinctly stated (following Veldman) as

BImon. ∀α∃xA(α(x)) & ∀w(Seq(w)→ (A(w)↔ ∀nA(w ∗ 〈n〉+))→
∀w(Seq(w)→ A(w)).

Veldman’s close analysis of Brouwer’s writing led him to the conclusion that
Brouwer sometimes assumed a monotone bar, but sometimes fell into the error of
trying to justify full bar induction, which conflicts with his continuity principles
as Kleene observed in [14].

3.7. Brouwer’s continuous choice and weak continuity principles. The
continuous choice principle Kleene called “Brouwer’s Principle for Functions”

CC11. ∀α∃βA(α, β)→ ∃σ∀α[∀x∃!yσ(〈x + 1〉 ∗ α(y)) > 0 &

∀β(∀x∃yσ(〈x + 1〉 ∗ α(y)) = β(x) + 1→ A(α, β))]

is x27.1 in [14]. The full formal system for intuitionistic analysis Kleene and Vesley
presented in [14] is I ≡df IA1 + AC01 + BId + CC11, sometimes referred to by
the acronym FIM.

The subsystem I− of I in which CC11 is replaced by “Brouwer’s Principle for
Numbers”:

CC10. ∀α∃xA(α, x)→ ∃σ∀α∃y∃x[σ(α(y)) = (x + 1) &

∀z(σ(α(z)) > 0→ y = z) & A(α, x)]

(cf. ∗27.2 in [14]) is adequate to formalize most of Brouwer’s intuitionistic math-
ematics. I− is consistent with Kripke’s Schema [26] while I is not.

Kleene also formulated the principle (∗27.15 in [14]) known as “weak continuity
for numbers”:

WC-N. ∀α∃xA(α, x)→ ∀α∃y∃x∀γ(γ(y) = α(y)→ A(γ, x)).

Dummett [6] realized that, in the presence of countable choice, I− can also be
axiomatized by replacing BId by BImon and replacing “Brouwer’s Principle for
Numbers” by WC-N. These changes would strengthen the classically acceptable
axioms and weaken continuous choice.
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3.8. Stronger neutral subsystems of intuitionistic analysis. Kleene chose
to distinguish the neutral subsystem B ≡df IA1 + AC01 + BId of intuitionistic
analysis, so I ≡df B + CC11. There is no doubt that B is classically sound, because
(IA1 + AC00)

◦ ` BI◦ (by ∗26.1◦ in [14]) and IA1 + AC01 ` AC00 (by ∗2.2 in [14]).
Thus B◦ = (IA1 + AC01)

◦, and a classical mathematician can understand B as
the intuitionistic version of classical analysis with countable choice.

There are stronger neutral subsystems of I, however. The variant B′ of B with
BImon as an axiom schema in place of BId is classically sound and lies strictly
between B and I. Veldman takes monotone bar induction as an axiom expressing
Brouwer’s intent.

Kleene used neighborhood functions to code moduli of continuity and values of
continuous functions. Troelstra formulated a neighborhood function principle:

NFP. ∀α∃xA(α(x))→ ∃σ∀α[∃!xσ(α(x)) > 0 & ∀x∀y(σ(α(x)) = y + 1→ A(α(y)))],

a classically sound choice principle, and derived it from CC10. A monotone version

NFPmon. ∀α[∃xA(α(x)) & ∀x(A(α(x))→ A(α(x + 1)))]→
∃σ∀α[∃xσ(α(x)) = 0 & ∀x(σ(α(x)) = 0→ A(α(x)))]

is interderivable with BImon over B (cf. [24]), so I− = B + NFPmon + WC-N.
The schema of dependent choice for sequences

DC1. ∀α∃βA(α, β)→ ∀α∃δ[(δ)0 = α & ∀nA((δ)n, (δ)n+1)]

(where (δ)n abbreviates λx.δ(〈n, x〉))7 is not obviously provable in B or even in B◦,
but the following argument shows that B + DC1 is a classically sound subsystem
of I. Kleene could have strengthened AC01 to DC1, but he did not.

3.9. Theorem.

(1) IA1 + AC01! + CC11 ` DC1.
(2) IA1 + DC1 ` AC01.

Proof. (1) Assume (a) ∀α∃βA(α, β). By CC11 there is a σ satisfying (b)
∀α[∃!β{σ}[α] ' β & ∀β({σ}[α] ' β → A(α, β))]. Fix α. We will show there is a
ζ so that (c) ∀n[((ζ)n)0 = α & ∀i < n[A(((ζ)n)i, ((ζ)n)i+1) & ((ζ)n)i = ((ζ)n+1)i]].
From ζ we can define γ so that (d) ∀n[(γ)n = ((ζ)n+2)n] and it will follow that
(γ)0 = α and for all n: (γ)n+1 = ((ζ)n+3)n+1 = ((ζ)n+2)n+1 so A((γ)n, (γ)n+1).

Toward (c), prove by induction: ∀n∃!δ[(δ)0 = α & ∀i < n((δ)i+1 ' {σ}[(δ)i]) &
∀x[¬(x = 〈(x)0, (x)1〉 & (x)0 ≤ n)→ δ(x) = 0]]. Then by AC01! ∃ζ∀n[((ζ)n)0 = α
& ∀i < n((ζ)n)i+1 ' {σ}[((ζ)n)i]], and (b) completes the argument.8

(2) Assume (a) ∀n∃αA(n, α). We want to show ∃β∀nA(n, (β)n). From (a) we
conclude (b) ∀α∃β[β(0) = α(0) + 1 & A(α(0), λx.β(x + 1))], and then DC1 gives
(c) ∃γ[(γ)0 = λt.0 & ∀n[(γ)n+1(0) = (γ)n(0) + 1 & A((γ)n(0), λx.(γ)n+1(x + 1))]].
For any such γ, (d) ∀n [(γ)n(0) = n & A(n, λx.(γ)n+1(x + 1))] holds by induction;
so (e) ∀nA(n, (λy.(γ)(y)0+1((y)1 + 1))n); so (f) ∃β∀nA(n, (β)n). �

7This abbreviation, which conflicts with Kleene’s definition of (δ)n, is adopted here in order
to save space and improve readability.

8The logic of partial terms is not involved essentially in this argument because the informal
expression {σ}[α], which helps to clarify the proof, always designates a fully defined sequence β
satisfying ∀x∀y[β(x) = y↔ ∃z[σ(〈x〉+ ∗ α(z)) = y + 1 & ∀n < zσ(〈x〉+ ∗ α(n)) = 0]].
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3.10. Bar induction of type one. A year after the publication of [14] by Kleene
and Vesley, Howard and Kreisel [8] corrected a typo (discovered by Kleene) in the
conclusion of the formulation, in Section 6.3 of [29], of Spector’s axiom schema of
bar induction of type one; call the corrected version “SBI1.” In a minor variant
H of IA1 they derived SBI1 from CC10 and the special case BIQF of BI in which
R(w) is required to be quantifier-free. Their proof also shows that IA1 + BI1 +
CC10 ` SBI1.

In Appendix 1 of [8] they proved that DC1 is equivalent to SBI1 over H◦, and
asked (Problem 9 of the appendix) whether DC1 is derivable from AC01 over H or
H◦. More than thirty years later, analyzing the classical content of countable and
dependent choice, Berardi, Bezem and Coquand [1] did not know if this question
was still open. As far as I know it can still be asked over IA1 and IA◦1 today.

3.11. Bishop’s initial constructive analysis as a subsystem of I. Bridges
and Richman describe Bishop’s constructive mathematics (“BISH” in [4]) as the
common core of intuitionistic, classical and constructive recursive mathematics.
Given the fact that Bishop accepted countable and dependent choice but rejected
bar induction and even the binary fan theorem, by the previous result a reasonable
axiomatization of Bishop’s initial constructive analysis is IA1 + DC1. However,
see the next section.

4. Examples of Classically True Theorems of Intuitionistic Analysis

4.1. Vesley’s mathematical examples. The last two chapters of [14] clarified
and criticized Brouwer’s development of the real numbers. In Chapter III (“The
Intuitionistic Continuum”), using Heyting’s informal exposition [7] and Brouwer’s
[5] as his primary sources, Vesley developed formally in I a significant part of
intuitionistic real analysis including Brouwer’s uniform continuity theorem.

Following Heyting, Vesley coded real numbers by Cauchy sequences of rational
numbers. Properties of real numbers are properties of these sequences respecting
coincidence, an equivalence relation; Brouwer’s “point cores” (equivalence classes
with respect to coincidence) are treated indirectly. For his formal treatment Vesley
defined a real number generator (r.n.g.) to be any infinite sequence α consisting
of the successive numerators of a Cauchy convergent sequence of dual fractions,
and defined the coincidence relation on the set R of r.n.g.s formally by

(α
◦
= β) ≡df ∀k∃x∀y2k|α(x + y)− β(x + y)| < 2x+y.

Apartness is defined by (α # β) ≡df ∃k∃x∀y2k|α(x + y)− β(x + y)| ≥ 2x+y, and

the positive ordering by (α <◦β) ≡df ∃k∃x∀y2k(β(x + y)
.
− α(x + y)) ≥ 2x+y.

Vesley proved that with these definitions the r.n.g.s satisfy the properties Bishop
later singled out as basic for constructive real numbers. Brouwer considered other
relations between real numbers as well; Vesley analyzed them in detail and applied
a continuity principle to prove that sharp difference 6=s is equivalent to apartness.
In Chapter IV Kleene derived equivalences and differences among Brouwer’s many
relations between reals.

The subset R′ of R consists of the canonical real number generators (c.r.n.g.s)
α satisfying ∀x|2α(x)− α(x + 1)| ≤ 1. Vesley used AC00 to prove that every r.n.g.
coincides with a c.r.n.g., simplifying the spread representation of Brouwer’s contin-
uum which (with the fan theorem and CC10) makes it obvious that every function
defined on a closed real interval is uniformly continuous. He developed the metric



CLASSICAL CONSEQUENCES OF CONSTRUCTIVE SYSTEMS 9

structure of R in detail and verified formally that the intuitionistic continuum is
separable, connected and dense in itself as Brouwer claimed in [5].

4.2. Troelstra’s list of mathematical examples. Chapter 6 of [31] presents a
list of theorems of intuitionistic analysis, including versions of several of the ones
formalized by Vesley. Most are classically correct, or can be made so by inserting
the additional hypothesis “[continuous]” where the intuitionistic proof appeals to
a classically unsound continuity principle and the theorem would fail classically
without this qualification.9 Among them are

(1) Every [continuous] real-valued function on the closed unit continuum is
uniformly continuous.

(2) A [continuous] mapping from a complete metric space to a separable metric
space is sequentially continuous.

(3) A sequentially continuous mapping from a separable metric space to a
metric space is continuous.

(4) A real-valued function of a real variable which is differentiable at x has a
sequential derivative at x.

(5) A [continuous] real-valued function which has a sequential derivative at x
is differentiable at x.

(6) Lindelöf’s Theorem: Every indexed open covering of a complete, separable
metric space has a countable subcovering.

(7) The Heine-Borel Theorem: Every indexed open covering of a closed real
interval has a finitely indexed subcovering.

(8) A sequence of real-valued functions defined on [0, 1] which converges point-
wise for every x ∈ [0, 1] converges uniformly on [0, 1].

(9) Riemann’s Permutation Theorems: If {xn}n∈N is an infinite sequence of
real numbers, then Σ∞n=0|xn| converges if and only if Σ∞n=0xσ(n) converges
for each permutation σ of N; and if Σ∞n=0|xn| diverges but Σ∞n=0xn con-
verges, then for each extended real number x there is a permutation σ of
N such that Σ∞n=0xσ(n) = x.

4.3. Veldman’s mathematical examples. Veldman’s treatise “Intuitionism:
An Inspiration” [38], which has just appeared, is a very readable and authen-
tic introduction to intuitionism, written with a classically trained reader in mind,
giving a clear presentation of the constructive real numbers R in Section 6 and
an engaging justification of intuitionistic logic (and language) in Section 8. His
examples of classically correct intuitionistic theorems include

(1) Euclid’s Theorem: Given any finite list of prime numbers, another prime
number can be found which is not on the list.

(2) Cantor’s Theorem: Given any infinite sequence of real numbers, another
real number can be found which is apart from every number on the list.

(3) The approximate intermediate value theorem.
(4) The negative intermediate value theorem: If f is a [pointwise continuous]

function from [0, 1] to [0, 1] with f(0) < 0 and f(1) > 0, it is impossible
that ∀x ∈ [0, 1](f(x) # 0).

(5) The uniform continuity theorem: Every [pointwise continuous] function
from [0, 1] to R is uniformly continuous on [0, 1].

9I am indebted to Wim Veldman for reinforcing this suggestion, as a way to demystify Brouwer.
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(6) The Intuitionistic Determinacy Theorem: If Player I is able to [continu-
ously] defeat every possible strategy for Player II in a two-person game on
2N, then Player I has a winning strategy in the game.

(7) The Principle of Open Induction on [0, 1]: If G is an open subset of [0, 1]
which is progressive in [0, 1] (in the sense that if [0, x) ⊆ G then x ∈ G),
then G = [0, 1].

(8) Dickson’s Lemma.
(9) An Intuitionistic Ramsey Theorem, and the Clopen Ramsey Theorem.

(10) An intuitionistic version of Cantor’s Uniqueness Theorem (cf. [37]).

4.4. Examples from Bishop constructivists. Just as intuitionists continue to
interpret Brouwer, constructivists of the Bishop school study principles which are
classically, recursively and intuitionistically correct and have desirable constructive
consequences. Two examples are “weak Markov’s principle,” rendered informally
by ∀s ∈ R(∀r ∈ R(¬¬(0 < r) ∨ ¬¬(r < s))→ 0 < s) or formally over IA1 by

WMP. ∀α(∀β(¬∀n(β(n) = 0) ∨ ¬∀n(β(n) = 0→ α(n) = 0))→ ∃n(α(n) 6= 0)),

and Ishihara’s boundedness principle

BD-N. ∀β[∀α∃n∀m ≥ n(β(α(m)) < m)→ ∃m∀n(β(n) ≤ m)].

Neither is provable in IA1 + DC1, but IA1 + DC1 + WC-N ` WMP (cf. [10])
and IA1 + DC1 + FTd ` BD-N (cf. [11]). In IA1 + DC1 + WMP + BD-N (but
not in IA1 + DC1) a Bishop constructivist can prove (cf. [9], [3])

(1) Every mapping of a complete metric space into a metric space is strongly
extensional.

(2) Every sequentially nondiscontinuous mapping of a complete metric space
into a metric space is sequentially continuous.

(3) Every sequentially continuous mapping of a separable metric space into a
metric space is pointwise continuous.

(4) Uniform sequential continuity is equivalent to uniform continuity for map-
pings from metric spaces to metric spaces.

5. Replacing choice by comprehension

Kleene’s constructive interpretation of the quantifier combination ∀∃ led him to
incorporate choice principles into his axioms for intuitionistic mathematics instead
of separating comprehension from choice. This approach simplified the proof that
his function-realizability interpretation is sound for his formal system I.

Vesley and I were interested in weakening choice assumptions where possible.
My aim was to replace choice by comprehension, for philosophical reasons10 and
because countable and continuous comprehension for sequences are provable over
IA1 from the corresponding principles for numbers. Kleene’s strong axiom schema
of continuous choice consciously extends Brouwer’s known assumptions; Vesley
showed that in the context of Kleene’s I the countable choice axiom schema AC01

can be weakened to AC00, and his argument ([14] p. 88) shows that AC00! suffices.

10From Moschovakis [20] (p. 17): “By a statement of the form (a)(∃b)A(a, b), an intuitionist
presumably means that he has an algorithm A which, from any a, will at some point in its
operation first produce a b for which A(a, b). Thus he could equally well assert (a)(∃!b){(b is the
first output of the algorithm A for the input a) & A(a, b)}.”.
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5.1. Remark. The unique existential quantifier, naturally defined by11

∃!xA(x) ≡df ∃xA(x) & ∀x∀y(A(x) & A(y)→ x = y),

is powerful and convenient in constructive systems based on intuitionistic predicate
logic with equality; but unlike ordinary quantifiers, unique existential quantifiers
in a finite sequence generally cannot be reordered without changing the meaning.

Part (2) of the next theorem is a logical principle characterizing those cases
in which the order is unimportant. For each formula A(x, y), let ∃!(x, y)A(x, y)
abbreviate ∃x∃yA(x, y) & ∀x∀y∀z∀u(A(x, y) & A(z,u)→ x = z & y = u).

5.2. Theorem. Intuitionistic predicate logic with equality proves

(1) ∀x∀y((x = y) ∨ ¬(x = y)) & ∃!xA(x)→ ∀y(A(y) ∨ ¬A(y)).
(2) ∃!(x, y)A(x, y)↔ (∃!x∃yA(x, y) & ∃x∃!yA(x, y)).
(3) ∃!(x, y)A(x, y)↔ ∃!(y, x)A(x, y).
(4) ∃!(x, y)A(x, y)→ (∃!x∃!yA(x, y) & ∃!y∃!xA(x, y)).
(5) ∃!xA(x)↔ ∃x(A(x) & ∀y(A(y)→ x = y)).

Proof. (1): Assume the hypotheses (a) ∀x∀y((x = y) ∨ ¬(x = y)), (b) ∃xA(x)
and (c) ∀x∀y(A(x) & A(y)→ x = y). For ∃-elimination from (b) assume (d) A(x).
Then (e) ((x = y) ∨ ¬(x = y)) by (a), and (f) (A(y)→ x = y) by (d) and (c), so
(g) (¬(x = y)→ ¬A(y)) by contraposition. Substituting equals for equals in (d)
then gives (h) (x = y→ A(y)), so (j) (A(y) ∨ ¬A(y)) by (e), (g) and (h); hence
(j) ∀y(A(y) ∨ ¬A(y)) follows from (a), (b) and (c) after ∃x-elimination on (d).

(2→): Assume (a) ∃!(x, y)A(x, y), so after &-eliminations (b) ∃x∃yA(x, y) and
(c) ∀x∀y∀z∀u(A(x, y) & A(z,u)→ x = z & y = u). Assume (d) ∃yA(x, y) for ∃-
elimination from (b) ; then (c) entails (e) ∀x∀z(∃yA(x, y) & ∃yA(z, y)→ x = z),
which with (d) gives (f) ∃!x∃yA(x, y). For ∃y-elimination from (d) assume (g)
A(x, y); then (c) gives ∀y∀u(A(x, y) & A(x, u)→ y = u), so (h) ∃!yA(x, y) and
therefore (i) ∃x∃!yA(x, y). Conclude (j) ∃!x∃yA(x, y) & ∃x∃!yA(x, y) from (f) and
(i), and then use ∃y- elimination on (g) followed by ∃x-elimination on (d).

(2←): Assume (a) ∃!x∃yA(x, y), (b) ∃x∃!yA(x, y) and (c) A(x, y) & A(z,u).
Then (d) ∃yA(x, y) & ∃yA(z, y) so (e) x = z by (a). For ∃-elimination from (b),
assume (f) ∃!yA(v, y). Then ∃yA(v, y), so x = v by (a) and (c), so v = z by (e),
so (g) A(v, y) & A(v, u) by (c) with the substitution property of equality, and
then (h) y = u follows by (f). Finally, using &-introduction on (e) and (h), ∃v-
elimination discharging (f), →-introduction discharging (c), and ∀-introductions:
(j) ∀x∀y∀z∀u(A(x, y) & A(z,u)→ x = z & y = u). Obviously ∃x∃yA(x, y) follows
from (a), so (k) ∃!(x, y)A(x, y).

(3) and (5) follow from the definitions, and the proof of (4) from (2) and (3) is
straightforward.12 �

5.3. Corollary. IA1 proves

(1) ∃!βA(β)↔ ∀x∃!y∃β(A(β) & β(x) = y).
(2) ∃!z[z = 〈(z)0, (z)1〉 & A((z)0, (z)1)]↔ (∃!x∃yA(x, y) & ∃x∃!yA(x, y)).
(3) ∃!γA(λt.γ(2t), λt.γ(2t + 1))↔ (∃!α∃βA(α, β) & ∃α∃!βA(α, β)).

11Bishop constructivists often work with a constructively stronger uniqueness condition, but
this meaning of ∃!xA(x) goes back at least to Kleene [12].

12The converse of (4) fails intuitionistically and classically. An arithmetical counterexample
is A(x, y)↔ [(x = 2→ y = 3) & (y = 4→ x = 5)].
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Proof. (1→): Assume (a) ∃!βA(β). The aim is to prove ∀x∃!y∃βC(β, x, y),
where C(β, x, y) abbreviates A(β) & β(x) = y. By Theorem 5.2(5), (a) is equiv-
alent to (a′) ∃β[A(β) & ∀γ(A(γ)→ ∀x(β(x) = γ(x)))], so (b) ∃β[C(β, x, β(x)) &
∀γ∀z(C(γ, x, z)→ β(x) = z)], so (c) ∃β∃y[C(β, x, y) & ∀z(∃γC(γ, x, z)→ y = z)]
or equivalently (d) ∃y[∃βC(β, x, y) & ∀z(∃γC(γ, x, z)→ y = z)], or equivalently
∃!y∃βC(β, x, y). An ∀x-introduction completes the proof.

(1←): Assume (a) ∀x∃!y∃β(A(β) & β(x) = y). By Theorem 5.2(5), (b) ∃βA(β)
and (c) ∀x∀y∀z[(∃βA(β) & β(x) = y) & ∃γ(A(γ) & γ(x) = z)→ y = z], and so
(c′) ∀β∀γ∀x∀y∀z[(A(β) & β(x) = y) & (A(γ) & γ(x) = z)→ y = z]. This entails
(d) ∀β∀γ∀x[A(β) & A(γ)→ β(x) = γ(x)], so (e) ∀β∀γ[A(β) & A(γ)→ β = γ],
which with (b) gives ∃!βA(β).

(2) and (3) are immediate applications of Theorem 5.2(2). �

5.4. Remark. If the hypothesis of CC10 is strengthened to ∀α∃!xA(α, x) then
the resulting continuous comprehension principle CC10! is equivalent to CC11!.
Definable functions from NN or N to N, N × N, NN and NN × NN can be studied
constructively in the subsystem B! ≡df IA1 + AC00! + BI1 of B, where detachable
subsets of N have characteristic functions. In the subsystem I! ≡df B! + CC10!
of I−, definable functions even have moduli of continuity.

5.5. Theorem.

(1) IA1 + AC00! ` AC01!, and hence B! ` AC01!
(2) I! ` CC11!
(3) B ⊆ B! + DC1 ( I! + DC1 ( I− + DC1 ( I.

Proof. (1) My original proof in [20], apparently not well known, is summarized
here. Assume (a) ∀x∃!αA(x, α). Then (b) ∀x∀y∃!z∃α(A(x, α) & α(y) = z) by
Corollary 5.3(1), so (c) ∀x∃!z∃α(A((x)0, α) & α((x)1) = z), and hence by AC00!:
(d) ∃β∀x∃α(A((x)0, α) & α((x)1) = β(x)). For ∃β-elimination from (d) assume
(e) ∀x∃α(A((x)0, α) & α((x)1) = β(x)), so (f) ∀x∀y∃α(A(x, α) & α(y) = β(〈x, y〉))
and also (using (b)) ∀x∀y∀α(A(x, α)→ α(y) = β(〈x, y〉)). From this we conclude
(g) ∀x∀α(A(x, α)→ α = λy.β(〈x, y〉)), and thus ∀xA(x, λy.β(〈x, y〉)) by (a). Then
(h) ∃β∀xA(x, λx.β(〈x, y〉)) by ∃β-introduction, discharging (e).

(2) was proved by Kleene; a hint is on p. 89 of [14]. His proof, rewritten by
him to use AC01! in place of AC00, was included in [20] at his request.

(3) The inclusions follow from the definitions, Theorem 3.9 and parts (1),(2) of
this theorem. For the inequalities: B! + DC1 is consistent with classical logic but
I! + DC1 is not. I! + DC1 is consistent with Kripke’s Schema by [22], and the
model presented there does not satisfy I− by [17]. Krol’s model [18] for I− satisfies
Kripke’s Schema, which is inconsistent with I as Kripke showed (cf. [26]). �

6. Classical Content of I Relative to N ◦

Omega-models of classically sound constructive systems may not interest an
intuitionist, but should be significant for Bishop constructivists, who work in the
common core of intuitionistic, classical and constructive recursive mathematics.
Classical omega-models, with the standard natural numbers as type-0 objects but
restrictions on the type-1 objects, make it easy to separate subsystems of B.

Kleene proved in [14] that IRA 6` FT1 because the recursive sequences do not
provide a classical omega-model of IRA + FT1 but the arithmetical sequences
do; this distinction is exploited in [36]. Even the hyperarithmetical sequences fail
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to satisfy BI1, so BI1 is stronger than FT1 over IRA. Classical omega-models of
B contain sequences from all levels of the projective hierarchy, although Veldman
[35] proved that in I the projective hierarchy collapses at Σ1

2.
If S is a formal system based on intuitionistic logic such that S◦ ` 0 = 1, then Sg

is also inconsistent.13 However, if S′ is a subsystem of S such that S′◦ is consistent
then (S′◦)g is part of the classical content of S, and S ∪ (S′◦)g may be consistent.

6.1. Definition. If S is a formal system extending IA1 such that S◦ ` 0 = 1, and
if S has a subsystem with a classical model M◦, the maximum subtheory SM◦ of
S relative toM◦ is the set of all theorems of S which are (classically) true inM◦.
The minimum classical extension S+g

M◦ of S relative to M◦ is the closure under
intuitionistic logic of S ∪ (SM◦)

g. The maximum classical content of S relative
toM◦ is the closure under intuitionistic logic of SM◦∪ (SM◦)

g.

6.2. Theorem. (G. Vafeiadou, in [25]) The minimum classical extension I+gN ◦ of
I relative to classical Baire space N ◦ (a classical omega-model of B) is consistent
and includes the negative interpretation (TN ◦)

g of true classical analysis.
Proof. Let F be any sentence (e.g. ∀α[∀xα(x) = 0 ∨ ¬∀xα(x) = 0]) which has

the properties I ` ¬F and B ` Fg, so B◦ ` F. Then I ` (¬F ∨ E) for every
sentence E; but (¬F ∨ E) is true in N ◦ if and only if E is true in N ◦, if and only if

Eg ∈ (TN ◦)
g. Moreover, B ` (¬F ∨ E)g ↔ Eg, so (TN ◦)

g ⊆ I+gN ◦ . If N ◦ is classical
Baire space, then (TN ◦)

g is consistent with I by Lemma 8.4a, Theorem 9.3 and

Corollary 9.4 in [14], so I+gN ◦ is consistent also. �
This result is quite subtle. Lemma 8.4a in [14] says that negative statements

which are true in N ◦ are recursively realizable; therefore they are consistent with
I by Theorem 9.3 and Corollary 9.4. The consistency of I+gN ◦ follows immediately.

7. Another Context: Constructive Recursive Mathematics

7.1. Axiomatizing the recursive model. Troelstra and van Dalen [33] propose
to axiomatize constructive recursive mathematics, up to and including the Kreisel-
Lacombe-Shoenfield-Tsejtin Theorem, by HA + ECT0 + MP0 where ECT0 is
Troelstra’s “extended Church’s Thesis” (cf. [30]) and MP0 is an arithmetical form
of Markov’s Principle. By Kleene’s number-realizability, HA + ECT0 + MP0 is
consistent relative to its classically sound subtheory HA + MP0; but ECT0 is
inconsistent with classical arithmetic HA◦. This is a problem because Russian
recursive analysis is consistent with classical logic (although Markov’s Principle is
the only nonconstructive logical principle it actually uses.)

For a classically sound axiomatization of constructive recursive mathematics
using intuitionistic logic, the two-sorted language is ideal. IRA ensures that all
recursive sequences are available and makes it possible to develop the theory of
recursive partial functions. Markov’s Principle takes the form MP1, and Church’s
Thesis (with no parameters allowed) becomes simply

CT1. ∀αGR(α)

when GR(α) ≡df ∃e[∀x∃yT(e, x, y) & ∀x∀y(T(e, x, y)→ U(y) = α(x))].

13The definitions of Eg and Sg, and of S+g when S◦ is consistent, are in Section 2.
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7.2. Proposal. GR ≡df IRA + MP1 + CT1 is an appropriate basic axiomatic
system for constructive recursive analysis, based on intuitionistic logic. It has
an omega-model K◦ in which recursive sequences are the type-1 objects, so is
classically sound.

The axiom CT1 fails in B◦ by Lemma 9.8 of [14], and is refutable in I using
CC10, but its negative interpretation is consistent with I by [21].14 In fact, GR
contains its negative interpretation. Consider the restricted double-negation-shift
principle

Σ0
1-DNS0. ∀x¬¬∃yα(〈x, y〉) = 0→ ¬¬∀x∃yα(〈x, y〉) = 0,

a relatively weak consequence of MP1 which suffices over IA1 to prove the negative
interpretation of QF-AC00.

7.3. Theorem.

(1) IA+g
1 = IA1, so IA1 + MP1 is negatively interpretable in IA1.

(2) IRA+g = IRA + Σ0
1-DNS0.

(3) IA1 + CT1 ` ∀α¬¬GR(α).
(4) IA1 + Σ0

1-DNS0 ` (∀α¬¬GR(α))↔ (CT1)
g).

(5) GR+g = GR + Σ0
1-DNS0 + ∀α¬¬GR(α) = GR.

Proof. Corollary 1 (c),(d) in [25] justify (1),(2) respectively, since the negative
interpretation of MP1 is provable by intuitionistic logic. (3) is trivial. (4) is by
intuitionistic logic with the fact that T(e, x, y) is quantifier-free, so equivalent in
IA1 to its double negation. (5) follows immediately from (1)-(4). �

7.4. Corollary. I + ¬MP1 is consistent with the negative interpretation of GR.
Proof. The proof in [21] that ∀α¬¬GR(α) is consistent with I + ¬MP1 is by

Grealizability. Σ0
1-DNS0 is Grealizable, so I + Σ0

1-DNS0 + ¬MP1 + ∀α¬¬GR(α) is
also consistent; and GRg ⊆ IRA + Σ0

1-DNS0 + ∀α¬¬GR(α) by Theorem 7.3. �

7.5. Remark. Properties of recursive sequences can easily be formulated and
studied over GR. Kleene’s recursive counterexample to the fan theorem is the
basis for the axiom Veldman [36] calls “Kleene’s Alternative:”

KA? ∃β[∀αB(α)∃n[β(α(n)) = 1 & ∀m∃αB(α)∀n(α(n) ≤ m→ β(α(n)) 6= 1)]]

(where B(α) ≡ ∀xα(x) ≤ 1). One might ask whether or not GR ` KA?

7.6. Adding dependent choice. Although DC1 evidently fails in the classical
omega-model of GR with recursive sequences as the type-1 objects, GR + DC1

may well be consistent. Kleene and Nelson’s 1945-realizability can be adapted to
the two-sorted language by interpreting sequence variables by gödel numbers of
general recursive functions and using the fact that every functor and every term
of the language represents a primitive recursive function of its free variables. The
only number which can realize a prime formula s(x, α) = t(y, β) when x, y, α, β are
interpreted by n,m, f, g is the code 〈s(n, {f}), t(m, {g})〉 for the pair of values,
and only under the condition that s(n, {f}) = t(m, {g}).

Assuming this argument is correct, GR + DC1 is a good formal system for
constructive recursive mathematics and IA1 + DC1 (= IRA + DC1) is a common
subsystem of the formal systems for classical, intuitionistic, constructive recursive,
and Bishop constructive analysis. Moreover, IA1 + WMP + DC1 is a common
subsystem of the first three which is consistent with the fourth.

14In contrast, the negative interpretation of CC11 is inconsistent with I and with B◦.
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