
Embedding the Constructive and the Classical in
the Intuitionistic Continuum

Joan Rand Moschovakis

Occidental College (Emerita) and MPLA

Proof, Truth and Computation
Fraueninsel, Chiemsee

July 24, 2014



Outline:

1. Intuitionistic vs. classical logic and arithmetic

2. Intuitionistic, constructive and classical Baire space (”the
continuum,” ωω with extensional equality):

I Brouwer’s choice sequences (infinitely proceeding sequences)
I Constructive sequences and Brouwer’s lawlike sequences

(hypothetically or actually completely determined)
I Classical sequences (arbitrary, completely determined)

3. Embedding the constructive and classical continua in the
intuitionistic continuum via a 3-sorted system FIRM, using
logic and language to separate the recursive, constructive,
classical and intuitionistic components of the continuum.

4. Kreisel’s intensionally lawless sequences, an extensional
alternative, and a translation theorem

5. A definably well ordered subset (R,≺R) of the continuum,
with the consistency of FIRM assuming R is countable

6. Genericity, precursors, and summary of the unified picture



Intuitionistic vs. classical logic and arithmetic:

1. ¬, &, ∨, →, ∀ and ∃ are all primitive in pure intuitionistic
logic, though ¬ and ∨ are definable in intuitionistic arithmetic.

2. Intuitionistic propositional logic replaces the classical laws
(A ∨ ¬A) and (¬¬A→ A) by (¬A→ (A→ B)).

3. ¬∀x¬A(x)↔ ¬¬∃xA(x) and ¬∃x¬A(x)↔ ∀x¬¬A(x) are
valid intuitionistically, but the double negations cannot be
eliminated. Intuitionistically, ¬¬∃ and ∀¬¬ express the
classical existential and universal quantifiers. (P. Kraus)

4. Intuitionistic first-order arithmetic IA has the same
mathematical axioms as classical (Peano) arithmetic PA:
axioms for =, 0, ′, +, ·, and the mathematical induction
schema. Formally, IA is a proper subsystem of PA, but the
negative translations showed that “the system of intuitionistic
arithmetic and number theory is only apparently narrower
than the classical one, and in truth contains it, albeit with a
somewhat deviant interpretation.” (Gödel 1933)



How Intuitionistic Logic Affects Consistency:

Intuitionistic propositional logic proves ¬¬(A ∨ ¬A), so every
consistent formal system based on intuitionistic logic is consistent
with every sentence (closed formula) of the form A ∨ ¬A.
Brouwer wrote: “Consequently, the theorems which are usually
considered as proved in mathematics, ought to be divided into
those that are true and those that are non-contradictory.”

Intuitionistic predicate logic does not prove ¬¬∀x(A(x) ∨ ¬A(x)).

If intuitionistic arithmetic IA is consistent, then every arithmetical
sentence of the form ∀x(A(x) ∨ ¬A(x)) is consistent with IA
because IA is contained in PA.

But if A(x) is ∃zT (x , x , z), expressing “the computation of {x}(x)
converges,” then ¬∀x(A(x) ∨ ¬A(x)) is also consistent with IA
(and in fact true in Russian recursive mathematics).

Intuitionistic logic permits divergent mathematical views.



“The Continuum”: The points of the linear continuum can be
represented by infinite sequences of natural numbers. The
collection ωω of all such sequences with the finite initial segment
topology will be called “the continuum” from now on.

. Brouwer’s intuitionistic continuum consists of infinitely
proceeding sequences or “choice sequences” α of natural numbers,
generated by more or less freely choosing one integer after another.
At each stage, the chooser may or may not specify restrictions
(consistent with those already made) on future choices. It follows
that ¬∀α(∀x(α(x) = 0) ∨ ¬∀x(α(x) = 0)) is intuitionistically true.

. Brouwer called “lawlike” any choice sequence all of whose values
are determined in advance according to some fixed law.

. Reviewing Bishop’s fundamental work, Myhill wrote about the
constructive continuum: “An important difference [from Brouwer’s
continuum] is that the notion of ‘free choice sequence’ is dropped
and the only sequences used are lawlike.” (JSL 1970)



. The classical continuum consists of all possible infinite sequences
of natural numbers, each considered to be completely determined.
∀α(A(α) ∨ ¬A(α)) is classically true for classical sequences α.

So the intuitionistic continuum seems incompatible with the
classical continuum. Still, there are areas of agreement, including

1. 2-sorted primitive recursive arithmetic IA1,

2. the axiom of countable choice AC01, and

3. induction up to a countable ordinal (bar induction BI!).

The constructive continuum may be thought of as a proper subset
of the intuitionistic continuum, satisfying (1) and (2).

. In “Foundations of Intuitionistic Mathematics” (1965) Kleene
and Vesley formalized the common core B ((1), (2) and (3)) using
intuitionistic logic with two sorts of variables. The intuitionistic
FIM = B + CC11, where CC11 expresses continuous choice. The
classical theory C = B + (A ∨ ¬A) is inconsistent with FIM, but
Kleene proved that FIM is consistent relative to B.



Brouwer distinguished three infinite cardinalities:

1. denumerably infinite, as the natural numbers.

2. denumerably unfinished, when “each element can be
individually realized, and . . . for every denumerably infinite
subset there exists an element not belonging to this subset.”
(footnote to “Intuitionism and Formalism” [1912])

3. nondenumerable, as the intuitionistic continuum.

. The class of all lawlike sequences is denumerably unfinished. If
b0, b1, b2, . . . is a lawlike sequence of lawlike sequences, the
sequence b∗(n) = bn(n) + 1 is lawlike and differs from every bn.

. The classical sequences are individually realized and have no
classical enumeration. The classical continuum can be treated as
denumerably unfinished by considering a countable model!

. Kleene proved that FIM + PA is consistent if C is. In fact the
arithmetical LEM is equivalent over IA1 + AC00! to classical bar
induction for arithmetical predicates. How about the lawlike LEM?



Embedding Theorem. (a) A unified axiomatic theory FIRM of the
continuum extends Kleene’s FIM in a language with a third sort of
variable over lawlike sequences. FIRM proves that every lawlike
sequence is extensionally equal to a choice sequence, but not
conversely. The subsystem FIM+ of FIRM without lawlike
sequence variables is FIM with Kleene’s CC11 strengthened to
Troelstra’s GC11. The subsystem R of FIRM without choice
sequence variables is a notational variant of the classical system C.

(b) The subsystem IR of R with intuitionistic logic expresses
Bishop’s constructive mathematics BCM. Russian recursive
mathematics RRM = IR + ECT + MP is consistent relative to IR.

(c) Assuming a certain definably well ordered subset R of the
continuum is countable, a classical realizability interpretation
establishes the consistency of an extension FIRM(≺) of FIRM
in which ≺ well orders the lawlike sequences.



Why can’t we assume all lawlike sequences are recursive?

. Kleene’s formal language had variables x , y , z , . . . over numbers
and α, β, γ, . . . over choice sequences, but no special variables
a, b, c, . . . over lawlike sequences. All the lawlike sequences he
needed were recursive.
. Brouwer seems to have expressed no opinion on Church’s Thesis,
although it is likely that he was aware of it.
. Primitive recursive sequences are lawlike, so recursive sequences
are lawlike by the comprehension axiom:

ACR
00! ∀x∃!yA(x , y)→ ∃b∀xA(x , b(x))

for A(x , y) with only number and lawlike sequence variables, where

∃!yB(y) ≡ ∃yB(y) & ∀x∀y(B(x) & B(y)→ x = y).

In R with classical logic, by ACR
00! all classical analytic functions

(with sequence quantifiers ranging over the lawlike part of the
continuum) are lawlike. So why aren’t all sequences lawlike?



In “Lawless sequences of natural numbers,” Comp. Math. (1968),
Kreisel described a system LS of axioms for numbers m, n . . .,
lawlike sequences b, c , . . . and intensionally “lawless” sequences
α, β, . . . in which “the simplest kind of restriction on restrictions is
made, namely some finite initial segment of values is prescribed,
and, beyond this, no restriction is to be made”.

I Equality (= identity) of lawless sequences is decidable, and
distinct lawless sequences are independent.

I Every neighborhood contains a lawless sequence.

I The axiom of open data holds: If A(α) where α is lawless,
then A(β) for all lawless β in some neighborhood of α.

I Strong effective continuous choice holds. If ∀α∃bA(α, b) then
for some lawlike b, e: b codes a sequence {λx .b(〈n, x〉)}n∈ω
of sequences, e codes a continuous function defined on all
choice sequences, and ∀αA(α, λx .b(〈e(α), x〉)).



Troelstra, in “Choice Sequences: A Chapter of Intuitionistic
Mathematics”(1977) and in Chapter 12 of “Constructivism in
Mathematics: An Introduction” (Troelstra and van Dalen, 1988),
analyzed and corrected the axioms of LS. To justify strong
effective continuous choice, Troelstra formulated

The Extension Principle: Every function defined (and continuous)
on all the lawless sequences has a continuous total extension.

He noted that identity is the only lawlike operation under which
the class of lawless sequences is closed, suggested that lawlike
sequence variables may be interpreted as ranging over “the classical
universe of sequences,” and gave a detailed proof of Kreisel’s

Translation Theorem: Every formula E of LS without free lawless
sequence variables can be translated uniformly into an equivalent
formula τ(E ) with only number and lawlike sequence variables, so
“lawless sequences can be regarded as a figure of speech.”



Relatively Lawless Sequences: an Extensional Alternative

In 1987-1996 I developed a system RLS of axioms for numbers,
lawlike sequences a, b, . . . , h and choice sequences α, β, . . .
extending Kleene’s B. An arbitrary choice sequence α is defined to
be “R-lawless” (lawless relative to the class R of lawlike sequences)
if every lawlike predictor correctly predicts α somewhere:

RLS(α) ≡ ∀b(Pred(b)→ ∃xα ∈ α(x) ∗ b(α(x))).

Pred(b) ≡ ∀n(Seq(n)→ Seq(b(n))) where Seq(n) says n codes a
finite sequence of length lh(n); u ∗ v codes the concatenation of
sequences coded by u and v ; and α ∈ u abbreviates u = α(lh(u))
where α(0) = 〈 〉 and α(x + 1) = 〈α(0) + 1, . . . , α(x) + 1〉.
Extensional equality between arbitrary R-lawless sequences α, β is
not assumed to be decidable. Two R-lawless sequences α and β
are independent if and only if their merge [α, β] is R-lawless, where
[α, β](2n) = α(n) and [α, β](2n + 1) = β(n). (cf. Fourman 1982)



RLS has logical axioms and rules for all three sorts of quantifiers
and an inductive definition of term and functor. R-terms and
R-functors are those without choice sequence variables.

The new mathematical axioms of RLS include two density axioms:

RLS1. ∀w(Seq(w)→ ∃α[RLS(α) & α ∈ w ]),

RLS2. ∀w(Seq(w)→ ∀α[RLS(α)→ ∃β[RLS([α, β]) & β ∈ w ]]).

Definition. A formula is restricted if its choice sequence quantifiers
all vary over relatively independent R-lawless sequences, so
∀α(RLS([α, β])→ B(α, β)) and ∃α(RLS([α, β]) & B(α, β)) are
restricted if B(α, β) is restricted and has no choice sequence
variables free other than α, β.

For A(x , y), A(x , b) restricted, with no free occurrences of choice
sequence variables, RLS has the lawlike comprehension axiom

ACR
00! ∀x∃!yA(x , y)→ ∃b∀xA(x , b(x)), or equivalently

ACR
01! ∀x∃!bA(x , b)→ ∃b∀xA(x , λy .b(〈x , y〉)).



For the axiom schemas of open data

RLS3. ∀α[RLS(α)→ (A(α)→
∃w(Seq(w) & α ∈ w & ∀β[RLS(β)→ (β ∈ w → A(β))]))]

and effective continuous choice for R-lawless sequences

RLS4. ∀α[RLS(α)→ ∃bA(α, b)]→
∃e∃b∀α[RLS(α)→ ∃n(e(α) = n & A(α, λx .b(〈n, x〉)))]

and the restricted law of excluded middle

RLEM. ∀α[RLS(α)→ A(α) ∨ ¬A(α)]

the A(α) and A(α, b) must be restricted, with no choice sequence
variables free but α. The LEM for formulas with only number and
lawlike sequence variables follows from RLEM by RLS1.

Remark. RLS1, ACR
00! and RLS4 entail lawlike countable choice:

ACR
01. ∀x∃bA(x , b)→ ∃b∀xA(x , λy .b(〈x , y〉))

for A(x , b) restricted, with no choice sequence variables free.

ACR
01 entails ACR

00!, and RLS3, ACR
01 and RLEM entail RLS4.



RLS proves:

I ∀a∃!β(∀x a(x) = β(x)). Every lawlike sequence is
(extensionally) equal to an arbitrary choice sequence.

I ∀α[RLS(α)→ ¬∃b(∀x b(x) = α(x))]. No R-lawless sequence
is equal to a lawlike sequence.

I Independent R-lawless sequences are unequal.

I The R-lawless sequences are closed under prefixing an
arbitrary finite sequence of natural numbers.

I If α is R-lawless and b is a lawlike injection with lawlike
range, then α ◦ b is R-lawless.

I The R-lawless sequences are dense in the continuum.

I Troelstra’s extension principle fails. Every R-lawless sequence
contains a (first) 1 but the constant 0 sequence doesn’t.

RLS does not prove that equality between arbitrary R-lawless
sequences α, β is decidable.



Theorem 1. Every restricted formula E with no arbitrary choice
sequence variables free is equivalent in RLS to a formula ϕ(E )
with only number and lawlike sequence variables.

Proof: Instead of the constant K0 Troelstra used to represent the
class of lawlike codes of continuous total functions, we define

J0(e) ≡ ∀u[Seq(u) & ∀n < lh(u)(e(u(n)) = 0)→
∃v(Seq(v) & e(u ∗ v) > 0)].

Then RLS proves ∀e(J0(e)↔ ∀α[RLS(α)→ e(α) ↓]) and
∀α[RLS(α)↔ ∀e(J0(e)→ e(α) ↓)], so the conclusion of effective
continuous choice for R-lawless sequences can be rewritten

∃e∃b(J0(e) & ∀n∀α[RLS(α)→ (e(α) = n→ A(α, λx .b(〈n, x〉)))]).

As in Troelstra’s proof for LS, open data converts existential
R-lawless quantifiers to universal ones. Subformulas of the form
∀α[RLS(α)→ A(α)] are translated in terms of simpler ones. For
prime, lawlike P(a), RLS proves ∀α[RLS(α)→ P(α)]↔ ∀aP(a).



Definition. R is the subsystem of RLS obtained by restricting the
language to number and lawlike sequence variables, omitting
RLS1-4, replacing ACR

00! by ACR
01, and replacing RLEM by LEM.

IR is the intuitionistic subsystem of R, without the LEM.

Remark. IR, with intuitionistic logic and countable choice,
represents Bishop’s constructive mathematics. For B(w) and A(w)
without lawlike sequence variables, Brouwer’s bar theorem is

BI! ∀α∃!xB(α(x)) & ∀w(Seq(w) & B(w)→ A(w)) &
∀w(Seq(w) & ∀sA(w ∗ 〈s + 1〉)→ A(w))→ A(〈 〉).

BI (like BI! but omitting the !) conflicts with FIM, but for B(w),
A(w) without choice sequence variables, R proves

BIR . ∀a∃xB(a(x)) & ∀w(Seq(w) & B(w)→ A(w)) &
∀w(Seq(w) & ∀sA(w ∗ 〈s + 1〉)→ A(w))→ A(〈 〉).

So R is a notational variant of the classical theory C.



Definition. RLS(≺) is the system resulting from RLS by extending
the language to include prime formulas u ≺ v where u, v are
functors, and adding axioms W0-W5:

W0. α = β & α ≺ γ → β ≺ γ.
β = γ & α ≺ β → α ≺ γ.

W1. ∀a∀b[a ≺ b → ¬b ≺ a].

W2. ∀a∀b∀c[a ≺ b & b ≺ c → a ≺ c].

W3. ∀a∀b[a ≺ b ∨ a = b ∨ b ≺ a].

W4. ∀a[∀b(b ≺ a→ A(b))→ A(a)]→ ∀aA(a),

where A(a) is any restricted formula, with no choice sequence
variables free, in which b is free for a.

W5. α ≺ β → ¬∀a∀b¬(α = a & β = b).

Remark. For A(a) restricted, with no choice sequence variables
free, RLS(≺) proves

∃aA(a)↔ ∃!a(A(a) & ∀b(b ≺ a→ ¬A(b))).



Definition. FIM+ is FIM with CC11 strengthened to GC11.
FIRM is the common extension of FIM+ and RLS in the 3-sorted
language. FIRM(≺) similarly extends FIM+ and RLS(≺).

Theorem 2. Iterating definability, quantifying over numbers and
lawlike and independent R-lawless sequences, eventually yields a
definably well ordered subset (R,≺R) of the classical continuum.
Assuming R is countable “from the outside,”

(a) There is a classical model M(≺R) of RLS(≺), with R as the
class of lawlike sequences.

(b) The class RLS of R-lawless sequences of the model is disjoint
from R and is Baire comeager in ωω, with classical measure 0.

(c) A classical realizability interpretation establishes the
consistency of FIRM(≺) and hence of FIRM.

We outline the inductive definition of (R,≺R) and define M(≺R).
For details see “Iterated definability, lawless sequences, and
Brouwer’s continuum,” http://www.math.ucla.edu/∼joan/ .



Definition. If F (a0, . . . , ak−1) ≡ ∀x∃!yE (x , y , a0, . . . , ak−1) is a
restricted formula where x , y are all the distinct number variables
free in E , and the distinct lawlike sequence variables a0, . . . , ak−1
are all the variables free in F in order of first free occurrence, and
if A ⊂ ωω, ≺A wellorders A, ϕ ∈ ωω and ψ0, . . . , ψk−1 ∈ A, then
E defines ϕ over A from ψ0, . . . , ψk−1 if and only if when lawlike
sequence variables range over A and choice sequence variables over
ωω, ≺ is interpreted by ≺A, and a0, . . . , ak−1 by ψ0, . . . , ψk−1:

(i) F is true, and

(ii) for all x , y ∈ ω: ϕ(x) = y if and only if E (x, y) is true

Definition. Def(A,≺A) is the class of all ϕ ∈ ωω which are defined
over (A,≺A) by some E from some ψ0, . . . , ψk−1 in A.

Observe that A ⊆ Def(A,≺A), since a(x) = y defines every ϕ ∈ A
over A from itself. We have to extend ≺A to a well ordering ≺∗A
of Def(A,≺A) so the process can be iterated.



The classical model M(≺R) of RLS(≺):

An R-formula has no arbitrary choice sequence variables free.
Let E0(x , y),E1(x , y), . . . enumerate all restricted R-formulas in
the language L(≺) containing free no number variables but x , y ,
where E0(x , y) ≡ a(x) = y . For each i , let Fi ≡ ∀x∃!yEi (x , y).

For ϕ, θ ∈ Def(A,≺A), set ϕ ≺∗A θ if and only if ∆A(ϕ) < ∆A(θ)
where ∆A(ϕ) is the smallest tuple (i , ψ0, . . . , ψk−1) in the
lexicographic ordering < of ω ∪

⋃
k>o(ω×Ak) determined by < on

ω and ≺A on A such that Ei defines ϕ over A from ψ0, . . . , ψk−1.

If ϕ ∈ A then ∆A(ϕ) = (0, ϕ), so ≺A is an initial segment of ≺∗A.

Define R0 = φ, ≺0= φ, Rζ+1 = Def(Rζ ,≺ζ), ≺ζ+1=≺∗ζ ,
and at limit ordinals take unions.

By cardinality considerations there is a least ordinal η0 such that
Rη0 = Rη0+1. Let R = Rη0 and ≺R=≺η0 . M(≺R) is the natural
classical model in which lawlike sequence variables range over R.



Key lemmas for the proof that if R is countable then M(≺R) is a
classical model of RLS(≺) with R as the lawlike sequences:

Lemma 1. If R is countable then

(i) There is an R-lawless sequence, and

(ii) If α is R-lawless there is a sequence β such that [α, β] is
R-lawless.

Lemma 2. If α is R-lawless, so are 〈n + 1〉 ∗ α for every natural
number n and α ◦ g for every injection g ∈ R whose range can be
enumerated by an element of R.

Lemma 3. If A(α) satisfies the axiom RLS3 of open data in
M(≺R), so does ¬A(α).

. We now appeal to the classical set-theoretic assumption that
every definably well ordered subset of ωω is countable.

. This assumption is provably consistent with classical ZFC if
ZFC + ‘there exists an inaccessible’ is consistent. (Levy 1968)



R and ≺R are definable over ωω with closure ordinal η0. Let
χ : ω × ω → {0, 1} code a well ordering of type η0 and let
Γ : ω → R be a bijection witnessing simultaneously the
countability of R and (via χ) the order of generation of its
elements, so that for each n,m ∈ ω:

Γ(n) ≺R Γ(m)⇔ χ(n,m) = 1.

A Γ-interpretation Ψ of a list Ψ = x1, . . . , xn, α1, . . . , αk , a1, . . . , am
of distinct variables is any choice of n numbers, k elements of ωω

and m numbers r1, . . . , rm. Then Γ(Ψ) is the corresponding list of
n numbers, k sequences and m elements Γ(r1), . . . , Γ(rm) of R.

Lemma 4. To each list Ψ of distinct number and lawlike sequence
variables and each restricted R-formula A(x , y) containing free at
most Ψ, x , y where x , y , a 6∈ Ψ, there is a partial function ξA(Ψ) so
that for each Γ-interpretation Ψ of Ψ: If ∀x∃!yA(x , y) is true-Γ(Ψ)
then ξA(Ψ) is defined and ∀xA(x , a(x)) is true-Γ(Ψ, ξA(Ψ)).



The Γ-realizability interpretation of FIRM(≺): For π ∈ ωω, E a
formula of L(≺) with at most the distinct variables Ψ free, and Ψ
a Γ-interpretation of Ψ, define π Γ-realizes-Ψ E :

I π Γ-realizes-Ψ a prime formula P, if P is true-Γ(Ψ).

I π Γ-realizes-Ψ A & B, if (π)0 (= λn.(π(n))0) Γ-realizes-Ψ A
and (π)1 Γ-realizes-Ψ B.

I π Γ-realizes-Ψ A ∨ B, if (π(0))0 = 0 and (π)1 Γ-realizes-Ψ A,
or (π(0))0 6= 0 and (π)1 Γ-realizes-Ψ B.

I π Γ-realizes-Ψ A→ B, if, if σ Γ-realizes-Ψ A, then π[σ]
Γ-realizes-Ψ B.

I π Γ-realizes-Ψ ¬A, if π Γ-realizes-Ψ A→ 1 = 0.

I π Γ-realizes-Ψ ∀xA(x), if π[x ] (= π[λn.x ]) Γ-realizes-Ψ, x
A(x) for each x ∈ ω.

I π Γ-realizes-Ψ ∃xA(x), if (π)1 Γ-realizes-Ψ, (π(0))0 A(x).

I π Γ-realizes-Ψ ∀aA(a), if π[r ] Γ-realizes-Ψ, r A(a) for each
r ∈ ω.



I π Γ-realizes-Ψ ∃aA(a), if (π)1 Γ-realizes-Ψ, (π(0))0 A(a).

I π Γ-realizes-Ψ ∀αA(α), if π[α] Γ-realizes-Ψ, α A(α) for each
α ∈ ωω.

I π Γ-realizes-Ψ ∃αA(α), if (π)1 Γ-realizes-Ψ, (π)0 A(α).

Lemma 5. To each almost negative formula E of L[≺] with at
most Ψ free there is a function εE (Ψ) = λt.εE (Ψ, t) partial
recursive in Γ so that for each Γ-interpretation Ψ of Ψ:

(i) If E is Γ-realized-Ψ then E is true-Ψ , and

(ii) E is true-Ψ if and only if εE (Ψ) Γ-realizes-Ψ E .

Lemma 6. To each list Ψ = x1, . . . , xn, α1, . . . , αk , a1, . . . , am and
each restricted formula E of L(≺) with at most Ψ free there is a
continuous partial function ζE (Ψ) so that for each Γ-interpretation
Ψ of Ψ with [α1, . . . , αk ] ∈ RLS :

(i) If E is Γ-realized then E is true-Γ(Ψ), and

(ii) E is true-Γ(Ψ) if and only if ζE (Ψ) Γ-realizes-Ψ E .



Theorem 2 (c) (restated). Assuming Γ enumerates R as above,
every closed theorem of FIRM(≺) is Γ-realized by some function
and hence FIRM(≺) and FIRM are consistent.

Corollary. The constructive (IR) and classical (R) continuua can
consistently be viewed as the lawlike part of Brouwer’s continuum
with intuitionistic or classical logic, respectively.

Theorem 3. If R is countable, the R-lawless sequences are all the
generic sequences with respect to properties of finite sequences of
natural numbers which are definable over (ω,R, ωω) by restricted
R-formulas with parameters from ω,R.

Dragalin (1974, in Russian), van Dalen (1978, ”An interpretation
of intuitionistic analysis”) and Fourman (1982, ”Notions of choice
sequence”) all suggested modeling lawless by generic sequences.
For the approach described here, Theorem 3 was an afterthought.



In a nutshell:

I R-lawless and random are orthogonal concepts, since a
random sequence of natural numbers should possess certain
regularity properties (e.g. the percentage of even numbers in
its nth initial segment should approach .50 as n increases)
while an R-lawless sequence will possess none.

I Brouwer’s choice sequences satisfy the bar theorem, countable
choice and continuous choice.

I Bishop’s constructive sequences satisfy countable choice.

I The classical sequences satisfy the bar theorem and countable
choice, but not continuous choice.

I The R-lawless sequences satisfy open data and restricted
continuous choice, but not the restricted bar theorem.

I The recursive sequences satisfy recursive countable choice but
not the bar or fan theorem.
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Details of the 3-sorted language L(≺):
Variables with or without subscripts, also used as metavariables:

I i , j , k , . . . , p, q, x , y , z over natural numbers,

I a, b, c , d , e, g , h over lawlike sequences,

I α, β, γ, . . . over arbitrary choice sequences.

Constants f0,. . . ,fp for primitive recursive functions and functionals:
f0 = 0, f1 = ′ (successor), f2 = +, f3 = ·, f4 = exp, . . .

Binary predicate constants =, ≺. Church’s λ. Parentheses (,).
Metavariables s, t over terms and u, v over functors, defined by

I Sequence variables and unary function constants are functors.

I Number variables and fi (u1, . . . , uki , t1, . . . , tmi ) are terms.

I (u)(t) is a term if u is a functor and t is a term.

I λn.t is a functor if t is a term.

Prime formulas: s = t (s, t terms) and u ≺ v (u, v functors).
Logical symbols: & ,∨,→,¬ and ∀, ∃ (3 sorts).



Axioms and rules for 3-sorted intuitionistic predicate logic. The
two sorts of sequence quantifiers are distinguished by

I C → A(b) / C → ∀bA(b) if b is not free in C .

I ∀bA(b)→ A(u) if u is an R-functor free for b in A(b).

I A(u)→ ∃bA(b) if u is an R-functor free for b in A(b).

I A(b)→ C / ∃bA(b)→ C if b is not free in C .

(An R-functor contains no arbitrary choice sequence variables.)

I C → A(β) / C → ∀βA(β) if β is not free in C .

I ∀βA(β)→ A(u) if u is any functor free for β in A(β).

I A(u)→ ∃βA(β) if u is any functor free for β in A(β).

I A(β)→ C / ∃βA(β)→ C if β is not free in C .

Note that ∀a∃!β(∀x a(x) = β(x)) is a theorem. (! = unique)
Equality Axioms assert that = is an equivalence relation and

I x = y → α(x) = α(y) (so also x = y → a(x) = a(y)).



Axioms for 3-sorted intuitionistic number theory:

I Mathematical induction extended to L(≺).

I Defining equations for the primitive recursive function and
functional constants fi (α1, . . . , αki , x1, . . . , xmi ).

I (λx .s(x))(t) = s(t) for s(x), t terms with t free for x in s(x).

Coding finite sequences (after Kleene):

I 〈x0, . . . , xk〉 = Πk
0pxi

i where pi is the ith prime with p0 = 2.

I (y)i is the exponent of pi in the prime factorization of y .

I Seq(y) abbreviates ∀i < lh(y) (y)i > 0 where lh(y) is the
number of nonzero exponents in the prime factorization of y .

I If Seq(y) and Seq(z) then y ∗ z codes the concatenation.

I α(0) = 1 = 〈 〉 and α(n + 1) = 〈α(0) + 1, . . . , α(n) + 1〉.
I α ∈ w abbreviates α(lh(w)) = w , and α = {α(n) : n ∈ ω}.
I If α ∈ w and n < lh(w) then w � n = α(n).



Countable choice:

. AC01. ∀x∃αA(x , α)→ ∃β∀xA(x , λy .β(〈x , y〉)).

Lawlike comprehension, for A(x , b) restricted and with only
number and lawlike sequence variables free:

. ACR
00! ∀x∃!yA(x , y)→ ∃b∀xA(x , b(x)).

Brouwer’s Bar Theorem:

. BI! ∀α∃!xB(α(x)) & ∀w(Seq(w) & B(w)→ A(w)) &
∀w(Seq(w) & ∀s A(w ∗ 〈s + 1〉)→ A(w))→ A(〈 〉).

Generalized Continuous Choice, for A(α) almost negative:

. GC11. ∀α[A(α)→ ∃βB(α, β)]→
∃σ∀α[A(α)→ σ[α] ↓ & ∀β(σ[α] = β → A(α, β))].

σ[α] ↓ abbreviates ∀x∃yσ[α](x) = y and σ[α](x) = y abbreviates
∃z [σ(〈x + 1〉 ∗ α(z)) = y + 1 & ∀n < z σ(〈x + 1〉 ∗ α(n)) = 0].

Continuous Choice CC11 is like GC11 but without the A(α)→.


