HIERARCHIES IN INTUITIONISTIC ARITHMETIC

Joan Rand Moschovakis MPLA and Occidental College

Gjuletchica, December 2002

Intuitionistic First Order Arithmetic HA

 \mathcal{L} : individual variables v_0, v_1, \ldots and constant 0; relation constant =; function constants S, +, \cdot .

Definition. 0 and v_i are terms. If s and t are terms so are s+t and $s \cdot t$. Prime formulas are all equations s=t where s,t are terms. If A, B are formulas and x is a variable then $A \wedge B$, $A \vee B$, $A \to B$, $\neg A$, $\forall xA$ and $\exists xA$ are formulas.

Axioms:
$$\neg Sx = 0$$
, $Sx = Sy \leftrightarrow x = y$, $x = y \rightarrow (x = z \rightarrow y = z)$,

equations defining + and \cdot recursively; induction

$$A(0) \land \forall x(A(x) \to A(Sx)) \to A(x).$$

Axioms and rules of intuitionistic predicate logic, like classical first order logic but with the axiom

$$\neg A \rightarrow (A \rightarrow B)$$

replacing $\neg \neg A \rightarrow A$ (so **HA** $\not\vdash A \lor \neg A$).

Definition. Markov's Principle MP_{PR} is

$$\neg \forall x \neg R(x) \rightarrow \exists x R(x)$$

where R(x) must be primitive recursive.

Definition. Church's Thesis CT_0 is

$$\forall x \exists y A(x,y) \rightarrow \exists e \forall x \exists w [T(e,x,w) \land A(x,U(w))],$$

where T(e, x, w) expresses "w is the least Gödel number of a computation of a value for $\{e\}(x)$ " and U(w) is that value.

Theorem. (Nelson) $HA + MP_{PR} + CT_0$ is consistent.

Definition. Classical Peano Arithmetic is

PA
$$\equiv_{df}$$
 HA + $(\neg \neg A \rightarrow A)$.

Proposition. $PA \vdash MP_{PR}$.

Proposition. PA + CT₀ is inconsistent. Hence HA + MP_{PR} $\not\vdash A \lor \neg A$.

The Standard Arithmetical Hierarchy

Definition. The levels Π_n^0 , Σ_n^0 and Δ_n^0 of the arithmetical hierarchy are defined as follows.

A relation R(x) is Π_1^0 if and only if R(x) is expressible in the form $\forall y P(x,y)$ where P(x.y) is recursive; Σ_1^0 if and only if R(x) can be expressed in the form $\exists y Q(x,y)$ where Q(x,y) is recursive; Δ_1^0 if and only if R(x) is both Σ_1^0 and Π_1^0 .

For n>1, a relation R(x) is Π_n^0 if and only if it can be expressed in the form $\forall y P(x,y)$ where P(x,y) is Σ_{n-1}^0 ; R(x) is Σ_n^0 if and only if it is expressible as $\exists y Q(x,y)$ where Q(x,y) is Π_{n-1}^0 ; and for all n>0:

$$\Delta_n^0 = \Pi_n^0 \cap \Sigma_n^0.$$

Proposition. In ${\bf HA}+{\bf MP_{PR}}$ and in ${\bf PA}$: Every Δ_1^0 relation is recursive, and conversely, every recursive relation is Δ_1^0 .

Proposition. In **PA** every relation R(x) belongs to some level of the standard arithmetical hierarchy. Moreover, each level is different:

Proposition. In $\mathbf{HA} + \mathbf{CT}_0$, the arithmetical hierarchy collapses at Σ_3^0 .

Proof. In **HA**: $\Sigma_n^0 \cup \Pi_n^0 \subseteq \Delta_{n+1}^0$ for every n, and adjacent quantifiers of the same kind can be contracted by primitive recursive pairing. So it is enough to show that in **HA** + CT_0 :

(i)
$$\Pi_3^0 \subseteq \Sigma_3^0$$
, and

(ii)
$$\Pi_4^0 \subseteq \Sigma_3^0$$
.

For (i) observe that in $\mathbf{HA} + \mathbf{CT}_0$ the Π_3^0 relation $\forall y \exists z \forall w P(x,y,z,w)$ is equivalent to each of the following:

(a)
$$\exists e \forall y \exists z [T(e, x, y, z) \land \forall w P(x, y, U(z), w)],$$

(b)
$$\exists e [\forall y \exists z T(e, x, y, z)$$

 $\land \forall y \forall z [T(e, x, y, z) \rightarrow \forall w P(x, y, U(z), w)]],$

(c)
$$\exists e \forall y [\exists z T(e, x, y, z)$$

 $\land \ \forall z \forall w [T(e, x, y, z) \rightarrow P(x, y, U(z), w)]],$

(d) $\exists e \forall y \forall z \forall w \exists v [T(e, x, y, v)]$

$$\wedge [T(e, x, y, z) \rightarrow P(x, y, U(z), w)]].$$

Since T(e,x,y,v) and P(x,y,U(z),w) are primitive recursive, after contracting like quantifiers (d) will be Σ_3^0 .

The proof of (ii) is similar.

Definition. An arithmetical theory \mathcal{T} is closed under **Kleene's Rule** if, whenever $\forall x \exists y A(x,y)$ is closed and $\mathcal{T} \vdash \forall x \exists y A(x,y)$, then for some number e:

$$\mathcal{T} \vdash \forall x \exists y [T(\mathbf{e}, x, y) \land A(x, U(y))].$$

Theorem.(Kleene) If \mathcal{T} is **HA**, **HA** + MP_{PR}, **HA** + CT₀ or **HA** + MP_{PR} + CT₀, then \mathcal{T} is closed under Kleene's Rule.

Definition. A formula A(x) is decidable in a theory \mathcal{T} if

$$\mathcal{T} \vdash \forall x [A(x) \lor \neg A(x)].$$

Similary for $A(x_1, \ldots, x_n)$.

Proposition. If \mathcal{T} contains \mathbf{HA} and is closed under Kleene's Rule, then $A(x_1, \ldots, x_n)$ is decidable in \mathcal{T} if and only if $A(x_1, \ldots, x_n)$ is recursive, provably in \mathcal{T} .

Definition. A formula A(x) is *stable in* a theory \mathcal{T} if

$$\mathcal{T} \vdash \forall x [\neg \neg A(x) \to A(x)].$$

Similarly for $A(x_1, \ldots, x_n)$.

Remark. Decidability implies stability, but not conversely. For example, every Π_1^0 relation is stable in **HA** because every recursive relation is stable and $\neg\neg\forall xA(x)\to\forall x\neg\neg A(x)$ holds in intuitionistic logic. But the Π_1^0 relation $\forall y\neg T(x,x,y)$ is not recursive, and hence not decidable in **HA** or even in **HA** + MP_{PR} + CT₀.

Note. Even when there is (classically) a recursive decision procedure, we may not know what it is. For example, consider

$$B(x) \equiv \forall y[y > x \land Pr(y) \rightarrow \neg Pr(y+2)]$$

where Pr(y) expresses "y is prime." B(x) cannot be nonrecursive. Its Gödel number is?

Definition. The classical quantifiers $\dot{\exists}$, $\dot{\forall}$ are

$$\dot{\exists} \equiv_{Df} \neg \neg \exists \quad \text{and} \quad \dot{\forall} \equiv_{Df} \forall \neg \neg.$$

Note. $\mathbf{HA} \vdash \dot{\exists} x A(x) \leftrightarrow \neg \forall x \neg A(x) \leftrightarrow \neg \neg \dot{\exists} x A(x)$ and $\mathbf{HA} \vdash \dot{\forall} x A(x) \leftrightarrow \neg \exists x \neg A(x) \leftrightarrow \neg \neg \dot{\forall} x A(x)$.

Definition. The levels of the *classical arithmetical hierarchy* are defined using the classical quantifiers. A relation R(x) is $\dot{\Pi}_1^0$ if it is expressible as $\dot{\forall} y P(x,y)$ for some recursive P(x,y); R(x) is $\dot{\Sigma}_1^0$ if it is $\dot{\exists} y P(x,y)$ for some recursive P(x,y). For n>1: R(x) is $\dot{\Pi}_n^0$ if it can be expressed as $\dot{\forall} y P(x,y)$ where P(x,y) is $\dot{\Sigma}_{n-1}^0$; R(x) is $\dot{\Sigma}_n^0$ if it is expressible as $\dot{\exists} y Q(x,y)$ where Q(x,y) is $\dot{\Pi}_{n-1}^0$. For all n>0:

$$\dot{\Delta}_n^0 = \dot{\Pi}_n^0 \cap \dot{\Sigma}_n^0.$$

Proposition. In **HA**, $\dot{\Pi}_1^0 = \Pi_1^0$. In **HA** + MP_{PR} also $\dot{\Sigma}_1^0 = \Sigma_1^0$, hence $\dot{\Delta}_1^0 = \Delta_1^0$ (= recursive) and $\dot{\Pi}_2^0 = \Pi_2^0$.

Proposition. Every relation which is $\dot{\Sigma}_n^0$ or $\dot{\Pi}_n^0$ for any n>0 is stable.

Proposition. In **HA**, and in every consistent extension of **HA** (including **HA** + MP_{PR} + CT₀), every level of the classical arithmetical hierarchy contains new relations.

Proof. Replace the quantifiers in the complete Π_n^0 and complete Σ_n^0 relations, given by Kleene's normal form theorem for **PA**, by classical quantifiers to get stable, complete $\dot{\Pi}_n^0$ and $\dot{\Sigma}_n^0$ relations for **HA**. The classical diagonal arguments by contradiction work because of stability.

Remark. Classically, there is no difference between this hierarchy and the standard arithmetical hierarchy. Intuitionistically they are very different, and neither contains all relations.

Proposition. The relation

$$C(x) \equiv_{Df} \exists y \forall z \neg T(x, y, z) \lor \neg \exists y \forall z \neg T(x, y, z)$$

is not stable in **HA** or in any consistent extension \mathcal{T} of **HA** satisfying Kleene's Rule. So C(x) is not in the classical arithmetical hierarchy.

Proof. If it were, since $\mathbf{HA} \vdash \forall x \neg \neg C(x)$ we would have $\mathcal{T} \vdash \forall x C(x)$ so there would be a recursive decision procedure for $\exists y \forall z \neg T(x, y, z)$, which is impossible.

Question. Is there a consistent extension of **HA** which satisfies Kleene's Rule, and admits some sort of *total* arithmetical hierarchy which does not collapse?

Answer. Yes. First let $\mathbf{HA}^{\bullet} \equiv_{Df} \mathbf{HA} + \mathbf{MP}_{PR}$. In \mathbf{HA}^{\bullet} , every Π_2^0 relation is stable, and

$$\dot{\Pi}_1^0 = \Pi_1^0, \quad \dot{\Sigma}_1^0 = \Sigma_1^0, \quad \dot{\Pi}_2^0 = \Pi_2^0.$$

Even in **HA**: \wedge , \rightarrow , \neg and \forall preserve stability.

Definition. The classical extension of Church's Thesis ECT• is

$$\forall x [A(x) \to \exists y B(x,y)]$$

$$\to \exists e \forall x [A(x) \to \exists w [T(e,x,w) \land B(x,U(w))]],$$

for any classical A(x) (belonging to the classical arithmetical hierarchy).

Theorem. (essentially Troelstra) The theory $\mathbf{HA}^{\bullet} + \mathbf{ECT}^{\bullet}$ is consistent and obeys Kleene's Rule. Moreover, every relation R(x) has a corresponding classical relation $R^{\bullet}(x,y)$ such that

(i)
$$\mathbf{HA}^{\bullet} + \mathsf{ECT}^{\bullet} \vdash \forall x [R(x) \leftrightarrow \exists y R^{\bullet}(x, y)].$$

(ii)
$$\mathbf{HA}^{\bullet} + \mathsf{ECT}^{\bullet} \vdash R(\mathbf{t}) \Leftrightarrow \mathbf{HA}^{\bullet} \vdash \exists y R^{\bullet}(\mathbf{t}, y).$$

(t is any term free for x in $\exists y R^{\bullet}(x, y).$)

Remark. In \mathbf{HA}^{\bullet} + \mathbf{ECT}^{\bullet} , every stable relation is classical, since $\neg\neg\exists y R^{\bullet}(x,y)$ is classical.

The Extended Intuitionistic Hierarchy

Definition. The extended intuitionistic arithmetical hierarchy is defined as follows for $n \geq 1$: The relation R(x) is $\Sigma^0(\dot{\Sigma}^0_n)$ if and only if R(x) is expressible as $\exists y B(x,y)$ where B(x,y) is $\dot{\Sigma}^0_n$; and R(x) is $\Sigma^0(\dot{\Pi}^0_n)$ if and only if it can be expressed as $\exists y B(x,y)$ where B(x,y) is $\dot{\Pi}^0_n$.

Proposition. In **HA** (or any consistent extension of **HA**), for every $n \ge 1$: $\Sigma^0(\dot{\Pi}_n^0) \not\subseteq \Sigma^0(\dot{\Sigma}_n^0)$.

Proof. (n=1) Let R(x) be $\exists y \forall z \neg T(x,x,y,z)$. If $R(x) \leftrightarrow \exists u \exists v Q(x,u,v)$ with a recursive Q(x,u,v), then using primitive recursive pairing and projection with intuitionistic logic,

$$\neg \neg R(x) \leftrightarrow \dot{\exists} u \dot{\exists} v Q(x, u, v) \\ \leftrightarrow \dot{\exists} w Q(x, (w)_0, (w)_1).$$

But $\exists w Q(x,(w)_0,(w)_1)$ is $\dot{\Sigma}_1^0$, while $\neg \neg R(x)$ is complete $\dot{\Sigma}_2^0$. The proof for n>1 is similar.

Proposition. In \mathbf{HA}^{\bullet} + ECT $^{\bullet}$, for every $n \geq 2$: $\Sigma^{0}(\dot{\Sigma}_{n}^{0}) \not\subseteq \Sigma^{0}(\dot{\Pi}_{n}^{0})$.

Proof.(n=2) Let $D(x,y) \equiv \exists z \forall w \neg T(x,x,y,z,w)$ and \mathcal{T} be $\mathbf{HA}^{\bullet} + \mathsf{ECT}^{\bullet}$. Suppose for contradiction that $\mathcal{T} \vdash \forall x [\exists y D(x,y) \leftrightarrow \exists u \forall v \exists t Q(x,u,v,t)]$ with Q(x,u,v,t) primitive recursive, so also $\mathcal{T} \vdash$

- (a) $\forall x \forall y [D(x,y) \rightarrow \exists u \forall v \dot{\exists} t Q(x,u,v,t)]$,
- (b) $\exists e \forall x \forall y [D(x,y) \rightarrow [\exists u T(e,x,y,u)$ $\land \forall w (T(e,x,y,w) \rightarrow \forall v \dot{\exists} t Q(x,U(w),v,t))]],$ or equivalently by MP_{PR}:
- (c) $\exists e \forall x \forall y [D(x,y) \rightarrow [\dot{\exists} u T(e,x,y,u)$ $\land \forall w (T(e,x,y,w) \rightarrow \forall v \dot{\exists} t Q(x,U(w),v,t))]].$ By Kleene's Rule there is a number e so that
- (d) $\forall x \forall y [D(x,y) \to [\dot{\exists} u T(\mathbf{e}, x, y, u)$ $\land \forall w (T(\mathbf{e}, x, y, w) \to \forall v \dot{\exists} t Q(x, U(w), v, t))]]$

where the right hand side is $\dot{\Pi}_2^0$, so for some g by the normal form theorem with Kleene's Rule:

(e)
$$\forall x \forall y [D(x,y) \rightarrow \forall z \dot{\exists} w T(\mathbf{g},x,y,z,w)]$$
 where

(f)
$$\forall x \forall y [\forall z \dot{\exists} w T(\mathbf{g}, x, y, z, w) \leftrightarrow$$

$$\forall w \forall v \dot{\exists} u \dot{\exists} t [T(\mathbf{e}, x, y, u) \land$$

$$(T(\mathbf{e}, x, y, w) \rightarrow Q(x, U(w), v, t))]].$$

By (e) with the definition of D(x,y):

(g)
$$\forall y \neg D(\mathbf{g}, y)$$
 and so $\forall z \dot{\exists} w T(\mathbf{g}, \mathbf{g}, y, z, w)$.

Treating $\exists u$ first on the right hand side of (c),

(h)
$$\forall x \forall y [\forall z \dot{\exists} w T(\mathbf{g}, x, y, z, w) \leftrightarrow$$

$$\dot{\exists} u [T(\mathbf{e}, x, y, u) \land \forall v \dot{\exists} t Q(x, U(u), v, t)]]$$

so (g) gives $\exists u[T(\mathbf{e}, \mathbf{g}, y, u) \land \forall v \exists t Q(\mathbf{g}, U(u), v, t)]$, so $\exists y D(\mathbf{g}, y)$ by hypothesis, contradicting (g).

The proof for n > 2 is similar. Thus the classical arithmetical hierarchy does not collapse in any consistent extension of $\mathbf{H}\mathbf{A}^{\bullet}$ + ECT $^{\bullet}$ satisfying Kleene's Rule.

Definition. A formula A(x) is (or describes) a Church domain for a theory \mathcal{T} if, whenever

$$\mathcal{T} \vdash \forall x [A(x) \rightarrow \exists y B(x,y)],$$

then $\mathcal{T} \vdash \exists e \forall x [A(x) \rightarrow \exists w [T(e, x, w) \land B(x, U(w))].$

Theorem. In HA[•] + ECT[•]:

(a) The extended intuitionistic hierarchy is total, and each level contains new relations.

(b)
$$\Sigma^{0}(\dot{\Sigma}_{1}^{0}) = \Sigma_{1}^{0}$$
.

(c)
$$\Sigma^0(\dot{\Pi}_1^0) = \Sigma_2^0$$
.

- (d) $\Sigma(\dot{\Pi}_2^0) = \Sigma_3^0$ (so $\Sigma(\dot{\Pi}_2^0)$ contains the entire standard arithmetical hierarchy).
- (e) $\dot{\Sigma}_n^0 \subsetneq \Sigma^0(\dot{\Sigma}_n^0)$ and $\dot{\Pi}_n^0 \subsetneq \Sigma^0(\dot{\Pi}_n^0)$, so the extended intuitionistic hierarchy subsumes the classical hierarchy.
- (f) Every Church domain is classical.