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Intensionality and Extensionality in Mathematics I

Mathematics deals with ideal objects: numbers, sets, functions, . . .

The natural numbers are defined or constructed inductively,
starting with 0 and iterating the successor operation S(·):

0, S(0),S(S(0)), S(S(S(0))), . . .

or in the less cumbersome decimal notation: 0, 1, 2, 3, . . .

The terms 2 and S(S(0)) have the same intension, the number
itself, which is also their common extension. Thus 2 ≡ S(S(0))
(where ≡ denotes intensional equality) and also 2 = S(S(0)).

The integers and rational numbers can be “coded” constructively
by defining one-to-one correspondences with the natural numbers.



Intensionality and Extensionality in Mathematics II

In 1994 Andrew Wiles proved Fermat’s Last Theorem: The largest
natural number n for which there exist positive natural numbers
x , y , z such that xn + yn = zn is n = 2.

In this case the equality is (only) extensional, asserting that the
number 2 is the extension of the descriptive phrase

“ the largest natural number n for which there exist positive
natural numbers x , y , z such that xn + yn = zn ”

whose intension was clear for centuries before it was established
that the marvelous theorem Pierre Fermat conjectured around
1630 was correct, or even that such a number n exists.



Potential vs. Completed Infinity in Mathematics I

The standard natural numbers 0, 1, 2, 3, . . . constitute the smallest
collection N containing 0 and closed under the successor operation.

In classical mathematics, N is a completed infinite totality, which is
assumed to satisfy the

Principle of (Complete) Mathematical Induction: If A(n) is any
property such that (i) A(0) holds, and (ii) whenever n ∈ N and
A(n) holds then A(S(n)) holds, then A(n) holds for every n ∈ N.

In intuitionistic mathematics, N is a potentially infinite totality,
and the Principle of Mathematical Induction needs no justification.
It is intuitively clear from the construction of tne natural numbers.



Brouwer’s early treatment of the continuum

In his 1907 dissertation Brouwer wrote that the rational numbers,
together with those irrational numbers like

√
2 which are definable

using rationals, form a potentially infinite, denumerable, dense
“scale” of order type η which does not exhaust the continuum.

Brouwer wrote “Mathematics can deal with no other matter than
that which it has itself constructed;” and “all or every . . . tacitly
involves the restriction: insofar as belonging to a mathematical
structure which is supposed to be constructed beforehand.”

In order to complete a scale of order type η to a “measurable
continuum, . . . a ‘matrix of points to be thought of as a whole’,”
he had to rely on a primitive intuition of continuity or “fluidity.”



The “Second Act of Intuitionism”

By 1918-19 Brouwer had developed a new view of the continuum.
In “Historical background, principles and methods of intuitionism”
(1952) he recalled that the “Second Act of Intuitionism” explicitly
recognized “the possibility of generating new mathematical entities:

“firstly in the form of infinitely proceeding sequences p1, p2, . . .
whose terms are chosen more or less freely from mathematical
entities previously acquired . . . ;

“secondly in the form of mathematical species, i.e. properties
supposable for mathematical entities previously acquired, and
satisfying the condition that, if they hold for a certain
mathematical entity, they also hold for all mathematical entities
which have been defined to be equal to it . . . ”



Potential vs. Completed Infinity in Mathematics II

A function f from a set or collection X to a set Y is defined as

I a rule or correspondence assigning to each element x of its
domain X exactly one element f (x) = y of its codomain Y .

The range of a function f with domain X and codomain Y consists
of those elements of Y which are assigned by f to elements of X .

In intuitionistic mathematics, a function f from X to Y is a rule or
correspondence such that, if X is potentially infinite, then

I the rule f may be “lawlike” in the sense that as soon as
x ∈ X is produced, f (x) is completely determined,

I or the assignment of y ∈ Y to x ∈ X may proceed more or
less freely in parallel with the generation of elements of X ,
and possibly also with the generation of elements of Y .



Brouwer’s Infinitely Proceeding Sequences

A choice sequence or infinitely proceeding sequence of natural
numbers is a function with domain and codomain N. Lower case
Greek letters denote choice sequences α : N→ N.

The universal spread is the potentially infinite collection of all these
infinitely proceeding sequences, in process of generation. It can be
visualized as a rooted tree, with nodes labeled by finite sequences
of numbers representing initial segments of choice sequences:

α(0) = 〈 〉, α(S(n)) = 〈α(0), α(1), . . . , α(n)〉

Brouwer considered general or arbitrary choice sequences, which
may allow complete or partial freedom in the assignment of natural
numbers α(n) to natural numbers n, and lawlike sequences (choice
sequences α for which every choice α(n) is predetermined).



〈 〉

. . . . . .

. . .

〈000〉 〈001〉 〈002〉 〈100〉 〈101〉 〈102〉 〈120〉 〈121〉 〈122〉 〈123〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . .

〈0〉 〈1〉 〈2〉 〈3〉 〈4〉

. . .

〈00〉 〈01〉 〈02〉

. . .

〈10〉 〈11〉 〈12〉

. . .

. . . . . . . . .

〈1230〉〈1231〉
. . . . . .

The Universal Spread:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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〈0〉 〈1〉 〈2〉 〈3〉 〈4〉
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〈00〉 〈01〉 〈02〉

. . .

〈10〉 〈11〉 〈12〉

. . .

. . . . . . . . .

〈1230〉〈1231〉
. . . . . .

β : 〈1, 2, 3, 0, ?, ?, . . .〉

α(n) = 0 for each n

α is lawlike.

β is not.



Brouwer’s “Bar Theorem” is a Bar Induction Axiom

Intuitively, a “bar” on the universal spread is a set (or “species”) X
of nodes containing at least one node from every choice sequence:
∀α∃x(α(x) ∈ X ). Brouwer thought he had proved that if X is a
bar on the universal spread and A is a property of nodes such that

1. A holds on every node ξ in X , and

2. for every node ζ of the universal spread: if A holds at every
immediate successor of ζ, then A holds also at ζ,

then A holds at the root 〈 〉.

Kleene gave a counterexample to show that this version conflicts
with Brouwer’s own continuity principle, and corrected it by
requiring X to contain just one node from each choice sequence.
The conflict also disappears when X is a monotone bar satisfying
∀α(α(x) ∈ X → α(S(x)) ∈ X ). But the “theorem” is an axiom.



Brouwer’s Lawlike Sequences: What Are They?

Lawlike sequences of natural numbers (like the sequence of digits
in the decimal expansion of

√
2) are definable, so there are only

denumerably many; but there is no lawlike enumeration of them all.

Are they computable? Brouwer did not affirm Church’s Thesis,
but every sequence given by a primitive recursive definition, or by a
Gödel number e with a proof that {e} is total, should be lawlike.

As early as 1945, Kleene saw a parallel between Brouwer’s lawlike
sequences and (classical) general recursive functions. He read
Brouwer carefully, and showed that the (corrected) “Bar Theorem”
did not hold if all choice sequences were assumed to be recursive.

With this in mind, he began to axiomatize Brouwer.



Intensionality and Extensionality in Mathematics III

In mathematics, every set X comes with a binary relation of
equality between its elements, typically written“x = y .”
In classical mathematics, equality is always decidable: for every
set X and for all x , y ∈ X , either x = y or x 6= y but not both.

In intuitionistic mathematics,

I Intensional equality ≡ is always decidable.

I Extensional equality of natural numbers is decidable:

∀n,m ∈ N [n = m ∨ n 6= m].

I Extensional equality of choice sequences is not decidable:

¬∀α, β ∈ NN [(α = β) ∨ ¬(α = β)],

where NN is the spread of all infinitely proceeding sequences
with extensional equality (α = β) defined by ∀n(α(n) = β(n)).



Kleene’s and Vesley’s Approach to Formalizing Brouwer

In The Foundations of Intuitionistic Mathematics, Especially in
Relation to Recursive Functions (1965) Kleene and Vesley
developed an intuitionistic formal system I with number variables
x , y , . . .; choice sequence variables α, β, . . .; constants 0, S , . . . , fk
for primitive recursive functions; = for numbers; Church’s λ; and
the extensional equality axiom: (x = y → α(x) = α(y)).

The neutral subsystem B of I is a two-sorted extension of
intuitionistic arithmetic, with axiom schemas for countable choice
and Brouwer’s “Bar Theorem”. The full intuitionistic system I
adds to B a classically false schema of continuous choice. Kleene
provided a consistency proof for I using recursive realizability.

He conjectured, and in (1969) proved, that if ∃αA(α) is closed and
I ` ∃αA(α) then for some e: I ` ∃α[A(α) & ∀x(α(x) = {e}(x))].



Kreisel’s and Troelstra’s Alternative Approach I

In “Formal systems for some branches of intuitionistic analysis”
(Annals of Mathematical Logic, 1970) Kreisel and Troelstra
presented an alternative to Kleene’s and Vesley’s I.

EL (“elementary analysis”) is a two-sorted “lawlike” extension of
intuitionistic arithmetic, with number variables x , y , z , . . . , and
“variables for (constructive) functions (denoted by a, b, c , d)”;
constants for (all) primitive recursive functions and λ-abstraction;
and countable choice for quantifier-free relations – admitting that
all general recursive functions are lawlike!

Note: Finite sequences of natural numbers are coded primitive
recursively. In EL every x codes a sequence whose length ≤ x is
recoverable from x . 〈 〉 = 0 codes the empty sequence; 〈x〉 codes
the sequence consisting of just x ; and ∗ denotes concatenation.



Kreisel’s and Troelstra’s Alternative Approach II

Kleene expressed Brouwer’s “Bar Theorem” by an axiom schema.
Instead, IDB1 adds to the language of EL a constant K for the
inductively generated class of lawlike neighborhood functions of
continuous functionals of type 1, and adds to the axioms of EL

K1. K (λn.(x + 1)).

K2. a(〈 〉) = 0 & ∀x K (λn.a(〈x〉 ∗ n))→ K (a).

K3. ∀a (A(Q, a)→ Q(a))→ ∀a (K (a)→ Q(a))
for all formulas Q of the language, where
A(Q, a) ≡ ∃x(a = λn.x + 1) ∨ (a(0) = 0 & ∀xQ(λn.a(〈x〉 ∗ n))).

IDB1 also has a stronger axiom schema of countable choice:

AC01. ∀x∃a A(x , a)→ ∃b∀x A(x , λy .b(j(x , y))).

The constant j represents a primitive recursive pairing function.



Kreisel’s Lawless Sequences and Troelstra’s Modification

IDB1 = EL + K1-3 + AC01 only talks about lawlike sequences,
while Kleene’s B and I talk about arbitrary choice sequences.

Kreisel defined a lawless sequence of natural numbers to be a
choice sequence admitting no restrictions; at each stage of its
generation, only a finite initial segment has been determined, and
every natural number is eligible to be chosen next.

Kreisel’s and Troelstra’s formal systems LS and CS are three-sorted
intuitionistic extensions of IDB1, with variables x,y,z,. . . over
numbers, a,b,c,. . . over lawlike sequences, and α, β, γ, . . . over
lawless sequences (for LS) or choice sequences (for CS).

LS = IDB1 + L1-4 and

CS = IDB1 + GC1-4, where



Axioms for Lawless Sequences as Improved by Troelstra

L1. ∀n∃α(α ∈ n) is the density axiom.

The next axiom says that (not only intensional, but also)
extensional equality of lawless sequences is decidable.

L2. ∀α∀β(α 6= β ∨ α = β).

To express relative independence of lawless variables Troelstra
defined quantifiers ∀̇α, ∃̇α so that e.g. ∀̇αA(α, β, γ) is equivalent
to ∀α(α 6= β & α 6= γ → A(α, β, γ)), and if ~α = α0, . . . , αk then
∀̇~αA(~α) expresses ∀α0 . . . ∀αk(∀i < j ≤ k(αi 6= αj)→ A(~α)).

With all lawless parameters shown, the schema of open data is

L3. ∀̇α(A(α, ~β)→ ∃n(α ∈ n & ∀̇γ ∈ n A(γ, ~β)))

and the bar continuity schema (with lawlike e and b) is

L4.∀̇~α∃bA(~α, b)→ ∃e(K (e) & ∀n(e(n) 6= 0→ ∃b∀̇~α ∈ nA(~α, b)))



Kreisel and Troelstra’s “elimination of lawless sequences”

In (1968) Kreisel proved the “first elimination theorem”: Every
formula with no free lawless sequence variables is equivalent in LS
to one with no lawless sequence variables. In (1969) Troelstra
improved Kreisel’s result to the “second elimination theorem”:

The elimination of lawless sequences holds for LS in IDB1:
There is a syntactic translation τ mapping each formula E of the
language of LS without free lawless sequence variables to a
formula τ(E ) without any lawless sequence variables such that

(i) `LS (E ↔ τ(E )).

(ii) `LS E ⇔ `IDB1
τ(E ).

(iii) τ(E ) ≡ E if E has no lawless sequence variables.

Corollary: LS is a conservative extension of IDB!.



The translation τ which gradually eliminates quantifiers over
lawless sequences from formulas in LS is complex. It involves e.g.

I using LS2 to replace ∀αA(α, β) by (A(β, β) & ∀̇αA(α, β)),

I using LS2 to replace ∃αA(α, β) by (A(β, β) ∨ ∃̇αA(α, β)),

I replacing A ∨ B by ∃n((n = 0→ A) & (n 6= 0→ B)),

I replacing ∃̇αA(α, β) by ∃n∀̇α ∈ n A(α, β) using LS3,

I moving ∀̇α ∈ n to the inside using LS4, which introduces new
number and lawlike sequence quantifiers only, and

I replacing ∀̇α ∈ n(s(α) = t(α)) by ∀a ∈ n(s(a) = t(a)).



Lawless Sequences and Troelstra’s Extension Principle

In IDB1 a class K of monotone neighborhood functions is defined
inductively by axioms K1-3. Is there an explicit definition? If

K0(e) ≡ ∀a∃n e(a(n)) 6= 0 & ∀m∀n(e(n) > 0→ e(n) = e(n ∗m))

then `IDB1
∀e(K (e)→ K0(e)) but 6`IDB1

∀e(K0(e)→ K (e)), and

Brouwer’s Bar Theorem fails for the lawlike sequences.

But `LS ∀e(K (e)→ ∀α∃x e(α(x)) 6= 0) so if K ∗
0 (e) is like K0(e)

but with α in place of a then `LS ∀e(K ∗
0 (e)→ K (e)) using LS4.

Troelstra argued that the initial segments of any choice sequence
can be viewed as initial segments of a lawless sequence in process
of generation. In Brouwer’s terminology, Troelstra’s Extension
Principle states that every bar on the lawless sequences bars all
sequences of natural numbers, so the Bar Theorem holds for LS.



General Choice Sequences: the Principle of Analytic Data

CS = IDB1 + GC 1-4 has the same language as LS. Adapting
Kleene, e|α = β abbreviates ∀y(λn.e(〈y〉 ∗ n))(α) = β(y)) where
e(α) = t abbreviates ∃x e(α(x)) = t + 1. The new axioms are

Closure under lawlike continuous functions (which fails for LS):
GC1. ∀e(K (e)→ ∀α∃β(e|α = β)) and ∀α∀β∃γ(j(α, β) = γ),

Troelstra’s Principle of Analytic Data:
GC2. A(α)→ ∃e(K (e) & ∃β(e|β = α) & ∀βA(e|β)),

and Kleene’s continuous choice axioms with a lawlike modulus:
GC3. ∀α∃bA(α, b)→ ∃e∀n(e(n) 6= 0→ ∃b∀α ∈ nA(α, b)),

GC4. ∀α∃β A(α, β)→ ∃e∀αA(α, e|α).

I The elimination of choice sequences holds for CS in IDB1,

I `CS ∀e(K ∗
0 (e)↔ K (e)) (the monotone bar theorem), and

I `CS ∀α¬¬∃b(α = b). (In contrast, `LS ∀α¬∃b(α = b).)



Other Work on Choice Sequences

In e.g. “A classical view of the intuitionistic continuum” (Ann.
Math. Logic, 1996), I defined and studied a notion of “relatively
lawless sequence.” A predictor is a function from finite sequences
of natural numbers to finite sequences of natural numbers. A
choice sequence α is lawless relative to a given notion of lawlike
sequence if every lawlike predictor correctly predicts some segment
of values of α on the basis of the values already chosen. The
relatively lawless sequences satisfy versions of the axioms of LS but
not the Bar Theorem. www.math.ucla.edu forwardslash tilde joan

Kripke’s “Free choice sequences: A temporal interpretation
compatible with acceptance of classical mathematics” (Indag.
Math., 2019) inspired e.g. my “Intuitionism at the end of time”
(Bull. Symb. Logic, 2019) and “Divergent potentialism: A modal
analysis with an application to choice sequences” (Philosophia
Mathematica, 2022) by Brauer, Linnebo and Shapiro.



Some Additional References

A. S. Troelstra’s Choice Sequences: A Chapter of Intuitionistic
Mathematics (Oxford Logic Guides, 1977) describes interesting
varieties of choice sequences like the hesitant sequences, which
start out free but may (or may not) eventually become lawlike.
There are philosophical arguments (e.g. for the Extension
Principle) and examples of the practical uses of spreads
(particularly finitary spreads, or “fans”) in intuitionistic analysis.

Troelstra and van Dalen’s two-volume Constructivism in
Mathematics: An Introduction (North-Holland 1988) is the most
recent comprehensive reference. A list of corrections is posted.

Wim Veldman’s “Intuitionism: An Inspiration?” (2021) is a
beautifully written, open access (!) introduction by possibly the
best intuitionistic mathematician alive today.

Thank you.


