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Constructive and classical mathematics differ in two ways:

1. Logic and logical language: either intuitionistic or classical.
» In intuitionistic logic V, 3, &, -, V, — are independent.
» Classically, V and 3 may be omitted because (classically)

(AVB) < =(-A & —-B) and 3xA(x) ¢ “Vx-A(x).
This is the basis of Gentzen's negative interpretation.

2. Mathematical axioms describe properties of intended objects.

» Constructive and classical natural numbers are standard, and
constructive and classical primitive recursive functions agree.

» Existence criteria for constructive infinite sequences, sets or
functions are typically stronger than for classical counterparts.
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According to Ishihara, constructive reverse mathematics aims “to
classify . ..theorems in intuitionistic, constructive and recursive
mathematics by logical principles, function existence axioms and
their combinations” over a weak base with intuitionistic logic.

Weak constructive base theories include
» intuitionistic two-sorted arithmetic A1,
» primitive recursive arithmetic of finite types HAY,
» Troelstra’s EL = 1A; + QF-ACy and Veldman's BIM.

IA; and HA“ contain their negative interpretations, but a classical
logical principle (£9-double negation shift) must be added to EL or
BIM to negatively interpret QF-ACqq or recursive comprehension.

So EL is weaker than its negative interpretation, which is also the
negative interpretation of EL 4+ (—-—A — A).
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In this talk, “S + E" always means “by intuitionistic logic.”

Classical logic is indicated by “S F° E", following Kleene.

Every formal system S based on intuitionistic logic has a
classical twin:

S° =per S + (—A — A)
with the same mathematical axioms. Logic is the only difference.

Our Question: Exactly what classical logical axioms and function
existence principles need to be added to a constructive system S

based on intuitionistic logic, in order to prove the Gentzen negative
interpretation of S (a faithful copy of the classical version S° of S)?

In other words, what would be the precise constructive cost of
accepting the classical interpretation of our mathematical axioms?
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The language of arithmetic L(Ar) is any first-order language with
constants =, 0, /, +, -, variables m, n, ..., x, y, z over numbers.

The language of analysis L£(An) adds variables «, 3,7, ... over
infinite sequences, and primitive recursive function(al) constants.

The Gentzen negative interpretation E£ of a formula E in
L(Ar) or L(An) is defined inductively:
» Prime formulas are unchanged: (s =t)% = (s = t).
» Negative operations pass through: (—A)% = —(A%)
(A & B)® = (A% & BS9) (A — B)® = (A¢ — B?)
(VxA(x))® = Vx(A(x))® (VaA(a))® = Va(A(x))®.
» V and J are interpreted classically: (A V B)® = —(—A8&—B¢)
(FxA(x))e = ~Vx(A(x))® (FaA(x))E = ~Va—(A(x))®
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Classical Soundness and Classical Content

Definitions. We identify the classical content of a formula E
with its Gentzen negative translation E&, where F° (E + E#).

The classical content '8 of a set [ of formulas is the closure
under intuitionistic logic of {E€ : E € I'}.

A formal system S in L£(Ar) or L(An) is classically sound if and
only if S has a classical w-model (a model with standard integers).

The classical content of a classically sound formal system S is
S& =Def {Egi Sk E}
Lemma. 1. If S is classically sound then S° is consistent.

2. If I F° E then '€ I E#, and (E#)& = E# for every formula E.
3. If S and T differ only by classical logical axioms then S8 = T&.
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Some constructive systems S contain their classical content, e.g.:

First-Order Arithmetic: In £(Ar), intuitionistic arithmetic HA
has full mathematical induction. PA = HA® and HA8 C HA.

Two-Sorted Intuitionistic Arithmetic: In £(An) with constants
for primitive recursive function(al)s, A-abstraction and A-reduction,
IA; extends HA (so IAS extends PA).  (1A1)8 C IA;.

» In IA; as in HA, equality at type 0 is primitive and decidable.

> o= =pe Vxa(x) = f(x) and A1 F x =y — a(x) = afy).

> F—(a=p)—>a=0 but IA; fa=p§V -(a=0).
Arithmetic of Finite Types: HA“ extends HA to include
primitive recursive functions of all finite types. (HA¥)8 C HAY.

w-models of A1, HA“ require only primitive recursive functions.
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If S is classically sound and includes an axiom or axiom schema
of countable choice or comprehension, then S8 & S. Examples:

IA; + Recursive Comprehension: IRA or Troelstra’s EL.
> IRA = 1A1 + VxIyp((x,y)) = 0 = JaVxp((x, a(x))) = 0.
» EL = IA; + QF-ACq (quantifier-free countable choice).

Kleene’s Neutral Basic Analysis: B extends IA; (and IRA).
» Intended objects: numbers; infinitely proceeding sequences.
» Axioms include countable choice for sequences
ACo1 : VxJaA(x, o) — FBVxA(x, Ny.B((x,¥)))-
and bar induction Blg or Bl.
> B° = (IA; + ACp1)° so B& = (IA; + ACp1)8.
Subsystems of B weaken ACg; to ACqg or unique choice ACqq!,

and/or omit bar induction or replace it by fan induction.
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Intuitionistic analysis is consistent but not classically sound.
Kleene’s Intuitionistic Analysis: | =p.s B + CCq3.
» CCy; is a strong continuous choice principle.
> |+ —Va(Vxa(x) = 0V —Vxa(x) = 0).
Vesley’s Intuitionistic Analysis: | + VS refutes classical logical
principles for whose refutation Brouwer used a ‘“creative subject.”
» | + VS F =Va(-Vxa(x) = 0 — Ixa(x) # 0).

Troelstra’s Realizable Intuitionistic Analysis: B + GC.

» Troelstra's generalized continuous choice principle GC extends
CCy; to relations whose domain is almost negative.

> B + GC characterizes Kleene's function-realizability.

van Qosten’s Lifshitz Realizable Analysis weakens GC to GC;.
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Constructive recursive mathematics studies the properties of
numbers and general recursive functions.

Constructive Recursive Mathematics is axiomatized in £(Ar) by
Troelstra and van Dalen as CRM = HA + MP + ECTg, where

» MP is Markov's Principle for decidable relations, and

» ECTy is Extended Church’s Thesis for A(x) almost negative:
Vx[A(x) — JyB(x,y)] — JeVx[A(x) — {e}(x) | & B(x, {e}(x))]
CRM is consistent but not classically sound, and CRM& ¢ CRM.

In £(An) one might be interested in MRA = IRA + MP; + CTj.
» MP; is Va(=Vxa(x) = 0 — Ixa(x) # 0).
» CT; can be abbreviated by VadeVx(a(x) = {e}(x)).

MRA is classically sound and MRA8 C MRA, but MRA +° —=Blj;.
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Minimum Classical Extension of S

Main Definition: The minimum classical extension ST¢€ of a
classically sound formal system S, based on intuitionisti logic in
L(Ar) or L(An), is the closure under intuitionistic logic of S U S&.

Challenges:

1. Given such a formal system S, find a characterization of S™&
which clarifies the constructive cost of expanding S to include
the negative interpretation of its classical twin.

2. What if S is consistent but not classically sound? Is there a
preferred way to define S™€ in that case?

-10-



Double Negation Shift Principles

In L£(Ar) or L(An), double negation shift for integers is
DNSp:  Vx——A(x) — -VxA(x)
where A(x) may contain additional free variables.

Proposition 1. If S proves a version of the countable axiom of
choice, then S 4+ DNSq proves its negative interpretation. E.g.

T9-DNSo: Vp(Vx—=3y p((x,¥)) = 0 — ~=VxTy p({x,y)) = 0)
characterizes the minimum classical extension of EL or IRA.
1. EL*8 = EL + Z?—DNSO where EL = IA] + QF-ACqo.
2. IRAT& = IRA + £9-DNSy where IRA = IA; + Rec Comp.
Scedrov and Vesley proved that B I/ Z?—DNSO.
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Other restricted versions of DNSq include
DNSyy:  Vx——3JyA(x,y) — -~VxIyA(x,y),
DNSy;:  Vx——JdaA(x, o) = - VxJaA(x, «)
for A(x,y) negative (no V or 3), and DNS,_ for finite types o.
Proposition 2. Minimum classical extensions of systems with
countable choice ACqg, ACp1 or ACqy, for all finite types o:
1. (EL + ACoj)™& = EL + ACo; + DNS; for i = 0,1.
2. (IRA + ACo;)™¢ = 1A; + ACo; + DNS; for i = 0,1.
3. (HA¥ + ACpx) ™8 = HA¥ + ACps + DNSg__.
Refinements include e.g. Fujiwara's observation that (in effect)
4. (EL + M9-ACqo)™8 = EL + M9-ACqp + X3-DNSy.
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Doubly Negated Characteristic Function Principles

Over EL or IRA, if A(x) has a characteristic function then
Vx(A(x) V =A(x)) holds. Vafeiadou observed that unique choice

ACpo!: Vx3AlyA(x,y) — JaVxA(x, a(x))
is equivalent over EL or IRA to the converse implication:
CFq: Vx(A(x) V =A(x)) = Ixs) Vx(x(x) = 0 « A(x)).
The schema  ——CFp:  —=3xVx(x(x) = 0 <> A(x))
says it is consistent to assume A(x) has a characteristic function.
—=I19-CFyg is Va[-—3xVx(x(x) = 0 <> Vya((x,y)) = 0)].
——CFy is the restriction of =—CFq to negative A(x).
Proposition 3. Over IA; or EL, (CF4)8 is equivalent to -—CF
and (M9-CFy)# is equivalent to —=—I19-CFy.
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Now we can improve on Proposition 2.

Let ACOAOr be the restriction of numerical countable choice ACqg to
arithmetic predicates (no sequence quantifiers allowed).

Theorem 1.

- (IA; + ACHE) T8 = 1A + ACHS + £9-DNSg + ——I19-CFo.
2. (EL + ACgo!)*€ = EL + CFq + £9-DNSq + ——CF, .

3. (IA; + ACgo!)™ = IRA + CFq + £%-DNSo + ——CF,.

4. (IA1 + ACgo) ™8 = 1A; + ACqo + Z9-DNSg + ——CFy.

[y

The proof of (1) uses formula induction and the proof of (2) uses

EL + CFq = EL + ACqg! with Propositions 1 and 3. The proof of
(3) is similar using IRA + CF4 = IA; + ACqo!. (4) holds because

(ACpp!)8 and (ACqp)# are equivalent over EL or IRA.
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Kleene's classically sound basic system B =per A7 + ACo1 + Blg

where Bly is bar induction with a decidable bar predicate R(w):

Blg : Va3xR(a@(x)) & Vw(R(w) V =R(w)) & Vw(R(w) — A(w))
& Yw(VxA(w x (x + 1)) = A(w)) = A(1).

(Notation: &(x + 1) codes the sequence («(0),...,a(x)) and

1 codes the empty sequence. (x + 1) codes the sequence (x).

w varies over sequence codes, and * denotes concatenation.)

Classical bar induction BI° drops the premise Vw(R(w) V —=R(w)).
Obviously 1A; = (Blq)& < (BI°)& since - (Vw(R(w) V —R(w)))%.

Weaker than Bly over 1A; (although 1A; + ACgo! + Bl F Bly) is

BI; : Vadxp(a(x)) = 0 & Vw(p(w) =0 — A(w))
& Yw(VsA(w* (s + 1)) = A(w)) — A(1).
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The schema DNS;:  Va——3xR(a(x)) = ~—VaIxR(a(x))
for negative formulas R(w) of £(An) has the special case
¥ 2-DNS;: Va——3xp(a(x)) = 0 — ~—VaIxp(a(x)) = 0.
Proposition 4. IA; + DNS] + Blg - (Blg)®
Theorem 2.
1. (IA; + Blg)*® = 1A; + Blg + (BI°)¢ C IA; + Blq + DNST.

2. (IA; + Bl;)*8 C IA; + Bl + ¥9-DNS;, and Solovay proved
(IA; +ACH + Bl1)8 C IRA + Bly + ¥9-DNS;.
3. (IRA + Blq)™ = IRA + Blq + (BI°)¢ + £9-DNS,

C IRA + Blg + DNS; .
Kleene proved IA; + ACq ° BI°, and (Bl4q)8 = (BI°)&, so

4. B8 = (IA; + ACo1 + Blg)™8 = B + (ACo1)& = B + DNS;.
5. (|A1 + ACqo + B|d)+g = 1A; + ACqg + Blgq + DNSEO'
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To extend CRM to £(An) one might choose as a base theory
MRA = IRA + MP; + VaGR(«), where
» MP; is Va(=Vxa(x) = 0 — Ixa(x) # 0).
» YaGR(«) expresses “every « is recursive” and can be
abbreviated by YaJdeVx(a(x) = {e}(x)).

MRA is classically sound. It describes the w-model in which the
type-1 objects are recursive sequences, so conflicts with Kleene's B.

Proposition 5. (jrm)

1. MRAS& C IRA + Z?—DNSO + Va——-GR(a) € MRA,
so MRA contains its classical content, so MRATE = MRA.

2. MRAEZ is consistent with | + =MP;.
Next we apply some constructive decomposition theorems.
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Monotone bar induction Bly,on, provable in | but not in B, is

Va3xR(a(x)) & Yw(R(w) = VuR(w * u)) & Yw(R(w) — A(w))
& Vw(VxA(w * (x + 1)) — A(w)) — A(1).

Kleene proved in 1965 that 1A; + ACgyg + Blmon F Bly, so
Blmon lies between Bly and BI° in strength over 1A; + ACqo.

He also proved IRA + BI° - WLPO so BI° is inconsistent with I.

Fujiwara proved in 2019 that BI° is equivalent to Blyon + CD over
ELo, where CD is Vx(A(x) V B) — (¥xA(x) V B) (x not free in B).

Proposition 6. (IRA + Blg)¢ = (IRA + Bluyon )8 = (IRA + BI°)E.

Corollary. The neutral subsystem B of Kleene and Vesley's | has
the same classical content as the variant B’ with Bl,,,, replacing
Bl4, and so (B")™& = (IA; + ACo1 + Blmon) 8 = B’ + DNSg;.

-18-



Over a constructive base theory EL’ =ps EL + M%-ACqy, Ishihara
and Schuster decomposed a restricted version
WC-N": VadnVko((a(k),n)) =0
& Vw¥mvn(o((w,m)) =0 & m <n — o((w,n)) = 0)
— YadndmVp € a(m)vko((B(k),n)) =0
of weak continuity into a classically correct mathematical principle
BD-N:  VadmvVn > mfS(a(n)) <n — ImvVnB(n) <m
and the classically false =LPO: =Va(3Ix a(x) # 0V Vx a(x) = 0).
Proposition 7.
1. (EL")*¢ = (EL + N%-ACq) "¢ = EL’ + £9-DNS,.
2. (EL' 4+ BD-N)*& = EL’ + BD-N + X3-DNSy.
(1) is by Proposition 2(4). (2) holds because EL™€ proves the
contrapositive of (BD-N)& (equivalent to (BD-N)& over EL).
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Classical Content of a Classically Unsound Theory?

Ishihara and Schuster's EL” + WC-N’ proves BD-N (which is
classically correct) and —LPO (which is not).

Question. Does such a system S in £(An) have a classical
content, and if so, what is it? Consider this possibility:

The classical subtheory cls(S) of S consists of all theorems of S
that hold in classical Baire space. The classical content S& of S is
(cls(S))& and ST€ is the closure under intuitionistic logic of S U S&.

Theorem 3. (gvf) (EL’ + WC-N")*& = EL’ + WC-N’ + (I°)&
where '° is the set of all classically true sentences in L(EL’). The
same result holds for | and its subsystem 1A; + I'IE’—ACOO + WC-N".

Kleene proved all true negative sentences of L£(An) are realized by
primitive recursive functions, so It = | + (I'°)¢ is consistent.
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Can this appeal to truth in the preferred classical model be
avoided?

Apparently not. If ) is the collection of all subsystems S of | which
extend B and are consistent with classical logic, then | cannot
usefully be identified with | + (J{S*¢: S € V}.

Proposition 8. Consider systems S; = B + (WLPO — Con(B))
and S = B + (WLPO — —Con(B)).
1. S1 and Sy belong to Y (Godel's 2nd incompleteness theorem).
2. 51 F° Con(B) and Sy F° —Con(B).
3. (51)8 F (Con(B))& and (S2)& = —=(Con(B))# so
J{S™&: S € Y} is inconsistent.
(Inspired by Vafeiadou's idea for the proof of Theorem 3.)
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We have suggested a way to compute and compare the precise
constructive cost of accepting the classical interpretations of
constructive systems S which are classically sound, or which
consistently extend systems with preferred classical models.

There are other applications, e.g.

» The fan theorem FT; is conservative over HA (Troelstra).
(IRA + FT,)*€ proves intuitionistic predicate logic is weakly
complete for Beth's interpretation (Godel, Dyson, Kreisel).

» BISH (Bishop, Bridges, Ishihara): Informal constructive
analysis, which is classically sound, is now being formalized.
Resulting decomposition theorems help to compare classical
contents of constructive and semi-constructive theories.

» Constructive algebra or IZF or CZF?
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Thank you for listening!
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