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Constructive and classical mathematics differ in two ways:

1. Logic and logical language: either intuitionistic or classical.

I In intuitionistic logic ∨, ∃, &, ¬, ∀, → are independent.

I Classically, ∨ and ∃ may be omitted because (classically)

(A ∨ B)↔ ¬(¬A & ¬B) and ∃xA(x)↔ ¬∀x¬A(x).

This is the basis of Gentzen’s negative interpretation.

2. Mathematical axioms describe properties of intended objects.

I Constructive and classical natural numbers are standard, and
constructive and classical primitive recursive functions agree.

I Existence criteria for constructive infinite sequences, sets or
functions are typically stronger than for classical counterparts.
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According to Ishihara, constructive reverse mathematics aims “to
classify . . . theorems in intuitionistic, constructive and recursive
mathematics by logical principles, function existence axioms and
their combinations” over a weak base with intuitionistic logic.

Weak constructive base theories include

I intuitionistic two-sorted arithmetic IA1,

I primitive recursive arithmetic of finite types HAω,

I Troelstra’s EL ≡ IA1 + QF-AC00 and Veldman’s BIM.

IA1 and HAω contain their negative interpretations, but a classical
logical principle (Σ0

1-double negation shift) must be added to EL or
BIM to negatively interpret QF-AC00 or recursive comprehension.

So EL is weaker than its negative interpretation, which is also the
negative interpretation of EL + (¬¬A→ A).
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In this talk, “S ` E” always means “by intuitionistic logic.”

Classical logic is indicated by “S `◦ E”, following Kleene.

Every formal system S based on intuitionistic logic has a
classical twin:

S◦ ≡Def S + (¬¬A→ A)

with the same mathematical axioms. Logic is the only difference.

Our Question: Exactly what classical logical axioms and function
existence principles need to be added to a constructive system S
based on intuitionistic logic, in order to prove the Gentzen negative
interpretation of S (a faithful copy of the classical version S◦ of S)?

In other words, what would be the precise constructive cost of
accepting the classical interpretation of our mathematical axioms?
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The language of arithmetic L(Ar) is any first-order language with
constants =, 0, ′, +, ·, variables m, n, . . . , x, y, z over numbers.

The language of analysis L(An) adds variables α, β, γ, . . . over
infinite sequences, and primitive recursive function(al) constants.

The Gentzen negative interpretation Eg of a formula E in
L(Ar) or L(An) is defined inductively:

I Prime formulas are unchanged: (s = t)g ≡ (s = t).

I Negative operations pass through: (¬A)g ≡ ¬ (Ag )

(A & B)g ≡ (Ag & Bg ) (A→ B)g ≡ (Ag → Bg )

(∀xA(x))g ≡ ∀x(A(x))g (∀αA(α))g ≡ ∀α(A(α))g .

I ∨ and ∃ are interpreted classically: (A ∨ B)g ≡ ¬(¬Ag&¬Bg )

(∃xA(x))g ≡ ¬∀x¬(A(x))g (∃αA(x))g ≡ ¬∀α¬(A(α))g
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Classical Soundness and Classical Content

Definitions. We identify the classical content of a formula E
with its Gentzen negative translation Eg , where `◦ (E↔ Eg ).

The classical content Γg of a set Γ of formulas is the closure
under intuitionistic logic of {Eg : E ∈ Γ}.

A formal system S in L(Ar) or L(An) is classically sound if and
only if S has a classical ω-model (a model with standard integers).

The classical content of a classically sound formal system S is

Sg ≡Def {Eg : S ` E}.

Lemma. 1. If S is classically sound then S◦ is consistent.

2. If Γ `◦ E then Γg ` Eg , and (Eg )g = Eg for every formula E.

3. If S and T differ only by classical logical axioms then Sg = Tg .
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Some constructive systems S contain their classical content, e.g.:

First-Order Arithmetic: In L(Ar), intuitionistic arithmetic HA
has full mathematical induction. PA = HA◦ and HAg ⊆ HA.

Two-Sorted Intuitionistic Arithmetic: In L(An) with constants
for primitive recursive function(al)s, λ-abstraction and λ-reduction,
IA1 extends HA (so IA◦1 extends PA). (IA1)g ⊆ IA1.

I In IA1 as in HA, equality at type 0 is primitive and decidable.

I α = β ≡Def ∀xα(x) = β(x) and IA1 ` x = y→ α(x) = α(y).

I ` ¬¬(α = β)→ α = β but IA1 6 ` α = β ∨ ¬(α = β).

Arithmetic of Finite Types: HAω extends HA to include
primitive recursive functions of all finite types. (HAω)g ⊆ HAω.

ω-models of IA1, HAω require only primitive recursive functions.
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If S is classically sound and includes an axiom or axiom schema
of countable choice or comprehension, then Sg 6⊆ S. Examples:

IA1 + Recursive Comprehension: IRA or Troelstra’s EL.

I IRA ≡ IA1 + ∀x∃yρ(〈x, y〉) = 0→ ∃α∀xρ(〈x, α(x)〉) = 0.

I EL ≡ IA1 + QF-AC00 (quantifier-free countable choice).

Kleene’s Neutral Basic Analysis: B extends IA1 (and IRA).

I Intended objects: numbers; infinitely proceeding sequences.

I Axioms include countable choice for sequences

AC01 : ∀x∃αA(x, α)→ ∃β∀xA(x, λy.β(〈x, y〉)).

and bar induction BId or BI1.

I B◦ = (IA1 + AC01)◦ so Bg = (IA1 + AC01)g .

Subsystems of B weaken AC01 to AC00 or unique choice AC00!,
and/or omit bar induction or replace it by fan induction.
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Intuitionistic analysis is consistent but not classically sound.

Kleene’s Intuitionistic Analysis: I ≡Def B + CC11.

I CC11 is a strong continuous choice principle.

I I ` ¬∀α(∀xα(x) = 0 ∨ ¬∀xα(x) = 0).

Vesley’s Intuitionistic Analysis: I + VS refutes classical logical
principles for whose refutation Brouwer used a “creative subject.”

I I + VS ` ¬∀α(¬∀xα(x) = 0→ ∃xα(x) 6= 0).

Troelstra’s Realizable Intuitionistic Analysis: B + GC.

I Troelstra’s generalized continuous choice principle GC extends
CC11 to relations whose domain is almost negative.

I B + GC characterizes Kleene’s function-realizability.

van Oosten’s Lifshitz Realizable Analysis weakens GC to GCL.
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Constructive recursive mathematics studies the properties of
numbers and general recursive functions.

Constructive Recursive Mathematics is axiomatized in L(Ar) by
Troelstra and van Dalen as CRM ≡ HA + MP + ECT0, where

I MP is Markov’s Principle for decidable relations, and

I ECT0 is Extended Church’s Thesis for A(x) almost negative:

∀x[A(x)→ ∃yB(x, y)]→ ∃e∀x[A(x)→ {e}(x) ↓ & B(x, {e}(x))]

CRM is consistent but not classically sound, and CRMg 6⊆ CRM.

In L(An) one might be interested in MRA ≡ IRA + MP1 + CT1.

I MP1 is ∀α(¬∀xα(x) = 0→ ∃xα(x) 6= 0).

I CT1 can be abbreviated by ∀α∃e∀x(α(x) = {e}(x)).

MRA is classically sound and MRAg ⊆ MRA, but MRA `◦ ¬BI1.

-9-



Minimum Classical Extension of S

Main Definition: The minimum classical extension S+g of a
classically sound formal system S, based on intuitionisti logic in
L(Ar) or L(An), is the closure under intuitionistic logic of S ∪ Sg .

Challenges:

1. Given such a formal system S, find a characterization of S+g

which clarifies the constructive cost of expanding S to include
the negative interpretation of its classical twin.

2. What if S is consistent but not classically sound? Is there a
preferred way to define S+g in that case?

-10-



Double Negation Shift Principles

In L(Ar) or L(An), double negation shift for integers is

DNS0: ∀x¬¬A(x)→ ¬¬∀xA(x)

where A(x) may contain additional free variables.

Proposition 1. If S proves a version of the countable axiom of
choice, then S + DNS0 proves its negative interpretation. E.g.

Σ0
1-DNS0: ∀ρ(∀x¬¬∃y ρ(〈x, y〉) = 0→ ¬¬∀x∃y ρ(〈x, y〉) = 0)

characterizes the minimum classical extension of EL or IRA.

1. EL+g = EL + Σ0
1-DNS0 where EL = IA1 + QF-AC00.

2. IRA+g = IRA + Σ0
1-DNS0 where IRA = IA1 + Rec Comp.

Scedrov and Vesley proved that B 6` Σ0
1-DNS0.
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Other restricted versions of DNS0 include

DNS−00: ∀x¬¬∃yA(x, y)→ ¬¬∀x∃yA(x, y),

DNS−01: ∀x¬¬∃αA(x, α)→ ¬¬∀x∃αA(x, α)

for A(x, y) negative (no ∨ or ∃), and DNS−0σ for finite types σ.

Proposition 2. Minimum classical extensions of systems with
countable choice AC00, AC01 or AC0σ for all finite types σ:

1. (EL + AC0i )
+g = EL + AC0i + DNS−0i for i = 0,1.

2. (IRA + AC0i )
+g = IA1 + AC0i + DNS−0i for i = 0,1.

3. (HAω + AC0∞)+g = HAω + AC0∞ + DNS−0∞.

Refinements include e.g. Fujiwara’s observation that (in effect)

4. (EL + Π0
1-AC00)+g = EL + Π0

1-AC00 + Σ0
2-DNS0.
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Doubly Negated Characteristic Function Principles

Over EL or IRA, if A(x) has a characteristic function then
∀x(A(x) ∨ ¬A(x)) holds. Vafeiadou observed that unique choice

AC00!: ∀x∃!yA(x, y)→ ∃α∀xA(x, α(x))

is equivalent over EL or IRA to the converse implication:

CFd: ∀x(A(x) ∨ ¬A(x))→ ∃χB(χ)∀x(χ(x) = 0↔ A(x)).

The schema ¬¬CF0: ¬¬∃χ∀x(χ(x) = 0↔ A(x))

says it is consistent to assume A(x) has a characteristic function.

¬¬Π0
1-CF0 is ∀α[¬¬∃χ∀x(χ(x) = 0↔ ∀yα(〈x, y〉) = 0)].

¬¬CF−0 is the restriction of ¬¬CF0 to negative A(x).

Proposition 3. Over IA1 or EL, (CFd)g is equivalent to ¬¬CF−0
and (Π0

1-CF0)g is equivalent to ¬¬Π0
1-CF0.
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Now we can improve on Proposition 2.

Let ACAr
00 be the restriction of numerical countable choice AC00 to

arithmetic predicates (no sequence quantifiers allowed).

Theorem 1.

1. (IA1 + ACAr
00 )+g = IA1 + ACAr

00 + Σ0
1-DNS0 + ¬¬Π0

1-CF0.

2. (EL + AC00!)+g = EL + CFd + Σ0
1-DNS0 + ¬¬CF−0 .

3. (IA1 + AC00!)+g = IRA + CFd + Σ0
1-DNS0 + ¬¬CF−0 .

4. (IA1 + AC00)+g = IA1 + AC00 + Σ0
1-DNS0 + ¬¬CF−0 .

The proof of (1) uses formula induction and the proof of (2) uses
EL + CFd = EL + AC00! with Propositions 1 and 3. The proof of
(3) is similar using IRA + CFd = IA1 + AC00!. (4) holds because
(AC00!)g and (AC00)g are equivalent over EL or IRA.
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Kleene’s classically sound basic system B ≡Def IA1 + AC01 + BId
where BId is bar induction with a decidable bar predicate R(w):

BId : ∀α∃xR(α(x)) & ∀w(R(w) ∨ ¬R(w)) & ∀w(R(w)→ A(w))
& ∀w(∀xA(w ∗ 〈x + 1〉)→ A(w))→ A(1).

(Notation: α(x + 1) codes the sequence (α(0), . . . , α(x)) and
1 codes the empty sequence. 〈x + 1〉 codes the sequence (x).
w varies over sequence codes, and ∗ denotes concatenation.)

Classical bar induction BI◦ drops the premise ∀w(R(w) ∨ ¬R(w)).
Obviously IA1 ` (BId)g ↔ (BI◦)g since ` (∀w(R(w) ∨ ¬R(w)))g .

Weaker than BId over IA1 (although IA1 + AC00! + BI1 ` BId) is

BI1 : ∀α∃xρ(α(x)) = 0 & ∀w(ρ(w) = 0→ A(w))
& ∀w(∀sA(w ∗ 〈s + 1〉)→ A(w))→ A(1).
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The schema DNS−1 : ∀α¬¬∃xR(α(x))→ ¬¬∀α∃xR(α(x))

for negative formulas R(w) of L(An) has the special case

Σ0
1-DNS1: ∀α¬¬∃xρ(α(x)) = 0→ ¬¬∀α∃xρ(α(x)) = 0.

Proposition 4. IA1 + DNS−1 + BId ` (BId)g

Theorem 2.

1. (IA1 + BId)+g = IA1 + BId + (BI◦)g ⊆ IA1 + BId + DNS−1 .

2. (IA1 + BI1)+g ⊆ IA1 + BI1 + Σ0
1-DNS1, and Solovay proved

(IA1 +ACAr
00 + BI1)g ⊆ IRA + BI1 + Σ0

1-DNS1.

3. (IRA + BId)+g = IRA + BId + (BI◦)g + Σ0
1-DNS0

⊆ IRA + BId + DNS−1 .
Kleene proved IA1 + AC00 `◦ BI◦, and (BId)g = (BI◦)g , so

4. B+g ≡ (IA1 + AC01 + BId)+g = B + (AC01)g = B + DNS−01.

5. (IA1 + AC00 + BId)+g = IA1 + AC00 + BId + DNS−00.
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To extend CRM to L(An) one might choose as a base theory

MRA ≡ IRA + MP1 + ∀αGR(α), where

I MP1 is ∀α(¬∀xα(x) = 0→ ∃xα(x) 6= 0).

I ∀αGR(α) expresses “every α is recursive” and can be
abbreviated by ∀α∃e∀x(α(x) = {e}(x)).

MRA is classically sound. It describes the ω-model in which the
type-1 objects are recursive sequences, so conflicts with Kleene’s B.

Proposition 5. (jrm)

1. MRAg ⊆ IRA + Σ0
1-DNS0 + ∀α¬¬GR(α) ⊆ MRA,

so MRA contains its classical content, so MRA+g = MRA.

2. MRAg is consistent with I + ¬MP1.

Next we apply some constructive decomposition theorems.
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Monotone bar induction BImon, provable in I but not in B, is

∀α∃xR(α(x)) & ∀w(R(w)→ ∀uR(w ∗ u)) & ∀w(R(w)→ A(w))
& ∀w(∀xA(w ∗ 〈x + 1〉)→ A(w))→ A(1).

Kleene proved in 1965 that IA1 + AC00 + BImon ` BId, so
BImon lies between BId and BI◦ in strength over IA1 + AC00.

He also proved IRA + BI◦ ` WLPO so BI◦ is inconsistent with I.

Fujiwara proved in 2019 that BI◦ is equivalent to BImon + CD over
EL0, where CD is ∀x(A(x) ∨ B)→ (∀xA(x) ∨ B) (x not free in B).

Proposition 6. (IRA + BId)g = (IRA + BImon)g = (IRA + BI◦)g .

Corollary. The neutral subsystem B of Kleene and Vesley’s I has
the same classical content as the variant B′ with BImon replacing
BId, and so (B′)+g ≡ (IA1 + AC01 + BImon)+g = B′ + DNS−01.
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Over a constructive base theory EL′ ≡Def EL + Π0
1-AC00, Ishihara

and Schuster decomposed a restricted version

WC-N′: ∀α∃n∀kσ(〈α(k),n〉) = 0
& ∀w∀m∀n(σ(〈w,m〉) = 0 & m ≤ n→ σ(〈w, n〉) = 0)
→ ∀α∃n∃m∀β ∈ α(m)∀kσ(〈β(k),n〉) = 0

of weak continuity into a classically correct mathematical principle

BD-N: ∀α∃m∀n ≥ mβ(α(n)) < n→ ∃m∀nβ(n) ≤ m

and the classically false ¬LPO: ¬∀α(∃xα(x) 6= 0 ∨ ∀xα(x) = 0).

Proposition 7.

1. (EL′)+g ≡ (EL + Π0
1-AC00)+g = EL′ + Σ0

2-DNS0.

2. (EL′ + BD-N)+g = EL′ + BD-N + Σ0
2-DNS0.

(1) is by Proposition 2(4). (2) holds because EL+g proves the
contrapositive of (BD-N)g (equivalent to (BD-N)g over EL).

-19-



Classical Content of a Classically Unsound Theory?

Ishihara and Schuster’s EL′ + WC-N′ proves BD-N (which is
classically correct) and ¬LPO (which is not).

Question. Does such a system S in L(An) have a classical
content, and if so, what is it? Consider this possibility:

The classical subtheory cls(S) of S consists of all theorems of S
that hold in classical Baire space. The classical content Sg of S is
(cls(S))g and S+g is the closure under intuitionistic logic of S ∪ Sg .

Theorem 3. (gvf) (EL′ + WC-N′)+g = EL′ + WC-N′ + (Γ◦)g

where Γ◦ is the set of all classically true sentences in L(EL′). The
same result holds for I and its subsystem IA1 + Π0

1-AC00 + WC-N′.

Kleene proved all true negative sentences of L(An) are realized by
primitive recursive functions, so I+g = I + (Γ◦)g is consistent.
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Can this appeal to truth in the preferred classical model be
avoided?

Apparently not. If Y is the collection of all subsystems S of I which
extend B and are consistent with classical logic, then I+g cannot
usefully be identified with I +

⋃
{S+g : S ∈ Y}.

Proposition 8. Consider systems S1 = B + (WLPO → Con(B))
and S2 = B + (WLPO → ¬Con(B)).

1. S1 and S2 belong to Y (Gödel’s 2nd incompleteness theorem).

2. S1 `◦ Con(B) and S2 `◦ ¬Con(B).

3. (S1)g ` (Con(B))g and (S2)g ` ¬(Con(B))g so⋃
{S+g : S ∈ Y} is inconsistent.

(Inspired by Vafeiadou’s idea for the proof of Theorem 3.)
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We have suggested a way to compute and compare the precise
constructive cost of accepting the classical interpretations of
constructive systems S which are classically sound, or which
consistently extend systems with preferred classical models.

There are other applications, e.g.

I The fan theorem FT1 is conservative over HA (Troelstra).
(IRA + FT!)

+g proves intuitionistic predicate logic is weakly
complete for Beth’s interpretation (Gödel, Dyson, Kreisel).

I BISH (Bishop, Bridges, Ishihara): Informal constructive
analysis, which is classically sound, is now being formalized.
Resulting decomposition theorems help to compare classical
contents of constructive and semi-constructive theories.

I Constructive algebra or IZF or CZF?
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Thank you for listening!
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