Set Theory, Infinite Games, and Strong Axioms

Itay Neeman
Department of Mathematics University of California Los Angeles
Los Angeles, CA 90095-1555

15 November 2005

Use the PgDn or the down arrow to scroll through slides.
Press Esc when done.

Two sets A and B are of the same size, or cardinality, if their elements can be placed in precise correspondence.

Two sets A and B are of the same size, or cardinality, if their elements can be placed in precise correspondence.

This is denoted $A \approx B$. (A equinumerous with B.)

Two sets A and B are of the same size, or cardinality, if their elements can be placed in precise correspondence.

This is denoted $A \approx B$. (A equinumerous with B.)
Precisely, $A \approx B$ iff there is a relation connecting elements of A with elements of B, so that each element of A is connected to exactly one element of B and vice versa.

Two sets A and B are of the same size, or cardinality, if their elements can be placed in precise correspondence.

This is denoted $A \approx B$. (A equinumerous with B.)
Precisely, $A \approx B$ iff there is a relation connecting elements of A with elements of B, so that each element of A is connected to exactly one element of B and vice versa.

Rephrasing:

Rephrasing:

Rephrasing:

$A \approx B$ just in case that there is a function $f: A \rightarrow B$ so that:

Rephrasing:

$A \approx B$ just in case that there is a function $f: A \rightarrow B$ so that:

- f is one-to-one.

Rephrasing:

$A \approx B$ just in case that there is a function $f: A \rightarrow B$ so that:

- f is one-to-one. $(x \neq y \Rightarrow f(x) \neq f(y)$.

Rephrasing:

$A \approx B$ just in case that there is a function $f: A \rightarrow B$ so that:

- f is one-to-one. $(x \neq y \Rightarrow f(x) \neq f(y)$.
- f is onto.

Rephrasing:

$A \approx B$ just in case that there is a function $f: A \rightarrow B$ so that:

- f is one-to-one. $(x \neq y \Rightarrow f(x) \neq f(y)$.
- f is onto. (All elements of B are in the range of f.)

Some examples:

Some examples:

$$
\mathbb{N}=\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\}
\end{aligned}
$$

$\mathbb{N}-\{0\}$ and \mathbb{N} have the same size.

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\}
\end{aligned}
$$

Some examples:

$$
\begin{array}{rl}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
0 & 1
\end{array} 2 \quad 3 \quad 4 \quad 4 \quad 5 \cdots \cdots .
$$

Some examples:

$$
\left.\left.\begin{array}{rl}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
& \\
& 1
\end{array} \quad 2 \quad 3 \quad 4 \quad 5\right) \cdots \ldots .\right\}
$$

Some examples:

$$
\left.\left.\begin{array}{rl}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
0 & 1
\end{array} \quad 2 \quad 3 \quad 4 \quad 5\right) \ldots \ldots .\right\}
$$

Some examples:

$$
\left.\left.\begin{array}{rl}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
0 & 1
\end{array} \quad 2 \quad 3 \quad 4 \quad 5\right) \ldots \ldots .\right\}
$$

Some examples:

$$
\left.\left.\begin{array}{rl}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
0 & 1
\end{array} \quad 2 \quad 3 \quad 4 \quad 5\right) \ldots \ldots .\right\}
$$

Some examples:

$$
\begin{aligned}
& \mathbb{N}=\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\} \\
& \mathbb{N}-\{0\}=\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
& \mathbb{Z}=\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
& \begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array} \\
& \begin{array}{lllll}
0 & -1 & 1 & -2 & 2
\end{array}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
& \mathbb{N}=\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\} \\
& \mathbb{N}-\{0\}=\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
& \mathbb{Z}=\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
& \begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array} \\
& \begin{array}{llllll}
0 & -1 & 1 & -2 & 2 & -3
\end{array}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\}
\end{aligned}
$$

\mathbb{Z} and \mathbb{N} have the same size.

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{p} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\} \\
& =
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\} \\
& =\{0
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\} \\
& =\left\{0, \frac{1}{2}\right.
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\} \\
& =\left\{0, \frac{1}{2}, \frac{1}{3}\right.
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\} \\
& =\left\{0, \frac{1}{2}, \frac{1}{3}, \frac{12}{17},\right.
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\} \\
& =\left\{0, \frac{1}{2}, \frac{1}{3}, \frac{12}{17}, \frac{47}{6},\right.
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\} \\
& =\left\{0, \frac{1}{2}, \frac{1}{3}, \frac{12}{17}, \frac{47}{6}, \frac{103}{58},\right.
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\} \\
& =\left\{0, \frac{1}{2}, \frac{1}{3}, \frac{12}{17}, \frac{47}{6}, \frac{103}{58}, \frac{34}{7},\right.
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\} \\
& =\left\{0, \frac{1}{2}, \frac{1}{3}, \frac{12}{17}, \frac{47}{6}, \frac{103}{58}, \frac{34}{7}, \frac{54}{12},\right.
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\} \\
& =\left\{0, \frac{1}{2}, \frac{1}{3}, \frac{12}{17}, \frac{47}{6}, \frac{103}{58}, \frac{34}{7}, \frac{54}{12}, \frac{81}{62},\right.
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\} \\
& =\left\{0, \frac{1}{2}, \frac{1}{3}, \frac{12}{17}, \frac{47}{6}, \frac{103}{58}, \frac{34}{7}, \frac{54}{12}, \frac{81}{62}, \cdots\right\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:
$\frac{0}{1}$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\frac{0}{1} \frac{1}{0}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\begin{array}{lll}
\frac{0}{1} & \frac{1}{0} & \frac{0}{2}
\end{array}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\begin{array}{llll}
\frac{0}{1} & \frac{1}{0} & \frac{0}{2} & \frac{1}{1}
\end{array}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\begin{array}{lllll}
\frac{0}{1} & \frac{1}{0} & \frac{0}{2} & \frac{1}{1} & \frac{2}{0}
\end{array}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\begin{array}{llllll}
\frac{0}{1} & \frac{1}{0} & \frac{0}{2} & \frac{1}{1} & \frac{2}{0} & \frac{0}{3}
\end{array}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\begin{array}{lllllll}
\frac{0}{1} & \frac{1}{0} & \frac{0}{2} & \frac{1}{1} & \frac{2}{0} & \frac{0}{3} & \frac{1}{2}
\end{array}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\begin{array}{lllllllll}
\frac{0}{1} & \frac{1}{0} & \frac{0}{2} & \frac{1}{1} & \frac{2}{0} & \frac{0}{3} & \frac{1}{2} & \frac{2}{1}
\end{array}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\begin{array}{llllllllll}
\frac{0}{1} & \frac{1}{0} & \frac{0}{2} & \frac{1}{1} & \frac{2}{0} & \frac{0}{3} & \frac{1}{2} & \frac{2}{1} & \frac{3}{0}
\end{array}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\begin{array}{lllllllllll}
\frac{0}{1} & \frac{1}{0} & \frac{0}{2} & \frac{1}{1} & \frac{2}{0} & \frac{0}{3} & \frac{1}{2} & \frac{2}{1} & \frac{3}{0} & \frac{0}{4}
\end{array}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\begin{array}{lllllllllll}
\frac{0}{1} & \frac{1}{0} & \frac{0}{2} & \frac{1}{1} & \frac{2}{0} & \frac{0}{3} & \frac{1}{2} & \frac{2}{1} & \frac{3}{0} & \frac{0}{4} & \frac{1}{3}
\end{array}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\frac{0}{1} \frac{1}{0} \quad \frac{0}{2} \quad \frac{1}{1} \frac{2}{0} \quad \frac{0}{3} \quad \frac{1}{2} \quad \frac{2}{1} \quad \frac{3}{0} \quad \frac{0}{4} \quad \frac{1}{3} \frac{2}{2}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\begin{array}{lllllllllllll}
\frac{0}{1} & \frac{1}{0} & \frac{0}{2} & \frac{1}{1} & \frac{2}{0} & \frac{0}{3} & \frac{1}{2} & \frac{2}{1} & \frac{3}{0} & \frac{0}{4} & \frac{1}{3} & \frac{2}{2} & \frac{3}{1}
\end{array}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\begin{array}{llllllllllllll}
\frac{0}{1} & \frac{1}{0} & \frac{0}{2} & \frac{1}{1} & \frac{2}{0} & \frac{0}{3} & \frac{1}{2} & \frac{2}{1} & \frac{3}{0} & \frac{0}{4} & \frac{1}{3} & \frac{2}{2} & \frac{3}{1} & \frac{4}{0}
\end{array}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\frac{0}{1} \frac{1}{0} \quad \frac{0}{2} \quad \frac{1}{1} \frac{2}{0} \quad \frac{0}{3} \quad \frac{1}{2} \quad \frac{2}{1} \quad \frac{3}{0} \quad \frac{0}{4} \quad \frac{1}{3} \quad \frac{2}{2} \quad \frac{3}{1} \frac{4}{0} \quad \frac{0}{5}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\begin{array}{lllllllllllllllll}
\frac{0}{1} & \frac{1}{0} & \frac{0}{2} & \frac{1}{1} & \frac{2}{0} & \frac{0}{3} & \frac{1}{2} & \frac{2}{1} & \frac{3}{0} & \frac{0}{4} & \frac{1}{3} & \frac{2}{2} & \frac{3}{1} & \frac{4}{0} & \frac{0}{5} & \frac{1}{4}
\end{array}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\begin{array}{llllllllllllllllll}
\frac{0}{1} & \frac{1}{0} & \frac{0}{2} & \frac{1}{1} & \frac{2}{0} & \frac{0}{3} & \frac{1}{2} & \frac{2}{1} & \frac{3}{0} & \frac{0}{4} & \frac{1}{3} & \frac{2}{2} & \frac{3}{1} & \frac{4}{0} & \frac{0}{5} & \frac{1}{4} & \frac{2}{3}
\end{array}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

List all pairs:

$$
\begin{array}{lllllllllllllllllll}
\frac{0}{1} & \frac{1}{0} & \frac{0}{2} & \frac{1}{1} & \frac{2}{0} & \frac{0}{3} & \frac{1}{2} & \frac{2}{1} & \frac{3}{0} & \frac{0}{4} & \frac{1}{3} & \frac{2}{2} & \frac{3}{1} & \frac{4}{0} & \frac{0}{5} & \frac{1}{4} & \frac{2}{3} & \cdots
\end{array}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Eliminate divisions by zero and repetitions:

$$
\begin{array}{lllllllllllllllllll}
\frac{0}{1} & \frac{1}{0} & \frac{0}{2} & \frac{1}{1} & \frac{2}{0} & \frac{0}{3} & \frac{1}{2} & \frac{2}{1} & \frac{3}{0} & \frac{0}{4} & \frac{1}{3} & \frac{2}{2} & \frac{3}{1} & \frac{4}{0} & \frac{0}{5} & \frac{1}{4} & \frac{2}{3} & \cdots
\end{array}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Eliminate divisions by zero and repetitions:

$$
\begin{array}{lllllllllllllllllll}
\frac{0}{1} & \frac{1}{0} & \frac{0}{2} & \frac{1}{1} & \frac{2}{0} & \frac{0}{3} & \frac{1}{2} & \frac{2}{1} & \frac{3}{0} & \frac{0}{4} & \frac{1}{3} & \frac{2}{2} & \frac{3}{1} & \frac{4}{0} & \frac{0}{5} & \frac{1}{4} & \frac{2}{3} & \cdots
\end{array}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Eliminate divisions by zero and repetitions:

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Eliminate divisions by zero and repetitions:

$$
\frac{0}{1} \frac{1}{0} \quad \frac{0}{2} \frac{1}{1} \frac{2}{0} \quad \frac{0}{3} \quad \frac{1}{2} \quad \frac{2}{1} \frac{3}{0} \quad \frac{0}{4} \quad \frac{1}{3} \quad \frac{2}{2} \quad \frac{3}{1} \frac{4}{0} \quad \frac{0}{5} \quad \frac{1}{4} \quad \frac{2}{3} \cdots
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Eliminate divisions by zero and repetitions:

$$
\frac{0}{1} \frac{1}{0} \quad \frac{0}{2} \frac{1}{1} \frac{2}{0} \quad \frac{0}{3} \quad \frac{1}{2} \quad \frac{2}{1} \frac{3}{0} \quad \frac{0}{4} \quad \frac{1}{3} \quad \frac{2}{2} \quad \frac{3}{1} \frac{4}{0} \quad \frac{0}{5} \quad \frac{1}{4} \quad \frac{2}{3} \cdots
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Eliminate divisions by zero and repetitions:

$$
\frac{0}{1} \frac{1}{0} \quad \frac{0}{2} \frac{1}{1} \frac{2}{0} \quad \frac{0}{3} \quad \frac{1}{2} \quad \frac{2}{1} \frac{3}{0} \quad \frac{0}{4} \quad \frac{1}{3} \quad \frac{2}{2} \quad \frac{3}{1} \frac{4}{0} \quad \frac{0}{5} \quad \frac{1}{4} \frac{2}{3} \cdots
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Eliminate divisions by zero and repetitions:

$$
\frac{0}{1} \frac{1}{0} \quad \frac{0}{2} \frac{1}{1} \frac{2}{0} \quad \frac{0}{3} \quad \frac{1}{2} \frac{2}{1} \frac{3}{0} \quad \frac{0}{4} \quad \frac{1}{3} \quad \frac{2}{2} \quad \frac{3}{1} \frac{4}{0} \quad \frac{0}{5} \quad \frac{1}{4} \frac{2}{3} \cdots
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Eliminate divisions by zero and repetitions:

$$
\frac{0}{1} \frac{1}{0} \quad \frac{0}{2} \frac{1}{1} \frac{2}{0} \quad \frac{0}{3} \quad \frac{1}{2} \frac{2}{1} \frac{3}{0} \quad \frac{0}{4} \frac{1}{3} \frac{2}{2} \frac{3}{1} \frac{4}{0} \quad \frac{0}{5} \quad \frac{1}{4} \quad \frac{2}{3} \cdots
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Eliminate divisions by zero and repetitions:

$$
\frac{0}{1} \frac{1}{0} \quad \frac{0}{2} \frac{1}{1} \frac{2}{0} \quad \frac{0}{3} \quad \frac{1}{2} \quad \frac{2}{1} \quad \frac{3}{0} \quad \frac{0}{4} \frac{1}{3}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Eliminate divisions by zero and repetitions:

$$
\frac{0}{1} \frac{1}{0} \quad \frac{0}{2} \frac{1}{1} \frac{2}{0} \quad \frac{0}{3} \quad \frac{1}{2} \frac{2}{1} \frac{3}{0} \quad \frac{0}{4} \frac{1}{3}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

$$
\frac{0}{1} \frac{1}{0} \quad \frac{0}{2} \quad \frac{1}{1} \frac{2}{0} \quad \frac{0}{3} \quad \frac{1}{2} \quad \frac{2}{1} \frac{3}{0} \quad \frac{0}{4} \frac{1}{3} \frac{2}{2}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Count remaining pairs:

$$
\frac{0}{1} \frac{1}{0} \quad \frac{0}{2} \frac{1}{1} \frac{2}{0} \quad \frac{0}{3} \frac{1}{2} \frac{2}{1} \frac{3}{0} \quad \frac{0}{4} \frac{1}{3}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

0

$$
\frac{0}{1} \frac{1}{0} \quad \frac{0}{2} \frac{1}{1} \frac{2}{0} \quad \frac{0}{3} \quad \frac{1}{2} \frac{2}{1} \frac{3}{0} \quad \frac{0}{4} \quad \frac{1}{3} \quad \frac{2}{2} \quad \frac{3}{1} \frac{4}{0} \quad \frac{0}{5} \frac{1}{4} \frac{2}{3}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

$$
\begin{array}{cccccccccccccc}
0 & 1 & 2 & 3 & 4 \\
\frac{0}{1} & \frac{1}{0} & \frac{0}{2} & \frac{1}{1} & \frac{2}{0} & \frac{0}{3} & \frac{1}{2} & \frac{2}{1} & \frac{3}{0} & \frac{0}{4} & \frac{1}{3} & \frac{2}{2} & \frac{3}{1} & \frac{4}{0}
\end{array} \frac{0}{5} \frac{1}{4} \frac{2}{3} \cdots .
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

\mathbb{Q}^{+}and \mathbb{N} have the same size.

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{m}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\} \\
\mathbb{Q} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{Z}, p \neq 0\right\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\} \\
\mathbb{Q} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{Z}, p \neq 0\right\} \\
\mathbb{R} & =\{\text { all real numbers }\}
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\} \\
\mathbb{Q} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{Z}, p \neq 0\right\} \\
\mathbb{R} & =\{\text { all real numbers }\}
\end{aligned}
$$

$\mathbb{N}-\{0\}, \mathbb{Z}, \mathbb{Q}^{+}$, and \mathbb{Q} are all equinumerous with \mathbb{N}.

Some examples:

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{N}-\{0\} & =\{1,2,3,4, \ldots \ldots \ldots \ldots \ldots \ldots\} \\
\mathbb{Z} & =\{\ldots \ldots \ldots-2,-1,0,1,2,3, \ldots \ldots \ldots\} \\
\mathbb{Q}^{+} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{N}, p \neq 0\right\} \\
\mathbb{Q} & =\left\{\left.\frac{\mathrm{m}}{\mathrm{p}} \right\rvert\, m, p \in \mathbb{Z}, p \neq 0\right\} \\
\mathbb{R} & =\{\text { all real numbers }\}
\end{aligned}
$$

$\mathbb{N}-\{0\}, \mathbb{Z}, \mathbb{Q}^{+}$, and \mathbb{Q} are all equinumerous with \mathbb{N}. But

Theorem (Cantor, 1873). \mathbb{R} and \mathbb{N} are not of the same size.

Theorem (Cantor, 1873). \mathbb{R} and \mathbb{N} are not of the same size.

Proof.

Theorem (Cantor, 1873). \mathbb{R} and \mathbb{N} are not of the same size.

Proof. Suppose for contradiction that $\mathbb{R} \approx \mathbb{N}$.

Theorem (Cantor, 1873). \mathbb{R} and \mathbb{N} are not of the same size.

Proof. Suppose for contradiction that $\mathbb{R} \approx \mathbb{N}$.
Then there is a function $f: \mathbb{N} \rightarrow \mathbb{R}$, so that f is one-to-one and onto.

Theorem (Cantor, 1873). \mathbb{R} and \mathbb{N} are not of the same size.

Proof. Suppose for contradiction that $\mathbb{R} \approx \mathbb{N}$.
Then there is a function $f: \mathbb{N} \rightarrow \mathbb{R}$, so that f is one-to-one and onto.

Let $[0,1]$ denote the interval $\{x \mid 0 \leq x \leq 1\}$.

Theorem (Cantor, 1873). \mathbb{R} and \mathbb{N} are not of the same size.

Proof. Suppose for contradiction that $\mathbb{R} \approx \mathbb{N}$.
Then there is a function $f: \mathbb{N} \rightarrow \mathbb{R}$, so that f is one-to-one and onto.

Let $[0,1]$ denote the interval $\{x \mid 0 \leq x \leq 1\}$.
Define $g(x)=f(x)-\lfloor f(x)\rfloor$.

Theorem (Cantor, 1873). \mathbb{R} and \mathbb{N} are not of the same size.

Proof. Suppose for contradiction that $\mathbb{R} \approx \mathbb{N}$.
Then there is a function $f: \mathbb{N} \rightarrow \mathbb{R}$, so that f is one-to-one and onto.

Let $[0,1]$ denote the interval $\{x \mid 0 \leq x \leq 1\}$.
Define $g(x)=f(x)-\lfloor f(x)\rfloor$.
(For example, if $f(x)=79.121212 \ldots$ then $g(x)=0.121212 \ldots$.)

Theorem (Cantor, 1873). \mathbb{R} and \mathbb{N} are not of the same size.

Proof. Suppose for contradiction that $\mathbb{R} \approx \mathbb{N}$.
Then there is a function $f: \mathbb{N} \rightarrow \mathbb{R}$, so that f is one-to-one and onto.

Let $[0,1]$ denote the interval $\{x \mid 0 \leq x \leq 1\}$.
Define $g(x)=f(x)-\lfloor f(x)\rfloor$.

Theorem (Cantor, 1873). \mathbb{R} and \mathbb{N} are not of the same size.

Proof. Suppose for contradiction that $\mathbb{R} \approx \mathbb{N}$.
Then there is a function $f: \mathbb{N} \rightarrow \mathbb{R}$, so that f is one-to-one and onto.

Let $[0,1]$ denote the interval $\{x \mid 0 \leq x \leq 1\}$.
Define $g(x)=f(x)-\lfloor f(x)\rfloor$.

Note that $g: \mathbb{N} \rightarrow[0,1]$ is onto.

Theorem (Cantor, 1873). \mathbb{R} and \mathbb{N} are not of the same size.

Proof. Suppose for contradiction that $\mathbb{R} \approx \mathbb{N}$.
Then there is a function $f: \mathbb{N} \rightarrow \mathbb{R}$, so that f is one-to-one and onto.

Let $[0,1]$ denote the interval $\{x \mid 0 \leq x \leq 1\}$.
Define $g(x)=f(x)-\lfloor f(x)\rfloor$.

Note that $g: \mathbb{N} \rightarrow[0,1]$ is onto.
Consider the following table:

$$
\begin{aligned}
& g(0)= \\
& g(1)= \\
& g(2)= \\
& g(3)= \\
& g(4)= \\
& g(5)=
\end{aligned}
$$

$$
\begin{aligned}
& g(0)=0 \\
& g(1)= \\
& g(2)= \\
& g(3)= \\
& g(4)= \\
& g(5)=
\end{aligned}
$$

$$
\begin{aligned}
& g(0)=0 . \\
& g(1)= \\
& g(2)= \\
& g(3)= \\
& g(4)= \\
& g(5)=
\end{aligned}
$$

$$
\begin{aligned}
& g(0)=0 \cdot a_{0}^{0} \\
& g(1)= \\
& g(2)= \\
& g(3)= \\
& g(4)= \\
& g(5)=
\end{aligned}
$$

$$
\begin{aligned}
& g(0)=0 \cdot a_{0}^{0} a_{1}^{0} \\
& g(1)= \\
& g(2)= \\
& g(3)= \\
& g(4)= \\
& g(5)=
\end{aligned}
$$

$$
\begin{aligned}
& g(0)=0 \cdot a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \\
& g(1)= \\
& g(2)= \\
& g(3)= \\
& g(4)= \\
& g(5)=
\end{aligned}
$$

$$
\begin{aligned}
& g(0)=0 \quad \cdot a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \\
& g(1)= \\
& g(2)= \\
& g(3)= \\
& g(4)= \\
& g(5)=
\end{aligned}
$$

$$
\begin{aligned}
g(0) & =0 \\
g(1) & = \\
g(2) & = \\
g(3) & = \\
g(4) & = \\
g(5) & a_{1}^{0}
\end{aligned} a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0}
$$

$$
\begin{aligned}
& g(0)=0 \quad \cdot a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \\
& g(1)= \\
& g(2)= \\
& g(3)= \\
& g(4)= \\
& g(5)=
\end{aligned}
$$

$$
\begin{aligned}
g(0) & =0 \\
g(1) & = \\
g(2) & = \\
g(3) & = \\
g(4) & = \\
g(5) & =
\end{aligned}
$$

$$
\begin{aligned}
g(0) & =0 \\
g(1) & = \\
g(2) & = \\
g(3) & = \\
g(4) & = \\
g & a_{1}^{0}
\end{aligned} a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots .
$$

(Each a_{n}^{i} is a digit between 0 and 9.)

$$
\begin{aligned}
g(0) & =0 \\
g(1) & = \\
g(2) & = \\
g(3) & = \\
g(4) & = \\
g(5) & =
\end{aligned}
$$

$$
\begin{aligned}
g(0) & =0
\end{aligned} \cdot a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots .
$$

$$
\begin{aligned}
& g(0)=0 . a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \cdots \\
& g(1)=0 . a_{0}^{1} \quad a_{1}^{1} \quad a_{2}^{1} \quad a_{3}^{1} \quad a_{4}^{1} \quad a_{5}^{1} \cdots \\
& g(2)=0 . a_{0}^{2} a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}^{2} a_{5}^{2} \cdots \\
& g(3)= \\
& g(4)= \\
& g(5)=
\end{aligned}
$$

$$
\begin{aligned}
& g(0)=0 . a_{0}^{0} a_{1}^{0} a_{2}^{0} a_{3}^{0} a_{4}^{0} a_{5}^{0} \cdots \\
& g(1)=0 . a_{0}^{1} \quad a_{1}^{1} \quad a_{2}^{1} \quad a_{3}^{1} \quad a_{4}^{1} \quad a_{5}^{1} \cdots \\
& g(2)=0 \cdot a_{0}^{2} a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}^{2} a_{5}^{2} \cdots \\
& g(3)=0 . a_{0}^{3} a_{1}^{3} a_{2}^{3} a_{3}^{3} a_{4}^{3} a_{5}^{3} \cdots \\
& g(4)= \\
& g(5)=
\end{aligned}
$$

$$
\begin{aligned}
& g(0)=0 \cdot a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \\
& a_{3}^{0}
\end{aligned} a_{4}^{0} \quad a_{5}^{0} \quad \ldots .
$$

$$
\begin{aligned}
& g(0)=0 \cdot a_{0}^{0} \quad a_{1}^{0} \\
& a_{2}^{0}
\end{aligned} a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots .
$$

$$
\begin{aligned}
& g(0)=0 \cdot a_{0}^{0}
\end{aligned} a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots .
$$

$$
\begin{aligned}
& g(0)=0 \cdot a_{0}^{0}
\end{aligned} a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots .
$$

$$
\begin{aligned}
& g(0)=0 \cdot a_{0}^{0}
\end{aligned} a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots .
$$

$$
\begin{aligned}
& g(0)=0 \cdot a_{0}^{0}
\end{aligned} a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots .
$$

$$
\begin{aligned}
& g(0)=0 \cdot a_{0}^{0}
\end{aligned} a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots .
$$

$$
\begin{aligned}
& g(0)=0 \cdot a_{0}^{0}
\end{aligned} a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots .
$$

$$
\begin{aligned}
& g(0)=0 \cdot a_{0}^{0} \\
& a_{1}^{0} \\
& a_{2}^{0}
\end{aligned} a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots .
$$

$$
\begin{aligned}
& g(0)=0 \cdot \boldsymbol{a}_{0}^{0} a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \cdots \\
& g(1)=0 \quad . \quad a_{0}^{1} \quad \boldsymbol{a}_{1}^{1} \quad a_{2}^{1} \quad a \frac{1}{3} \quad a_{4}^{1} \quad a_{5}^{1} \quad \ldots \\
& g(2)=0 \cdot a_{0}^{2} \quad a_{1}^{2} \boldsymbol{a}_{2}^{2} a_{3}^{2} a_{4}^{2} a_{5}^{2} \ldots \\
& g(3)=0 \quad \cdot a_{0}^{3} \quad a_{1}^{3} \quad a_{2}^{3} \quad a_{3}^{3} \quad a_{4}^{3} \quad a_{5}^{3} \quad \ldots \\
& g(4)=0 \quad \cdot \quad a_{0}^{4} \quad a_{1}^{4} \quad a_{2}^{4} \quad a_{3}^{4} \quad \boldsymbol{a}_{4}^{4} \quad a_{5}^{4} \quad \ldots \\
& g(5)=0 \quad \cdot a_{0}^{5} \quad a_{1}^{5} \quad a_{2}^{5} \quad a_{3}^{5} \quad a_{4}^{5} \quad \boldsymbol{a}_{5}^{5} \quad \ldots
\end{aligned}
$$

Diagonal

$$
\begin{array}{llllllll}
a_{0}^{0} & a_{1}^{1} & a_{2}^{2} & a_{3}^{3} & a_{4}^{4} & a_{5}^{5} & \cdots
\end{array}
$$

$$
\begin{aligned}
& g(0)=0 \quad \cdot a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots \\
& g(1)=0 \quad . \quad a_{0}^{1} \quad \boldsymbol{a}_{1}^{1} \quad a_{2}^{1} \quad a_{3}^{1} \quad a_{4}^{1} \quad a_{5}^{1} \quad \ldots \\
& g(2)=0 \cdot a_{0}^{2} \quad a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}^{2} a_{5}^{2} \ldots \\
& g(3)=0 \quad \cdot a_{0}^{3} \quad a_{1}^{3} \quad a_{2}^{3} \quad a_{3}^{3} \quad a_{4}^{3} \quad a_{5}^{3} \quad \ldots \\
& g(4)=0 \quad \cdot a_{0}^{4} \quad a_{1}^{4} \quad a_{2}^{4} \quad a_{3}^{4} \quad \boldsymbol{a}_{4}^{4} \quad a_{5}^{4} \quad \ldots \\
& g(5)=0 \quad \cdot a_{0}^{5} \quad a_{1}^{5} \quad a_{2}^{5} \quad a_{3}^{5} \quad a_{4}^{5} \quad a_{5}^{5} \quad \cdots
\end{aligned}
$$

Diagonal

$$
a_{0}^{0} \quad a_{1}^{1} \quad a_{2}^{2} \quad a_{3}^{3} \quad a_{4}^{4} \quad a_{5}^{5} \ldots
$$

For a digit a set $\overline{\boldsymbol{a}}=\left\{\begin{array}{ll}4 & \text { if } a=5 \\ 5 & \text { if } a \neq 5\end{array}\right.$.

$$
\begin{aligned}
& g(0)=0 \quad \cdot a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots \\
& g(1)=0 \quad . \quad a_{0}^{1} \quad \boldsymbol{a}_{1}^{1} \quad a_{2}^{1} \quad a_{3}^{1} \quad a_{4}^{1} \quad a_{5}^{1} \quad \ldots \\
& g(2)=0 \cdot a_{0}^{2} \quad a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}^{2} a_{5}^{2} \ldots \\
& g(3)=0 \quad \cdot a_{0}^{3} \quad a_{1}^{3} \quad a_{2}^{3} \quad a_{3}^{3} \quad a_{4}^{3} \quad a_{5}^{3} \quad \ldots \\
& g(4)=0 \quad \cdot a_{0}^{4} \quad a_{1}^{4} \quad a_{2}^{4} \quad a_{3}^{4} \quad a_{4}^{4} \quad a_{5}^{4} \quad \ldots \\
& g(5)=0 \quad \cdot a_{0}^{5} \quad a_{1}^{5} \quad a_{2}^{5} \quad a_{3}^{5} \quad a_{4}^{5} \quad a_{5}^{5} \quad \cdots
\end{aligned}
$$

Diagonal

$$
a_{0}^{0} \quad a_{1}^{1} \quad a_{2}^{2} \quad a_{3}^{3} \quad a_{4}^{4} \quad a_{5}^{5} \ldots
$$

For a digit a set $\overline{\boldsymbol{a}}=\left\{\begin{array}{ll}4 & \text { if } a=5 \\ 5 & \text { if } a \neq 5\end{array}\right.$. Either way $\overline{\boldsymbol{a}} \neq a$.

$$
\begin{aligned}
& g(0)=0 \cdot \boldsymbol{a}_{0}^{0} a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \cdots \\
& g(1)=0 \quad . \quad a_{0}^{1} \quad \boldsymbol{a}_{1}^{1} \quad a_{2}^{1} \quad a \frac{1}{3} \quad a_{4}^{1} \quad a_{5}^{1} \quad \ldots \\
& g(2)=0 \cdot a_{0}^{2} \quad a_{1}^{2} \boldsymbol{a}_{2}^{2} a_{3}^{2} a_{4}^{2} a_{5}^{2} \ldots \\
& g(3)=0 \quad \cdot a_{0}^{3} \quad a_{1}^{3} \quad a_{2}^{3} \quad a_{3}^{3} \quad a_{4}^{3} \quad a_{5}^{3} \quad \ldots \\
& g(4)=0 \quad \cdot \quad a_{0}^{4} \quad a_{1}^{4} \quad a_{2}^{4} \quad a_{3}^{4} \quad \boldsymbol{a}_{4}^{4} \quad a_{5}^{4} \quad \ldots \\
& g(5)=0 \quad \cdot a_{0}^{5} \quad a_{1}^{5} \quad a_{2}^{5} \quad a_{3}^{5} \quad a_{4}^{5} \quad \boldsymbol{a}_{5}^{5} \quad \ldots
\end{aligned}
$$

Diagonal

$$
\begin{array}{llllllll}
a_{0}^{0} & a_{1}^{1} & a_{2}^{2} & a_{3}^{3} & a_{4}^{4} & a_{5}^{5} & \cdots
\end{array}
$$

$$
\begin{aligned}
& g(0)=0 \quad \cdot a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots \\
& g(1)=0 \quad . \quad a_{0}^{1} \quad \boldsymbol{a}_{1}^{1} \quad a_{2}^{1} \quad a_{3}^{1} \quad a_{4}^{1} \quad a_{5}^{1} \quad \ldots \\
& g(2)=0 \cdot a_{0}^{2} \quad a_{1}^{2} \boldsymbol{a}_{2}^{2} a_{3}^{2} a_{4}^{2} a_{5}^{2} \ldots \\
& g(3)=0 \quad \cdot a_{0}^{3} \quad a_{1}^{3} \quad a_{2}^{3} \quad a_{3}^{3} \quad a_{4}^{3} \quad a_{5}^{3} \quad \ldots \\
& g(4)=0 \quad \cdot a_{0}^{4} \quad a_{1}^{4} \quad a_{2}^{4} \quad a_{3}^{4} \quad \boldsymbol{a}_{4}^{4} \quad a_{5}^{4} \quad \ldots \\
& g(5)=0 \quad \cdot a_{0}^{5} \quad a_{1}^{5} \quad a_{2}^{5} \quad a_{3}^{5} \quad a_{4}^{5} \quad \boldsymbol{a}_{5}^{5} \quad \ldots
\end{aligned}
$$

Diagonal

$$
\begin{array}{llllllll}
a_{0}^{0} & a_{1}^{1} & a_{2}^{2} & a_{3}^{3} & a_{4}^{4} & a_{5}^{5} & \cdots
\end{array}
$$

Set: $z=0$.

$$
\begin{aligned}
& g(0)=0 \cdot a_{0}^{0} a_{1}^{0} a_{2}^{0} \\
& a_{3}^{0}
\end{aligned} a_{4}^{0} a_{5}^{0} \cdot \ldots .
$$

Diagonal

$$
\begin{array}{llllllll}
a_{0}^{0} & a_{1}^{1} & a_{2}^{2} & a_{3}^{3} & a_{4}^{4} & a_{5}^{5} & \cdots
\end{array}
$$

Set: $z=0 \cdot \bar{a}_{0}^{0}$

$$
\begin{aligned}
& g(0)=0 \cdot a_{0}^{0} a_{1}^{0} a_{2}^{0} \\
& a_{3}^{0}
\end{aligned} a_{4}^{0} a_{5}^{0} \cdot \ldots .
$$

Diagonal

$$
\begin{array}{llllllll}
a_{0}^{0} & a_{1}^{1} & a_{2}^{2} & a_{3}^{3} & a_{4}^{4} & a_{5}^{5} & \cdots
\end{array}
$$

Set: $\quad z=0 . \bar{a}_{0}^{0} \bar{a}_{1}^{1}$

$$
\begin{aligned}
& g(0)=0 \cdot \boldsymbol{a}_{0}^{0} a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots \\
& g(1)=0 \quad . \quad a_{0}^{1} \quad \boldsymbol{a}_{1}^{1} \quad a_{2}^{1} \quad a_{3}^{1} \quad a_{4}^{1} \quad a_{5}^{1} \quad \ldots \\
& g(2)=0 \cdot a_{0}^{2} \quad a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}^{2} a_{5}^{2} \ldots \\
& g(3)=0 \quad \cdot a_{0}^{3} \quad a_{1}^{3} \quad a_{2}^{3} \quad a_{3}^{3} \quad a_{4}^{3} \quad a_{5}^{3} \quad \ldots \\
& g(4)=0 \quad \cdot a_{0}^{4} \quad a_{1}^{4} \quad a_{2}^{4} \quad a_{3}^{4} \quad \boldsymbol{a}_{4}^{4} \quad a_{5}^{4} \quad \ldots \\
& g(5)=0 \quad \cdot a_{0}^{5} \quad a_{1}^{5} \quad a_{2}^{5} \quad a_{3}^{5} \quad a_{4}^{5} \quad \boldsymbol{a}_{5}^{5} \quad \ldots \\
& \vdots
\end{aligned}
$$

Diagonal

$$
\begin{array}{llllllll}
a_{0}^{0} & a_{1}^{1} & a_{2}^{2} & a_{3}^{3} & a_{4}^{4} & a_{5}^{5} & \cdots
\end{array}
$$

Set: $\quad z=0 . \bar{a}_{0}^{0} \quad \bar{a}_{1}^{1} \quad \bar{a}_{2}^{2}$

$$
\begin{aligned}
& g(0)=0 \quad \cdot a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots \\
& g(1)=0 \quad . \quad a_{0}^{1} \quad \boldsymbol{a}_{1}^{1} \quad a_{2}^{1} \quad a_{3}^{1} \quad a_{4}^{1} \quad a_{5}^{1} \quad \ldots \\
& g(2)=0 \cdot a_{0}^{2} a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}^{2} a_{5}^{2} \ldots \\
& g(3)=0 \quad \cdot a_{0}^{3} \quad a_{1}^{3} \quad a_{2}^{3} \quad a_{3}^{3} \quad a_{4}^{3} \quad a_{5}^{3} \quad \ldots \\
& g(4)=0 \quad \cdot a_{0}^{4} \quad a_{1}^{4} \quad a_{2}^{4} \quad a_{3}^{4} \quad a_{4}^{4} \quad a_{5}^{4} \quad \ldots \\
& g(5)=0 \quad \cdot a_{0}^{5} \quad a_{1}^{5} \quad a_{2}^{5} \quad a_{3}^{5} \quad a_{4}^{5} \quad a_{5}^{5} \quad \cdots \\
& \vdots
\end{aligned}
$$

Diagonal

$$
\begin{array}{llllllll}
a_{0}^{0} & a_{1}^{1} & a_{2}^{2} & a_{3}^{3} & a_{4}^{4} & a_{5}^{5} & \cdots
\end{array}
$$

Set: $\quad z=0 . \quad \bar{a}_{0}^{0} \quad \bar{a}_{1}^{1} \quad \bar{a}_{2}^{2} \quad \bar{a}_{3}^{3}$

$$
\begin{aligned}
g(0) & =0
\end{aligned} \cdot a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots .
$$

Diagonal

$$
\begin{array}{llllllll}
a_{0}^{0} & a_{1}^{1} & a_{2}^{2} & a_{3}^{3} & a_{4}^{4} & a_{5}^{5} & \cdots
\end{array}
$$

Set: $\quad z=0 \quad . \quad \bar{a}_{0}^{0} \quad \bar{a}_{1}^{1} \quad \bar{a}_{2}^{2} \quad \bar{a}_{3}^{3} \quad \bar{a}_{4}^{4}$

$$
\begin{aligned}
g(0) & =0
\end{aligned} \cdot a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots .
$$

Diagonal

$$
\begin{array}{llllllll}
a_{0}^{0} & a_{1}^{1} & a_{2}^{2} & a_{3}^{3} & a_{4}^{4} & a_{5}^{5} & \cdots
\end{array}
$$

Set: $z=0 \quad \begin{array}{llllllll} & \bar{a}_{0}^{0} & \bar{a}_{1}^{1} & \bar{a}_{2}^{2} & \bar{a}_{3}^{3} & \bar{a}_{4}^{4} & \bar{a}_{5}^{5}\end{array}$

$$
\begin{aligned}
g(0) & =0
\end{aligned} \cdot a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots .
$$

Diagonal

$$
\begin{array}{llllllll}
a_{0}^{0} & a_{1}^{1} & a_{2}^{2} & a_{3}^{3} & a_{4}^{4} & a_{5}^{5} & \cdots
\end{array}
$$

Set: $\quad z=0 \quad . \quad \bar{a}_{0}^{0} \quad \bar{a}_{1}^{1} \quad \bar{a}_{2}^{2} \quad \bar{a}_{3}^{3} \quad \bar{a}_{4}^{4} \quad \bar{a}_{5}^{5} \ldots$

$$
\begin{aligned}
& g(0)=0 \quad \cdot a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots \\
& g(1)=0 \quad a_{0}^{1} \quad \boldsymbol{a}_{1}^{1} \quad a_{2}^{1} \quad a_{3}^{1} \quad a_{4}^{1} \quad a_{5}^{1} \quad \cdots \\
& g(2)=0 \cdot a_{0}^{2} \quad a_{1}^{2} \boldsymbol{a}_{2}^{2} a_{3}^{2} a_{4}^{2} a_{5}^{2} \ldots \\
& g(3)=0 \quad \cdot a_{0}^{3} \quad a_{1}^{3} \quad a_{2}^{3} \quad a_{3}^{3} \quad a_{4}^{3} \quad a_{5}^{3} \quad \ldots \\
& g(4)=0 \quad \cdot a_{0}^{4} \quad a_{1}^{4} \quad a_{2}^{4} \quad a_{3}^{4} \quad \boldsymbol{a}_{4}^{4} \quad a_{5}^{4} \quad \ldots \\
& g(5)=0 \quad \cdot a_{0}^{5} \quad a_{1}^{5} \quad a_{2}^{5} \quad a_{3}^{5} \quad a_{4}^{5} \quad \boldsymbol{a}_{5}^{5} \quad \cdots \\
& \vdots
\end{aligned}
$$

Diagonal

$$
\begin{array}{llllllll}
a_{0}^{0} & a_{1}^{1} & a_{2}^{2} & a_{3}^{3} & a_{4}^{4} & a_{5}^{5} & \cdots
\end{array}
$$

Set: $\quad z=0 \quad . \quad \bar{a}_{0}^{0} \quad \bar{a}_{1}^{1} \quad \bar{a}_{2}^{2} \quad \bar{a}_{3}^{3} \quad \bar{a}_{4}^{4} \quad \bar{a}_{5}^{5} \ldots$
Note: z and the diagonal differ on each digit.

$$
\begin{aligned}
g(0) & =0
\end{aligned} \cdot a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots .
$$

Diagonal

$$
\begin{array}{llllllll}
a_{0}^{0} & a_{1}^{1} & a_{2}^{2} & a_{3}^{3} & a_{4}^{4} & a_{5}^{5} & \cdots
\end{array}
$$

Set: $\quad z=0 \quad . \quad \bar{a}_{0}^{0} \quad \bar{a}_{1}^{1} \quad \bar{a}_{2}^{2} \quad \bar{a}_{3}^{3} \quad \bar{a}_{4}^{4} \quad \bar{a}_{5}^{5} \ldots$

$$
\begin{aligned}
& g(0)=0 \quad \cdot a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots \\
& g(1)=0 \quad \cdot \quad a_{0}^{1} \quad \boldsymbol{a}_{1}^{1} \quad a_{2}^{1} \quad a_{3}^{1} \quad a_{4}^{1} \quad a_{5}^{1} \quad \ldots \\
& g(2)=0 \cdot a_{0}^{2} a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}^{2} a_{5}^{2} \ldots \\
& g(3)=0 \cdot a_{0}^{3} \quad a_{1}^{3} \quad a_{2}^{3} \quad a_{3}^{3} \quad a_{4}^{3} \quad a_{5}^{3} \quad \cdots \\
& g(4)=0 \quad \cdot a_{0}^{4} \quad a_{1}^{4} \quad a_{2}^{4} \quad a_{3}^{4} \quad a_{4}^{4} \quad a_{5}^{4} \quad \ldots \\
& g(5)=0 \quad \cdot a_{0}^{5} \quad a_{1}^{5} \quad a_{2}^{5} \quad a_{3}^{5} \quad a_{4}^{5} \quad a_{5}^{5} \quad \cdots \\
& \vdots
\end{aligned}
$$

Diagonal

$$
\begin{array}{llllllll}
a_{0}^{0} & a_{1}^{1} & a_{2}^{2} & a_{3}^{3} & a_{4}^{4} & a_{5}^{5} & \cdots
\end{array}
$$

Set: $\quad z=0 \quad . \quad \bar{a}_{0}^{0} \quad \bar{a}_{1}^{1} \quad \bar{a}_{2}^{2} \quad \bar{a}_{3}^{3} \quad \bar{a}_{4}^{4} \quad \bar{a}_{5}^{5} \ldots$
Hence z and $g(n)$ differ on digit number n.
z and $g(n)$ differ on digit number n.
z and $g(n)$ differ on digit number n.

It follows that $z \neq g(n)$.
z and $g(n)$ differ on digit number n.

It follows that $z \neq g(n)$.

This is true for each $n \in \mathbb{N}$.
z and $g(n)$ differ on digit number n.

It follows that $z \neq g(n)$.

This is true for each $n \in \mathbb{N}$.

So z, which belongs to the interval $[0,1]$, is not in the range of g.
z and $g(n)$ differ on digit number n.

It follows that $z \neq g(n)$.

This is true for each $n \in \mathbb{N}$.

So z, which belongs to the interval $[0,1]$, is not in the range of g.

Hence $g: \mathbb{N} \rightarrow[0,1]$ is not onto.
z and $g(n)$ differ on digit number n.

It follows that $z \neq g(n)$.

This is true for each $n \in \mathbb{N}$.

So z, which belongs to the interval $[0,1]$, is not in the range of g.

Hence $g: \mathbb{N} \rightarrow[0,1]$ is not onto.

This completes the proof of Cantor's theorem.

Theorem (Cantor, 1873). \mathbb{R} and \mathbb{N} are not of the same size.

Proof. Suppose for contradiction that $\mathbb{R} \approx \mathbb{N}$.
Then there is a function $f: \mathbb{N} \rightarrow \mathbb{R}$, so that f is one-to-one and onto.

Let $[0,1]$ denote the interval $\{x \mid 0 \leq x \leq 1\}$.
Define $g(x)=f(x)-\lfloor f(x)\rfloor$.

Note that $g: \mathbb{N} \rightarrow[0,1]$ is onto.
Consider the following table:
z and $g(n)$ differ on digit number n.

It follows that $z \neq g(n)$.

This is true for each $n \in \mathbb{N}$.

So z, which belongs to the interval $[0,1]$, is not in the range of g.

Hence $g: \mathbb{N} \rightarrow[0,1]$ is not onto.

This completes the proof of Cantor's theorem.

$$
\begin{aligned}
g(0) & =0
\end{aligned} \cdot a_{0}^{0} \quad a_{1}^{0} \quad a_{2}^{0} \quad a_{3}^{0} \quad a_{4}^{0} \quad a_{5}^{0} \quad \ldots .
$$

Diagonal

$$
\begin{array}{llllllll}
a_{0}^{0} & a_{1}^{1} & a_{2}^{2} & a_{3}^{3} & a_{4}^{4} & a_{5}^{5} & \cdots
\end{array}
$$

Set: $\quad z=0 \quad . \quad \bar{a}_{0}^{0} \quad \bar{a}_{1}^{1} \quad \bar{a}_{2}^{2} \quad \bar{a}_{3}^{3} \quad \bar{a}_{4}^{4} \quad \bar{a}_{5}^{5} \ldots$

Cantor named the smallest infinite size " \aleph_{0} ", the next infinite size " \aleph_{1} ", etc.

Cantor named the smallest infinite size " \aleph_{0} ", the next infinite size " κ_{1} ", etc.

0

Cantor named the smallest infinite size " \aleph_{0} ", the next infinite size " \aleph_{1} ", etc.

01

Cantor named the smallest infinite size " \aleph_{0} ", the next infinite size " κ_{1} ", etc.

012

Cantor named the smallest infinite size " \aleph_{0} ", the next infinite size " \aleph_{1} ", etc.

012

Cantor named the smallest infinite size " \aleph_{0} ", the next infinite size " \aleph_{1} ", etc.

$$
\begin{array}{lllll}
0 & 1 & 2 & \cdots & \aleph_{0}
\end{array}
$$

Cantor named the smallest infinite size " \aleph_{0} ", the next infinite size " \aleph_{1} ", etc.

Cantor named the smallest infinite size " \aleph_{0} ", the next infinite size " \aleph_{1} ", etc.

Cantor named the smallest infinite size " \aleph_{0} ", the next infinite size " \aleph_{1} ", etc.

$$
012 \cdots \cdots \aleph_{0} \aleph_{1} \aleph_{2} \cdots
$$

Cantor named the smallest infinite size " \aleph_{0} ", the next infinite size " \aleph_{1} ", etc.

Cantor named the smallest infinite size " \aleph_{0} ", the next infinite size " \aleph_{1} ", etc.

$$
\begin{array}{lllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1}
\end{array}
$$

Cantor named the smallest infinite size " \aleph_{0} ", the next infinite size " \aleph_{1} ", etc.

$$
\begin{array}{llllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots \\
\aleph_{\omega} & \aleph_{\omega+1} & \cdots
\end{array}
$$

Cantor named the smallest infinite size " \aleph_{0} ", the next infinite size " \aleph_{1} ", etc.

$$
\begin{array}{llllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots \\
\aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Cantor named the smallest infinite size " \aleph_{0} ", the next infinite size " \aleph_{1} ", etc.

$$
\begin{array}{lllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega}
\end{array} \aleph_{\omega+1} \cdots \aleph_{\omega+\omega}
$$

Cantor named the smallest infinite size " \aleph_{0} ", the next infinite size " \aleph_{1} ", etc.

$$
\begin{array}{lllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega}
\end{array} \aleph_{\omega+1} \cdots \aleph_{\omega+\omega}
$$

\mathbb{N} has size \aleph_{0}.

Cantor named the smallest infinite size " " 0 ", the next infinite size " \aleph_{1} ", etc.

$$
012 \cdots \cdots \aleph_{0} \aleph_{1} \aleph_{2} \cdots \aleph_{\omega} \aleph_{\omega+1} \cdots \aleph_{\omega+\omega}
$$

\mathbb{N} has size \aleph_{0}.

By Cantor's theorem, \mathbb{R} has size at least \aleph_{1}.

Cantor named the smallest infinite size " " 0 ", the next infinite size " \aleph_{1} ", etc.

$$
\begin{array}{llllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots
\end{array} \aleph_{\omega} \aleph_{\omega+1} \cdots \aleph_{\omega+\omega}
$$

\mathbb{N} has size \aleph_{0}.

By Cantor's theorem, \mathbb{R} has size at least \aleph_{1}.

The exact size of \mathbb{R} cannot be determined from the axioms of set theory.

Cantor named the smallest infinite size " \aleph_{0} ", the next infinite size " \aleph_{1} ", etc.

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

\mathbb{N} has size \aleph_{0}.

By Cantor's theorem, \mathbb{R} has size at least \aleph_{1}.

The exact size of \mathbb{R} cannot be determined from the axioms of set theory.

It is impossible to prove $\mathbb{R} \approx \aleph_{1}$ (Cohen, 1963), and it is also impossible to prove $\mathbb{R} \not \approx \aleph_{1}$ (Gödel, 1938).

Cantor named the smallest infinite size " "א0", the next infinite size " \aleph_{1} ", etc.

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

\mathbb{N} has size \aleph_{0}.

By Cantor's theorem, \mathbb{R} has size at least \aleph_{1}.

The exact size of \mathbb{R} cannot be determined from the axioms of set theory.

It is impossible to prove $\mathbb{R} \approx \aleph_{1}$ (Cohen, 1963), and it is also impossible to prove $\mathbb{R} \not \approx \aleph_{1}$ (Gödel, 1938).

Impossible here really means impossible (and provably so).

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array} \cdots \cdots \cdots
$$

$$
\begin{array}{llllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1}
\end{array} \cdots \aleph_{\omega+\omega}
$$

Let V denote the entire universe of sets.

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$ (where $M \subseteq V$)

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$

$$
\begin{array}{lllllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

$$
\begin{array}{llllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots
\end{array} \aleph_{\omega} \aleph_{\omega+1} \cdots \aleph_{\omega+\omega}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.

$$
\begin{array}{llllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1}
\end{array} \cdots \aleph_{\omega+\omega}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0$.

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0$.

Consider the statement " x is the smallest size".

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0$.

Consider the statement " x is the smallest size". It is true of 0 .

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0$.

Consider the statement " x is the smallest size". It is true of 0 . By preservation of truth it is true also of $\pi(0)$.

$$
\begin{array}{llllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1}
\end{array} \cdots \aleph_{\omega+\omega}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0$.

$$
\begin{array}{llllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1}
\end{array} \cdots \aleph_{\omega+\omega}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1$.

$$
\begin{array}{llllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1}
\end{array} \cdots \aleph_{\omega+\omega}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1$.

1 is the next size above 0 in V.

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1$.

1 is the next size above 0 in V.
Hence $\pi(1)$ is the next size above $\pi(0)$ in M.

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1$.

1 is the next size above 0 in V.
Hence $\pi(1)$ is the next size above $\pi(0)=0$.

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1$.

1 is the next size above 0 in V.
Hence $\pi(1)$ is the next size above $\pi(0)=0$.

$$
\begin{array}{llllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1}
\end{array} \cdots \aleph_{\omega+\omega}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1$.

$$
\begin{array}{lllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega}
\end{array} \aleph_{\omega+1} \cdots \aleph_{\omega+\omega}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1 . \pi(2)=2$

$$
\begin{array}{llllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1}
\end{array} \cdots \aleph_{\omega+\omega}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1 . \pi(2)=2 \ldots \ldots \ldots \ldots$.

$$
\begin{array}{lllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots
\end{array} \aleph_{\omega+\omega}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1 . \pi(2)=2 \ldots \ldots \ldots \ldots$.
$\pi\left(\aleph_{0}\right)=\aleph_{0}$.

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1 . \pi(2)=2 \ldots \ldots \ldots$.
$\pi\left(\aleph_{0}\right)=\aleph_{0}$.
\aleph_{0} is the first infinite size.

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1 . \pi(2)=2 \ldots \ldots \ldots$.
$\pi\left(\aleph_{0}\right)=\aleph_{0}$.
\aleph_{0} is the first infinite size.
By preservation of truth so is $\pi\left(\aleph_{0}\right)$.

$$
\begin{array}{lllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots
\end{array} \aleph_{\omega+\omega}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1 . \pi(2)=2 \ldots \ldots \ldots \ldots$.
$\pi\left(\aleph_{0}\right)=\aleph_{0}$.

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1 . \pi(2)=2 \ldots \ldots \ldots$.
$\pi\left(\aleph_{0}\right)=\aleph_{0} \cdot \pi\left(\aleph_{1}\right)=\aleph_{1}$

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1 . \pi(2)=2 \ldots \ldots \ldots$.
$\pi\left(\aleph_{0}\right)=\aleph_{0} \cdot \pi\left(\aleph_{1}\right)=\aleph_{1} \ldots$.

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1 \cdot \pi(2)=2 \ldots \ldots \ldots$
$\pi\left(\aleph_{0}\right)=\aleph_{0} \cdot \pi\left(\aleph_{1}\right)=\aleph_{1} \ldots \ldots \pi\left(\aleph_{\omega}\right)=\aleph_{\omega}$

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1 . \pi(2)=2 \ldots$
$\pi\left(\aleph_{0}\right)=\aleph_{0} . \pi\left(\aleph_{1}\right)=\aleph_{1} \ldots . \quad \pi\left(\aleph_{\omega}\right)=\aleph_{\omega}$

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1 . \pi(2)=2$.
$\pi\left(\aleph_{0}\right)=\aleph_{0} \cdot \pi\left(\aleph_{1}\right)=\aleph_{1} \ldots \ldots \pi\left(\aleph_{\omega}\right)=\aleph_{\omega}$

The first size which is actually moved by π cannot be described from below.

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

Let V denote the entire universe of sets.

An elementary embedding of the universe is a function $\pi: V \rightarrow M$, which preserves truth.

Precisely this means that for all sets x_{1}, \ldots, x_{k}, any statement true of x_{1}, \ldots, x_{k} in V is also true of $\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)$ in M.
$\pi(0)=0 . \pi(1)=1 . \pi(2)=2$.
$\pi\left(\aleph_{0}\right)=\aleph_{0} \cdot \pi\left(\aleph_{1}\right)=\aleph_{1} \ldots \ldots \pi\left(\aleph_{\omega}\right)=\aleph_{\omega}$

The first size which is actually moved by π cannot be described from below. It must be extremely large.

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array} \cdots \cdots \cdots
$$

$$
\begin{array}{llllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1}
\end{array} \cdots \aleph_{\omega+\omega}
$$

The smallest size moved by an elementary embedding of the universe is referred to as a large cardinal.

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

The smallest size moved by an elementary embedding of the universe is referred to as a large cardinal.

Statements asserting the existence of elementary embeddings of the universe are called large cardinal axioms.

$$
\begin{array}{llllllllllll}
0 & 1 & 2 & \cdots & \aleph_{0} & \aleph_{1} & \aleph_{2} & \cdots & \aleph_{\omega} & \aleph_{\omega+1} & \cdots & \aleph_{\omega+\omega}
\end{array}
$$

The smallest size moved by an elementary embedding of the universe is referred to as a large cardinal.

Statements asserting the existence of elementary embeddings of the universe are called large cardinal axioms.

They cannot be proved from the basic axioms of set theory.

Infinite games:

Infinite games:

Let $A \subseteq[0,1]$.

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game,

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:
\qquad

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

Players I and $I I$ alternate playing digits a_{n},

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

$$
\begin{array}{c|c}
I & a_{0} \\
\hline I I &
\end{array}
$$

Players I and $I I$ alternate playing digits a_{n},

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

I	a_{0}	
$I I$	a_{1}	

Players I and $I I$ alternate playing digits a_{n},

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

| I | a_{0} | a_{2} |
| :---: | :---: | :---: | :---: |
| $I I$ | a_{1} | |

Players I and $I I$ alternate playing digits a_{n},

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

I	a_{0}		a_{2}	
$I I$		a_{1}	a_{3}	

Players I and $I I$ alternate playing digits a_{n},

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

I	a_{0}		a_{2}		a_{4}
$I I$		a_{1}	a_{3}		

Players I and $I I$ alternate playing digits a_{n},

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

I	a_{0}		a_{2}		a_{4}
$I I$		a_{1}	a_{3}	a_{5}	

Players I and $I I$ alternate playing digits a_{n},

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

I	a_{0}		a_{2}		a_{4}	a_{6}
$I I$		a_{1}		a_{3}	a_{5}	

Players I and $I I$ alternate playing digits a_{n},

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

I	a_{0}		a_{2}		a_{4}		a_{6}
$I I$		a_{1}		a_{3}		a_{5}	

Players I and $I I$ alternate playing digits a_{n},

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}
$I I$		a_{1}		a_{3}		a_{5}		a_{7}

Players I and $I I$ alternate playing digits a_{n},

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}

Players I and $I I$ alternate playing digits a_{n},

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}	\cdots	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

Players I and $I I$ alternate playing digits a_{n},

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}	\cdots	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

Players I and $I I$ alternate playing digits a_{n}, forming together a real $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$.

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}	\cdots	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}		a_{9}
		\cdots								

Players I and $I I$ alternate playing digits a_{n}, forming together a real $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$.

If z belongs to A then player I wins.

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}	\cdots	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

Players I and $I I$ alternate playing digits a_{n}, forming together a real $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$.

If z belongs to A then player I wins.
If z does not belong to A then player $I I$ wins.

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}	\cdots	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}		a_{9}
		\cdots								

Players I and $I I$ alternate playing digits a_{n}, forming together a real $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$.

If z belongs to A then player I wins.
If z does not belong to A then player $I I$ wins.
$G(A)$ is determined if one of the players has a winning strategy.

Infinite games:

Let $A \subseteq[0,1]$. Consider the following game, denoted $G(A)$:

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}	\cdots	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}		a_{9}
		\cdots								

Players I and $I I$ alternate playing digits a_{n}, forming together a real $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$.

If z belongs to A then player I wins.
If z does not belong to A then player $I I$ wins.
$G(A)$ is determined if one of the players has a winning strategy. (A strategy is a complete recipe that instructs the player precisely how to play in each conceivable situation.)

Let Γ be a collection of sets of reals.

Let 「 be a collection of sets of reals.
$\operatorname{det}(\Gamma)$ is the statement "for every A in $\Gamma, G(A)$ is determined."

Let Γ be a collection of sets of reals.
$\operatorname{det}(\Gamma)$ is the statement "for every A in $\Gamma, G(A)$ is determined."

Taken as an axiom, det(Γ) gives rise to a very rich structure theory that establishes a hierarchy of complexity on the sets in Γ, and completely answers all natural questions about the sets in each level of the hierarchy.

Let Γ be a collection of sets of reals.
$\operatorname{det}(\Gamma)$ is the statement "for every A in $\Gamma, G(A)$ is determined."

Taken as an axiom, $\operatorname{det}(\Gamma)$ gives rise to a very rich structure theory that establishes a hierarchy of complexity on the sets in Γ, and completely answers all natural questions about the sets in each level of the hierarchy.

There are sets A so that $G(A)$ is not determined.

Let Γ be a collection of sets of reals.
$\operatorname{det}(\Gamma)$ is the statement "for every A in $\Gamma, G(A)$ is determined."

Taken as an axiom, $\operatorname{det}(\Gamma)$ gives rise to a very rich structure theory that establishes a hierarchy of complexity on the sets in Γ, and completely answers all natural questions about the sets in each level of the hierarchy.

There are sets A so that $G(A)$ is not determined.

But these sets are constructed using a transfinite sequence of choices which cannot be made in any definable way.

Let Γ be a collection of sets of reals.
$\operatorname{det}(\Gamma)$ is the statement "for every A in $\Gamma, G(A)$ is determined."

Taken as an axiom, $\operatorname{det}(\Gamma)$ gives rise to a very rich structure theory that establishes a hierarchy of complexity on the sets in Γ, and completely answers all natural questions about the sets in each level of the hierarchy.

There are sets A so that $G(A)$ is not determined.

But these sets are constructed using a transfinite sequence of choices which cannot be made in any definable way.

Determinacy is now accepted as a natural hypothesis in the study of definable sets of reals.

Let $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$. Let $k \in \mathbb{N}$.

Let $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$. Let $k \in \mathbb{N}$.
The set of reals from $0 . a_{0} \cdots a_{k} 000 \cdots$ to $0 . a_{0} \cdots a_{k} 999 \cdots$ is called the k th basic neighborhood of z,

Let $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$. Let $k \in \mathbb{N}$.
The set of reals from $0 . a_{0} \cdots a_{k} 000 \cdots$ to $0 . a_{0} \cdots a_{k} 999 \cdots$ is called the k th basic neighborhood of z, denoted $N_{z, k}$.

Let $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$. Let $k \in \mathbb{N}$.
The set of reals from $0 . a_{0} \cdots a_{k} 000 \cdots$ to $0 . a_{0} \cdots a_{k} 999 \cdots$ is called the k th basic neighborhood of z, denoted $N_{z, k}$.

These neighborhoods grow smaller as $k \rightarrow \infty$,

Let $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$. Let $k \in \mathbb{N}$.
The set of reals from $0 . a_{0} \cdots a_{k} 000 \cdots$ to $0 . a_{0} \cdots a_{k} 999 \cdots$ is called the k th basic neighborhood of z, denoted $N_{z, k}$.

These neighborhoods grow smaller as $k \rightarrow \infty$, and z is the only point that belongs to all of them.

Let $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$. Let $k \in \mathbb{N}$.
The set of reals from $0 . a_{0} \cdots a_{k} 000 \cdots$ to $0 . a_{0} \cdots a_{k} 999 \cdots$ is called the k th basic neighborhood of z, denoted $N_{z, k}$.

These neighborhoods grow smaller as $k \rightarrow \infty$, and z is the only point that belongs to all of them.
$A \subseteq[0,1]$ is finitely supported if every $z \in A$ has a basic neighborhood that is completely contained in A.

Let $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$. Let $k \in \mathbb{N}$.
The set of reals from $0 . a_{0} \cdots a_{k} 000 \cdots$ to $0 . a_{0} \cdots a_{k} 999 \cdots$ is called the k th basic neighborhood of z, denoted $N_{z, k}$.

These neighborhoods grow smaller as $k \rightarrow \infty$, and z is the only point that belongs to all of them.
$A \subseteq[0,1]$ is finitely supported if every $z \in A$ has a basic neighborhood that is completely contained in A.

Why "finitely supported"?

Let $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$. Let $k \in \mathbb{N}$.
The set of reals from $0 . a_{0} \cdots a_{k} 000 \cdots$ to $0 . a_{0} \cdots a_{k} 999 \cdots$ is called the k th basic neighborhood of z, denoted $N_{z, k}$.

These neighborhoods grow smaller as $k \rightarrow \infty$, and z is the only point that belongs to all of them.
$A \subseteq[0,1]$ is finitely supported if every $z \in A$ has a basic neighborhood that is completely contained in A.

Why "finitely supported"?
If $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$ belongs to A then this is secured already by some finite initial segment $a_{0} \cdots a_{k}$ of the digits of z.

Let $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$. Let $k \in \mathbb{N}$.
The set of reals from $0 . a_{0} \cdots a_{k} 000 \cdots$ to $0 . a_{0} \cdots a_{k} 999 \cdots$ is called the k th basic neighborhood of z, denoted $N_{z, k}$.

These neighborhoods grow smaller as $k \rightarrow \infty$, and z is the only point that belongs to all of them.
$A \subseteq[0,1]$ is finitely supported if every $z \in A$ has a basic neighborhood that is completely contained in A.

Let $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$. Let $k \in \mathbb{N}$.
The set of reals from $0 . a_{0} \cdots a_{k} 000 \cdots$ to $0 . a_{0} \cdots a_{k} 999 \cdots$ is called the k th basic neighborhood of z, denoted $N_{z, k}$.

These neighborhoods grow smaller as $k \rightarrow \infty$, and z is the only point that belongs to all of them.
$A \subseteq[0,1]$ is finitely supported if every $z \in A$ has a basic neighborhood that is completely contained in A.

The finitely supported sets sit at the low end of the hierarchy of complexity.

Let $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$. Let $k \in \mathbb{N}$.
The set of reals from $0 . a_{0} \cdots a_{k} 000 \cdots$ to $0 . a_{0} \cdots a_{k} 999 \cdots$ is called the k th basic neighborhood of z, denoted $N_{z, k}$.

These neighborhoods grow smaller as $k \rightarrow \infty$, and z is the only point that belongs to all of them.
$A \subseteq[0,1]$ is finitely supported if every $z \in A$ has a basic neighborhood that is completely contained in A.

The finitely supported sets sit at the low end of the hierarchy of complexity.

They are obtained from intervals using only the operation of union.

Let $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$. Let $k \in \mathbb{N}$.
The set of reals from $0 . a_{0} \cdots a_{k} 000 \cdots$ to $0 . a_{0} \cdots a_{k} 999 \cdots$ is called the k th basic neighborhood of z, denoted $N_{z, k}$.

These neighborhoods grow smaller as $k \rightarrow \infty$, and z is the only point that belongs to all of them.
$A \subseteq[0,1]$ is finitely supported if every $z \in A$ has a basic neighborhood that is completely contained in A.

The finitely supported sets sit at the low end of the hierarchy of complexity.

They are obtained from intervals using only the operation of union.

Other operations which increase complexity include complementation

Let $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$. Let $k \in \mathbb{N}$.
The set of reals from $0 . a_{0} \cdots a_{k} 000 \cdots$ to $0 . a_{0} \cdots a_{k} 999 \cdots$ is called the k th basic neighborhood of z, denoted $N_{z, k}$.

These neighborhoods grow smaller as $k \rightarrow \infty$, and z is the only point that belongs to all of them.
$A \subseteq[0,1]$ is finitely supported if every $z \in A$ has a basic neighborhood that is completely contained in A.

The finitely supported sets sit at the low end of the hierarchy of complexity.

They are obtained from intervals using only the operation of union.

Other operations which increase complexity include complementation (passing from A to $[0,1]-A$),

Let $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$. Let $k \in \mathbb{N}$.
The set of reals from $0 . a_{0} \cdots a_{k} 000 \cdots$ to $0 . a_{0} \cdots a_{k} 999 \cdots$ is called the k th basic neighborhood of z, denoted $N_{z, k}$.

These neighborhoods grow smaller as $k \rightarrow \infty$, and z is the only point that belongs to all of them.
$A \subseteq[0,1]$ is finitely supported if every $z \in A$ has a basic neighborhood that is completely contained in A.

The finitely supported sets sit at the low end of the hierarchy of complexity.

They are obtained from intervals using only the operation of union.

Other operations which increase complexity include complementation (passing from A to $[0,1]-A$), and projection.

Theorem (Gale-Stewart, 1953). Let $A \subseteq[0,1]$ be finitely supported. Then $G(A)$ is determined.

Theorem (Gale-Stewart, 1953). Let $A \subseteq[0,1]$ be finitely supported. Then $G(A)$ is determined.

Proof.

Theorem (Gale-Stewart, 1953). Let $A \subseteq[0,1]$ be finitely supported. Then $G(A)$ is determined.

Proof. Suppose that player I does not have a winning strategy in $G(A)$.

Theorem (Gale-Stewart, 1953). Let $A \subseteq[0,1]$ be finitely supported. Then $G(A)$ is determined.

Proof. Suppose that player I does not have a winning strategy in $G(A)$. We prove that player $I I$ does.

Theorem (Gale-Stewart, 1953). Let $A \subseteq[0,1]$ be finitely supported. Then $G(A)$ is determined.

Proof. Suppose that player I does not have a winning strategy in $G(A)$. We prove that player $I I$ does.

Let Q be the set of positions from which player I has a winning strategy.

Theorem (Gale-Stewart, 1953). Let $A \subseteq[0,1]$ be finitely supported. Then $G(A)$ is determined.

Proof. Suppose that player I does not have a winning strategy in $G(A)$. We prove that player $I I$ does.

Let Q be the set of positions from which player I has a winning strategy. (By assumption, the empty position is not in Q.)

Theorem (Gale-Stewart, 1953). Let $A \subseteq[0,1]$ be finitely supported. Then $G(A)$ is determined.

Proof. Suppose that player I does not have a winning strategy in $G(A)$. We prove that player II does.

Let Q be the set of positions from which player I has a winning strategy. (By assumption, the empty position is not in Q.)

If $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$ is won by player I, then there exists k so that $\left\langle a_{0}, \ldots, a_{k}\right\rangle \in Q$.

Theorem (Gale-Stewart, 1953). Let $A \subseteq[0,1]$ be finitely supported. Then $G(A)$ is determined.

Proof. Suppose that player I does not have a winning strategy in $G(A)$. We prove that player II does.

Let Q be the set of positions from which player I has a winning strategy. (By assumption, the empty position is not in Q.)

If $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$ is won by player I, then there exists k so that $\left\langle a_{0}, \ldots, a_{k}\right\rangle \in Q$.

Since A is finitely supported, have k so that all numbers from $0 . a_{0} \cdots a_{k} 000 \cdots$ to $0 . a_{0} \cdots a_{k} 999 \cdots$ belong to A.

Theorem (Gale-Stewart, 1953). Let $A \subseteq[0,1]$ be finitely supported. Then $G(A)$ is determined.

Proof. Suppose that player I does not have a winning strategy in $G(A)$. We prove that player II does.

Let Q be the set of positions from which player I has a winning strategy. (By assumption, the empty position is not in Q.)

If $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$ is won by player I, then there exists k so that $\left\langle a_{0}, \ldots, a_{k}\right\rangle \in Q$.

Since A is finitely supported, have k so that all numbers from $0 . a_{0} \cdots a_{k} 000 \cdots$ to $0 . a_{0} \cdots a_{k} 999 \cdots$ belong to A.

From k onwards I is guaranteed to win no matter how she plays.

Theorem (Gale-Stewart, 1953). Let $A \subseteq[0,1]$ be finitely supported. Then $G(A)$ is determined.

Proof. Suppose that player I does not have a winning strategy in $G(A)$. We prove that player II does.

Let Q be the set of positions from which player I has a winning strategy. (By assumption, the empty position is not in Q.)

If $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$ is won by player I, then there exists k so that $\left\langle a_{0}, \ldots, a_{k}\right\rangle \in Q$.

Theorem (Gale-Stewart, 1953). Let $A \subseteq[0,1]$ be finitely supported. Then $G(A)$ is determined.

Proof. Suppose that player I does not have a winning strategy in $G(A)$. We prove that player II does.

Let Q be the set of positions from which player I has a winning strategy. (By assumption, the empty position is not in Q.)

If $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$ is won by player I, then there exists k so that $\left\langle a_{0}, \ldots, a_{k}\right\rangle \in Q$. This uses the assumption that A is finitely supported.

Theorem (Gale-Stewart, 1953). Let $A \subseteq[0,1]$ be finitely supported. Then $G(A)$ is determined.

Proof. Suppose that player I does not have a winning strategy in $G(A)$. We prove that player $I I$ does.

Let Q be the set of positions from which player I has a winning strategy. (By assumption, the empty position is not in Q.)

If $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$ is won by player I, then there exists k so that $\left\langle a_{0}, \ldots, a_{k}\right\rangle \in Q$. This uses the assumption that A is finitely supported.

If there is no k so that $\left\langle a_{0}, \ldots, a_{k}\right\rangle \in Q$, then $0 . a_{0} a_{1} a_{2} a_{3} \cdots$ is won by player $I I$.

Theorem (Gale-Stewart, 1953). Let $A \subseteq[0,1]$ be finitely supported. Then $G(A)$ is determined.

Proof. Suppose that player I does not have a winning strategy in $G(A)$. We prove that player II does.

Let Q be the set of positions from which player I has a winning strategy. (By assumption, the empty position is not in Q.)

If $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$ is won by player I, then there exists k so that $\left\langle a_{0}, \ldots, a_{k}\right\rangle \in Q$. This uses the assumption that A is finitely supported.

If there is no k so that $\left\langle a_{0}, \ldots, a_{k}\right\rangle \in Q$, then $0 . a_{0} a_{1} a_{2} a_{3} \cdots$ is won by player $I I$.

If $I I$ can avoid positions in Q for the entire game, then she wins.

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}	\cdots	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for $I I$ so that $p \smile a_{2 k+1}$ is also not in Q.

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for $I I$ so that $p^{\complement} a_{2 k+1}$ is also not in Q.

Proof.

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}		a_{9}
		\cdots								

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for $I I$ so that $p \smile a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}$,

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}	\cdots	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}		a_{9}
		\cdots								

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for $I I$ so that $p^{\complement} a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, p \subset a_{2 k+1} \in Q$

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}		a_{9}
		\cdots								

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for $I I$ so that $p \smile a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}$,

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}		a_{9}
		\cdots								

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for $I I$ so that $p a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}$, I has a winning strategy from $p^{\frown} a_{2 k+1}$.

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}	\cdots	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for $I I$ so that $p a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p^{\complement} a_{2 k+1}$. These strategies combine to a winning strategy for I from p.

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for $I I$ so that $p^{\complement} a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p^{\complement} a_{2 k+1}$. These strategies combine to a winning strategy for I from p.

| I | a_{0} | a_{2} |
| :--- | :--- | :--- | :--- |
| $I I$ | a_{1} | |

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}		a_{9}
		\cdots								

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for II so that $p \smile a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p^{\complement} a_{2 k+1}$. These strategies combine to a winning strategy for I from p.

I	a_{0}	a_{2}	
$I I$		a_{1}	a_{3}

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}	\cdots	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for $I I$ so that $p \frown a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p \frown a_{2 k+1}$. These strategies combine to a winning strategy for I from p.

I	a_{0}		a_{2}		I has a winning strategy from a_{0}, \ldots, a_{3}.
$I I$		a_{1}		a_{3}	

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for $I I$ so that $p a^{\complement} a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p^{\complement} a_{2 k+1}$. These strategies combine to a winning strategy for I from p.

I	a_{0}		a_{2}	Follow this strategy.
$I I$		a_{1}	a_{3}	

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}		a_{9}
		\cdots								

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for II so that $p \smile a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p^{\complement} a_{2 k+1}$. These strategies combine to a winning strategy for I from p.

I	a_{0}	a_{2}	
$I I$		a_{1}	a_{3}

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}		a_{9}
		\cdots								

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for II so that $p \smile a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p^{\complement} a_{2 k+1}$. These strategies combine to a winning strategy for I from p.

I	a_{0}		a_{2}		a_{4}
$I I$		a_{1}		a_{3}	

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}		a_{9}
		\cdots								

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for $I I$ so that $p^{\complement} a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p^{\complement} a_{2 k+1}$. These strategies combine to a winning strategy for I from p.

I	a_{0}		a_{2}	a_{4}	
$I I$		a_{1}	a_{3}	a_{5}	

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}		a_{9}
		\cdots								

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for $I I$ so that $p^{\complement} a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p^{\complement} a_{2 k+1}$. These strategies combine to a winning strategy for I from p.

I	a_{0}		a_{2}		a_{4}	a_{6}
$I I$		a_{1}	a_{3}	a_{5}		

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for II so that $p \smile a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p^{\complement} a_{2 k+1}$. These strategies combine to a winning strategy for I from p.

I	a_{0}		a_{2}		a_{4}	a_{6}	
$I I$		a_{1}		a_{3}	a_{5}	a_{7}	

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for II so that $p^{\complement} a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p^{\complement} a_{2 k+1}$. These strategies combine to a winning strategy for I from p.

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}
$I I$		a_{1}		a_{3}	a_{5}	a_{7}		

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for II so that $p^{\complement} a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p^{\complement} a_{2 k+1}$. These strategies combine to a winning strategy for I from p.

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}		
$I I$		a_{1}		a_{3}		a_{5}		a_{7}		

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for II so that $p^{\complement} a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p^{\complement} a_{2 k+1}$. These strategies combine to a winning strategy for I from p.

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for II so that $p^{\complement} a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p^{\complement} a_{2 k+1}$. These strategies combine to a winning strategy for I from p.

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}	\cdots	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for $I I$ so that $p a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p^{\complement} a_{2 k+1}$. These strategies combine to a winning strategy for I from p.

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}	\cdots	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for $I I$ so that $p a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p \frown a_{2 k+1}$. These strategies combine to a winning strategy for I from p. But then $p \in Q$,

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}	\cdots	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for $I I$ so that $p \frown a_{2 k+1}$ is also not in Q.

Proof. Otherwise, for all $a_{2 k+1}, I$ has a winning strategy from $p \frown a_{2 k+1}$. These strategies combine to a winning strategy for I from p. But then $p \in Q$, contradiction.

I	a_{0}		a_{2}		a_{4}		a_{6}		a_{8}	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for $I I$ so that $p \smile a_{2 k+1}$ is also not in Q.

I	a_{0}		a_{2}		a_{4}		a_{6}	a_{8}	\cdots	
$I I$		a_{1}		a_{3}		a_{5}		a_{7}	a_{9}	
\cdots										

$Q=$ the set of positions from which player I has a winning strategy.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ be a position not in Q. Then there is a move $a_{2 k+1}$ for II so that $p \smile a_{2 k+1}$ is also not in Q.

Claim. Let $p=\left\langle a_{0}, \ldots, a_{2 k-1}\right\rangle$ be a position not in Q. Then for every move $a_{2 k}$ for $I, p^{\complement} a_{2 k}$ is also not in Q.
$Q=$ the set of positions from which player I does not have a winning strategy.

The empty position is not in Q.
If $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ is not in Q then there is a move $a_{2 k+1}$ for $I I$ so that $p \frown a_{2 k+1}$ is also not in Q.

If $p=\left\langle a_{0}, \ldots, a_{2 k-1}\right\rangle$ is not in Q then for every move $a_{2 k}$ for I, $p \frown a_{2 k}$ is also not in Q.
$Q=$ the set of positions from which player I does not have a winning strategy.

The empty position is not in Q.
If $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ is not in Q then there is a move $a_{2 k+1}$ for $I I$ so that $p \frown a_{2 k+1}$ is also not in Q.

If $p=\left\langle a_{0}, \ldots, a_{2 k-1}\right\rangle$ is not in Q then for every move $a_{2 k}$ for I, $p \frown a_{2 k}$ is also not in Q.

It follows that $I I$ has a strategy that stays outside Q for the entire game.
$Q=$ the set of positions from which player I does not have a winning strategy.

The empty position is not in Q.
If $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ is not in Q then there is a move $a_{2 k+1}$ for $I I$ so that $p \frown a_{2 k+1}$ is also not in Q.

If $p=\left\langle a_{0}, \ldots, a_{2 k-1}\right\rangle$ is not in Q then for every move $a_{2 k}$ for I, $p \frown a_{2 k}$ is also not in Q.

It follows that $I I$ has a strategy that stays outside Q for the entire game.

I	
$I I$	\square

$Q=$ the set of positions from which player I does not have a winning strategy.

The empty position is not in Q.
If $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ is not in Q then there is a move $a_{2 k+1}$ for $I I$ so that $p \frown a_{2 k+1}$ is also not in Q.

If $p=\left\langle a_{0}, \ldots, a_{2 k-1}\right\rangle$ is not in Q then for every move $a_{2 k}$ for I, $p \frown a_{2 k}$ is also not in Q.

It follows that $I I$ has a strategy that stays outside Q for the entire game.

I	a_{0}
$I I$	

$Q=$ the set of positions from which player I does not have a winning strategy.

The empty position is not in Q.
If $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ is not in Q then there is a move $a_{2 k+1}$ for $I I$ so that $p \frown a_{2 k+1}$ is also not in Q.

If $p=\left\langle a_{0}, \ldots, a_{2 k-1}\right\rangle$ is not in Q then for every move $a_{2 k}$ for I, $p \frown a_{2 k}$ is also not in Q.

It follows that $I I$ has a strategy that stays outside Q for the entire game.

$$
\begin{array}{c|cc}
I & a_{0} & \\
\hline I I & & a_{1}
\end{array}
$$

$Q=$ the set of positions from which player I does not have a winning strategy.

The empty position is not in Q.
If $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ is not in Q then there is a move $a_{2 k+1}$ for $I I$ so that $p \frown a_{2 k+1}$ is also not in Q.

If $p=\left\langle a_{0}, \ldots, a_{2 k-1}\right\rangle$ is not in Q then for every move $a_{2 k}$ for I, $p \frown a_{2 k}$ is also not in Q.

It follows that $I I$ has a strategy that stays outside Q for the entire game.

| I | a_{0} | a_{2} |
| :---: | :---: | :---: | :---: |
| $I I$ | a_{1} | |

$Q=$ the set of positions from which player I does not have a winning strategy.

The empty position is not in Q.
If $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ is not in Q then there is a move $a_{2 k+1}$ for $I I$ so that $p \frown a_{2 k+1}$ is also not in Q.

If $p=\left\langle a_{0}, \ldots, a_{2 k-1}\right\rangle$ is not in Q then for every move $a_{2 k}$ for I, $p \frown a_{2 k}$ is also not in Q.

It follows that $I I$ has a strategy that stays outside Q for the entire game.

$$
\begin{array}{c|cccc}
I & a_{0} & & a_{2} & \\
\hline I I & & a_{1} & & a_{3}
\end{array}
$$

$Q=$ the set of positions from which player I does not have a winning strategy.

The empty position is not in Q.
If $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ is not in Q then there is a move $a_{2 k+1}$ for $I I$ so that $p \frown a_{2 k+1}$ is also not in Q.

If $p=\left\langle a_{0}, \ldots, a_{2 k-1}\right\rangle$ is not in Q then for every move $a_{2 k}$ for I, $p \frown a_{2 k}$ is also not in Q.

It follows that $I I$ has a strategy that stays outside Q for the entire game.

$$
\begin{array}{c|ccccc}
I & a_{0} & & a_{2} & & a_{4} \\
\hline I I & & a_{1} & & a_{3} &
\end{array}
$$

$Q=$ the set of positions from which player I does not have a winning strategy.

The empty position is not in Q.
If $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ is not in Q then there is a move $a_{2 k+1}$ for $I I$ so that $p \frown a_{2 k+1}$ is also not in Q.

If $p=\left\langle a_{0}, \ldots, a_{2 k-1}\right\rangle$ is not in Q then for every move $a_{2 k}$ for I, $p \frown a_{2 k}$ is also not in Q.

It follows that $I I$ has a strategy that stays outside Q for the entire game.

$$
\begin{array}{c|ccccc}
I & a_{0} & & a_{2} & & a_{4} \\
\hline I I & & a_{1} & & a_{3} & \boldsymbol{a}_{5}
\end{array}
$$

$Q=$ the set of positions from which player I does not have a winning strategy.

The empty position is not in Q.
If $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ is not in Q then there is a move $a_{2 k+1}$ for $I I$ so that $p \frown a_{2 k+1}$ is also not in Q.

If $p=\left\langle a_{0}, \ldots, a_{2 k-1}\right\rangle$ is not in Q then for every move $a_{2 k}$ for I, $p \frown a_{2 k}$ is also not in Q.

It follows that $I I$ has a strategy that stays outside Q for the entire game.

$$
\begin{array}{c|ccccccc}
I & a_{0} & & a_{2} & & a_{4} & & \cdots \\
\hline I I & & a_{1} & & a_{3} & & a_{5} &
\end{array}
$$

$Q=$ the set of positions from which player I does not have a winning strategy.

The empty position is not in Q.
If $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ is not in Q then there is a move $a_{2 k+1}$ for $I I$ so that $p \frown a_{2 k+1}$ is also not in Q.

If $p=\left\langle a_{0}, \ldots, a_{2 k-1}\right\rangle$ is not in Q then for every move $a_{2 k}$ for I, $p \frown a_{2 k}$ is also not in Q.

It follows that $I I$ has a strategy that stays outside Q for the entire game.

I	a_{0}		a_{2}		a_{4}		\cdots
$I I$		a_{1}		a_{3}		a_{5}	
\cdots							

$Q=$ the set of positions from which player I does not have a winning strategy.

The empty position is not in Q.
If $p=\left\langle a_{0}, \ldots, a_{2 k}\right\rangle$ is not in Q then there is a move $a_{2 k+1}$ for $I I$ so that $p \frown a_{2 k+1}$ is also not in Q.

If $p=\left\langle a_{0}, \ldots, a_{2 k-1}\right\rangle$ is not in Q then for every move $a_{2 k}$ for I, $p \frown a_{2 k}$ is also not in Q.

It follows that $I I$ has a strategy that stays outside Q for the entire game.

I	a_{0}		a_{2}		a_{4}		\cdots	
$I I$		a_{1}		a_{3}		a_{5}		\cdots

This strategy is winning for $I I$ in $G(A)$.

Theorem (Gale-Stewart, 1953). Let $A \subseteq[0,1]$ be finitely supported. Then $G(A)$ is determined.

Proof. Suppose that player I does not have a winning strategy in $G(A)$. We prove that player II does.

Let Q be the set of positions from which player I has a winning strategy. (By assumption, the empty position is not in Q.)

If $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$ is won by player I, then there exists k so that $\left\langle a_{0}, \ldots, a_{k}\right\rangle \in Q$. This uses the assumption that A is finitely supported.

If there is no k so that $\left\langle a_{0}, \ldots, a_{k}\right\rangle \in Q$, then $0 . a_{0} a_{1} a_{2} a_{3} \cdots$ is won by player $I I$.

If $I I$ can avoid positions in Q for the entire game, then she wins.

Theorem (Gale-Stewart, 1953). Let $A \subseteq[0,1]$ be finitely supported. Then $G(A)$ is determined.

Proof. Suppose that player I does not have a winning strategy in $G(A)$. We prove that player II does.

Let Q be the set of positions from which player I has a winning strategy. (By assumption, the empty position is not in Q.)

If $z=0 . a_{0} a_{1} a_{2} a_{3} \cdots$ is won by player I, then there exists k so that $\left\langle a_{0}, \ldots, a_{k}\right\rangle \in Q$. This uses the assumption that A is finitely supported.

If there is no k so that $\left\langle a_{0}, \ldots, a_{k}\right\rangle \in Q$, then $0 . a_{0} a_{1} a_{2} a_{3} \cdots$ is won by player $I I$.

If $I I$ can avoid positions in Q for the entire game, then she wins.

We proved $\operatorname{det}(\Gamma)$ for the very simple class $\Gamma=\{$ all finitely supported sets\}.

We proved $\operatorname{det}(\Gamma)$ for the very simple class $\Gamma=\{$ all finitely supported sets\}.

Proofs of determinacy for more elaborate classes require large cardinal axioms.

We proved $\operatorname{det}(\Gamma)$ for the very simple class $\Gamma=\{$ all finitely supported sets\}.

Proofs of determinacy for more elaborate classes require large cardinal axioms.

The connection between determinacy and large cardinal axioms was becoming apparent during the 1970s, and established firmly during the 1980s through work of Martin, Steel, and Woodin.

We proved $\operatorname{det}(\Gamma)$ for the very simple class $\Gamma=\{$ all finitely supported sets\}.

Proofs of determinacy for more elaborate classes require large cardinal axioms.

The connection between determinacy and large cardinal axioms was becoming apparent during the 1970s, and established firmly during the 1980s through work of Martin, Steel, and Woodin.

My own work involves:

We proved $\operatorname{det}(\Gamma)$ for the very simple class $\Gamma=\{$ all finitely supported sets\}.

Proofs of determinacy for more elaborate classes require large cardinal axioms.

The connection between determinacy and large cardinal axioms was becoming apparent during the 1970s, and established firmly during the 1980s through work of Martin, Steel, and Woodin.

My own work involves: optimal proofs of determinacy;

We proved $\operatorname{det}(\Gamma)$ for the very simple class $\Gamma=\{$ all finitely supported sets\}.

Proofs of determinacy for more elaborate classes require large cardinal axioms.

The connection between determinacy and large cardinal axioms was becoming apparent during the 1970s, and established firmly during the 1980s through work of Martin, Steel, and Woodin.

My own work involves: optimal proofs of determinacy; determinacy for transfinite games;

We proved $\operatorname{det}(\Gamma)$ for the very simple class $\Gamma=\{$ all finitely supported sets\}.

Proofs of determinacy for more elaborate classes require large cardinal axioms.

The connection between determinacy and large cardinal axioms was becoming apparent during the 1970s, and established firmly during the 1980s through work of Martin, Steel, and Woodin.

My own work involves: optimal proofs of determinacy; determinacy for transfinite games; the investigation of large cardinals;

We proved $\operatorname{det}(\Gamma)$ for the very simple class $\Gamma=\{$ all finitely supported sets\}.

Proofs of determinacy for more elaborate classes require large cardinal axioms.

The connection between determinacy and large cardinal axioms was becoming apparent during the 1970s, and established firmly during the 1980s through work of Martin, Steel, and Woodin.

My own work involves: optimal proofs of determinacy; determinacy for transfinite games; the investigation of large cardinals; and uses of large cardinals in the study of definable sets of reals.

The End

Press Esc.

