Determinacy Proofs for Long games

Itay Neeman

Department of Mathematics University of California Los Angeles Los Angeles, CA 90095-1555 ineeman@math.ucla.edu

- 3. Continuously coded games with Σ_2^1 payoff:
 - (a) Preliminaries revisited.
 - (b) Names.
 - (c) Playing for I.

Recall that $G_{\text{cont}-f}(C)$ is played as follows:

I
$$y_{\alpha}(0)$$
 $y_{\alpha}(2)$ II $y_{\alpha}(1)$ $y_{\alpha}(3)$

I and II alternate playing natural numbers $y_{\alpha}(i)$, $i < \omega$, producing a real y_{α} .

If $f(y_{\alpha})$ is not defined, the game ends. I wins iff $\langle y_0, y_1, \ldots, y_{\alpha} \rangle \in C$.

Otherwise we set $n_{\alpha} = f(y_{\alpha})$. If there exists $\xi < \alpha$ so that $n_{\alpha} = n_{\xi}$, the game ends. Again I wins iff $\langle y_0, y_1, \dots, y_{\alpha} \rangle \in C$.

Otherwise the game continues.

At any position $\langle y_{\xi} | \xi < \alpha \rangle$, the map $\xi \mapsto n_{\xi}$ embeds α into \mathbb{N} . This allows coding the position by a real, which we denote x_{α} or $\lceil y_{\xi} | \xi < \alpha \rceil$.

1

The payoff set, C, is Σ_2^1 in the codes if there is a Σ_2^1 set $A \subset \mathbb{R} \times \mathbb{R}$ so that

 $\langle y_0, \ldots, y_\alpha \rangle \in C \iff \langle \lceil y_\xi \mid \xi < \alpha \rceil, y_\alpha \rangle \in A.$

Our goal is to prove that $G_{\text{cont}-f}(C)$ is determined whenever f is continuous and C is Σ_2^1 in the codes.

Any reasonable use of $\xi \mapsto n_{\xi}$ to code $\langle y_{\xi} | \xi < \alpha \rangle$ satisfies the following:

Note 1. The real codes $\lceil y_{\xi} \mid \xi < \alpha \rceil$ and $\lceil y_{\xi} \mid \xi < \alpha + 1 \rceil$ agree up to $n_{\alpha} = f(y_{\alpha})$.

Note 2. For any limit λ , $n_{\alpha} \longrightarrow \infty$ as $\alpha \rightarrow \lambda$.

From this it follows that $x_{\alpha} = \lceil y_{\xi} \mid \xi < \alpha \rceil$ converge to x_{λ} as $\alpha \to \lambda$.

We will use this later on. (We will have pivots $\mathcal{T}_{\alpha}, \vec{a}_{\alpha}$ for x_{α} . We will make sure they converge to a pivot for the limit of x_{α} , and use the fact that this is x_{λ} .)

We will have to work with trees which have more than one even branch.

We say that a branch is **odd** if from some point onwards it contains only odd models.

We say that a branch is **even** if it contains arbitrarily large even models.

Note: we allow "padding" in our trees, for example $M_6 = M_5$ and $j_{5,6} = id$.

In the past we used illfoundedness of the even model to force the iteration strategy to pick an odd branch.

An iteration tree T is **continuously illfounded on the even models** if it comes equipped with ordinals $\eta_i \in M_i$, $i < \omega$ even, so that

For k T l both even, $j_{k,l}(\eta_k) > \eta_l$ strictly.

If \mathcal{T} is cont. illfounded on the even models then all even branches of \mathcal{T} produce illfounded direct limit. An iteration strategy must therefore pick an odd branch.

Note: Being cont. illfounded is a "closed" property: Suppose \mathcal{T}_n are cont. illfounded on the even models, and this is witnessed by $\vec{\eta}^n = \{\eta_i^n\}$. Suppose $\mathcal{T}_n \longrightarrow \mathcal{T}_\infty$ and $\vec{\eta}^n \longrightarrow \vec{\eta}^\infty$. Then \mathcal{T}_∞ is cont. illfounded on the even models, and this is witnessed by $\vec{\eta}^\infty$.

Suppose $M \models$ " δ is a Woodin cardinal", and in V there are M-generics for $\operatorname{col}(\omega, \delta)$. Let \dot{A} name a subset of $\omega^{\omega} \times (M \| \delta)^{\omega}$ in $M^{\operatorname{col}(\omega, \delta)}$.

Work with some $x \in \mathbb{R}$. We define an auxiliary game, $\mathcal{A}[x]$, similar to the game we had before. But now, instead of " $x \in \dot{A}[h]$ ", I tries to witness that $\langle x, \vec{a} \rangle \in \dot{A}[h]$ where $\vec{a} = \langle a_n | n < \omega \rangle$ are the moves played in $\mathcal{A}[x]$.

In round n I plays

- $l = l_n$, a number < n, or $l_n =$ "new".
- \mathcal{X}_n , a set of **pairs** of $M^{\operatorname{col}(\omega,\delta)}$ -names.
- p_n , a condition in $col(\omega, \delta)$.

II plays

- \mathcal{F}_n a function from \mathcal{X}_n into the ordinals.
- \mathcal{D}_n , a function from \mathcal{X}_n into {dense sets in $\operatorname{col}(\omega, \delta)$ }.

Let a_{n-I} and a_{n-II} denote the moves in round n, played by I and II resp. Let $a_n = \langle a_{n-I}, a_{n-II} \rangle$ and let $\vec{a} = \langle a_n \mid n < \omega \rangle$.

$$\mathcal{A}[x] : \underbrace{\mathbf{I} \ \dots \ l_n, \mathcal{X}_n, p_n \ \dots}_{\mathbf{II}} \quad \dots$$

As before I and II play \mathcal{X}_n , \mathcal{F}_n , \mathcal{D}_n indirectly by playing types. These types are elements of $M \| \delta$. Thus a_n is an element of $M \| \delta$ and $\vec{a} \in (M \| \delta)^{\omega}$.

We require (when $l = l_n$ is not "new") that for every pair $\langle \dot{x}, \dot{a} \rangle \in \mathcal{X}_n$:

1.
$$p_n$$
 forces " $\langle \dot{x}, \dot{a} \rangle \in \dot{A}$ ".
2. p_n forces " $\dot{x}(0) = \check{x_0}$ ", ..., " $\dot{x}(l) = \check{x_l}$ ".
3. p_n forces " $\dot{a}(0) = \check{a_0}$ ", ..., " $\dot{a}(l) = \check{a_l}$ ".
4. p_n belongs to $\mathcal{D}_l(\dot{x}, \dot{a})$.

We make the following requirement on II:

5. $\mathcal{F}_n(\dot{x}, \dot{a}) < \mathcal{F}_l(\dot{x}, \dot{a})$ for every pair $\langle \dot{x}, \dot{a} \rangle \in \mathcal{X}_n$.

Note the addition of condition 3, requiring that \dot{a} must name the actual run of $\mathcal{A}[x]$, \vec{a} .

In this revised $\mathcal{A}[x]$, I tries to witness that there exists some h so that $\langle x, \vec{a} \rangle \in \dot{A}[h]$, where \vec{a} is the sequence of auxiliary moves being played. II tries to witness the opposite.

As before, I can "go over all possible names" by playing in each round the first legal move.

We let $\sigma_{gen}[x,g]$ be the strategy for I which plays in each round the first legal move. (First with respect to the enumeration given by g.)

We have

Lemma 1. Suppose that \vec{a} is an infinite run of $\mathcal{A}[x]$, played according to $\sigma_{\text{gen}}[x,g]$. Then $\langle x, \vec{a} \rangle \notin \dot{A}[g]$. (This is only useful if $x, \vec{a} \in M[g]$.)

As before, ascribing auxiliary moves for II requires passing to models along an iteration tree. **Definition**. A **Pivot** for x is a pair \mathcal{T}, \vec{a} so that

- 1. \mathcal{T} is an iteration tree on M with an even branch.
- 2. \vec{a} is an infinite play of $j_{\text{even}}(\mathcal{A})[x]$.
- 3. For every odd branch b of \mathcal{T} , there exists some h so that
 - (a) h is $col(\omega, j_b(\delta))$ -generic/ M_b ; and
 - (b) $\langle x, \vec{a} \rangle \in j_b(\dot{A})[h].$

(Note the change in 3(b) from " $x \in \cdots$ " to " $\langle x, \vec{a} \rangle \in \cdots$ ".)

As before there is a strategy $\sigma_{\text{piv}}[x,g]$, playing for II in \mathcal{A}^* , so that all runs according to $\sigma_{\text{piv}}[x,g]$ are pivots.

But now this is not enough. We need a stronger method for ascribing moves for II. The method must be able to handle "changes of play" (also called "mixing") imposed by I.

Suppose we have an assignment $\gamma \mapsto \dot{A}[\gamma]$ in M. We define a game $\mathcal{A}^*_{mix}[x]$, played as follows: At the start of round n we have an even number k(n); an iteration tree $\mathcal{T} \upharpoonright k(n) + 1$ with final model $M_{k(n)}$; an ordinal γ_n in $M_{k(n)}$; and a position P_n of n rounds in $\mathcal{A}^s[\gamma_n, x]$, the auxiliary game associated to $\dot{A}^s[\gamma_n]$ and x, inside $M_{k(n)}$.

(We start with k(0) = 0 and a given γ_0 .)

I plays l_n, \mathcal{X}_n, p_n in $M_{k(n)}$, a legal move in $\mathcal{A}^{s}[\gamma_n, x]$ following P_n .

II plays extenders $E_{k(n)}, E_{k(n)+1}$ extending the iteration tree to create the models $M_{k(n)+1}$, $M_{k(n)+2}$, and the embedding $j = j_{k(n),k(n)+2}$ from $M_{k(n)}$ into $M_{k(n)+2}$.

(The *T*-predecessor of k(n) + 1 is $k(l_n) + 1$ if $l_n \neq$ "new", and k(n) otherwise.)

We set $Q_n = j(P_n - , l_n, \mathcal{X}_n, p_n)$.

II plays $\mathcal{F}_n, \mathcal{D}_n$ in $M_{k(n)+2}$, a legal move in $\mathcal{A}^{s}[j(\gamma_n), x]$ following Q_n .

9

We set $P_{n+1} = Q_n - \mathcal{F}_n, \mathcal{D}_n$.

So far we essentially followed the rules of \mathcal{A}^* .

I has two options now.

I can set k(n+1) = k(n)+2, and $\gamma_{n+1} = j(\gamma_n)$. We then pass to the next round.

(This amounts to following the old \mathcal{A}^* .)

Alternatively, I can play k(n + 1) > k(n) + 2, extend the existing iteration tree to form $M_{k(n+1)}$, and play $\gamma_{n+1} \in M_{k(n+1)}$ subject to the following rule:

• P_{n+1} is a legal position in $\mathcal{A}^{s}[\gamma_{n+1}, x]$. (\mathcal{A} here is shifted to $M_{k(n+1)}$.)

This is the "change of game".

Restriction: When extending $\mathcal{T} \upharpoonright k(n) + 3$, I is not allowed to apply extenders to models in $\bigcup_{\bar{n} < n} [k(\bar{n}) + 2, k(\bar{n} + 1)).$

Round *n* in \mathcal{A}^*_{mix} .

(I may set k(n + 1) = k(n) + 2 and $\gamma_{n+1} =$ $j_{k(n),k(n)+2}(\gamma_n)$. But I may also set k(n+1) >k(n) + 2 and start a fresh $\mathcal{A}^{s}[\gamma_{n+1}]$.)

Suppose $\mathcal{T}, \vec{a}, \{k(n), \gamma_n\}_{n < \omega}$ is a run of $\mathcal{A}^*_{mix}[x]$.

For an odd branch b of \mathcal{T} , note that the largest even model in b has the form k(n) for some n. We use n(b) to denote this n, and k(b) to denote k(n). We have $j_{k(b),b}: M_{k(b)} \to M_b$.

Definition. $T, \vec{a}, \{k(n), \gamma_n\}$ is a **mixed pivot** for x if for every odd branch b of T there exists some h so that

• $h \text{ is } \operatorname{col}(\omega, j_b(\delta)) \text{-generic}/M_b; \text{ and }$

•
$$\langle x, \vec{a} \rangle \in \dot{A}^{s}[j_{k(b),b}(\gamma_{n(b)})][h].$$

Lemma 2. There exists $\sigma_{mix}[x,g]$, a strategy for II in \mathcal{A}^*_{mix} , so that every run according to $\sigma_{mix}[x,g]$ is a mixed pivot for x.

The association $x, g \mapsto \sigma_{mix}[x, g]$ is continuous.

As before, the proof of Lemma 2 draws heavily on techniques of Martin–Steel's "A proof of projective determinacy". The assumption that δ is a Woodin cardinal is crucial. Fix a continuous function $f: \mathbb{R} \to \mathbb{N}$.

For $s \in \omega^{<\omega}$ put $\overline{f}(s) = n$ iff f(x) = n for all x extending s. Wlog \overline{f} is recursive.

Fix a Σ_2^1 set $A \subset \mathbb{R} \times \mathbb{R}$, say the set of all pairs satisfying the Σ_2^1 statement ϕ .

Let C be the set of sequences $\langle y_{\xi} | \xi \leq \alpha \rangle$ so that $(\lceil y_{\xi} | \xi < \alpha \rceil, y_{\alpha}) \in A$.

We wish to show that $G_{\text{cont}-f}(C)$ is determined.

Fix $M,\;\delta<\delta_\infty,$ and E so that

- 1. M is an iterable class model.
- 2. δ and δ_{∞} are Woodin cardinals of M.
- 3. In V there is g_{∞} , $\operatorname{col}(\omega, \delta_{\infty})$ -generic/M.
- 4. *E* is an extender of *M*, $\operatorname{crit}(E) < \delta$, the ult embedding sends $\operatorname{crit}(E)$ above δ , and $\operatorname{Ult}(M, E)$ contains all subsets of δ in *M*.

Note: If $x \in \mathbb{R}$ belongs to M[g], then by 4 x belongs also to Ult(M, E)[g].

14

Let $\dot{A}_{\infty} \in M$ name the set of pairs of reals in $M[g_{\infty}]$ which satisfy ϕ in $M[g_{\infty}]$.

We have the associated auxiliary games, $\mathcal{A}_{\infty}[x, y]$, where I tries to witness $\langle x, y \rangle \in A$ and II tries to witness the opposite.

We work to define a class $A \subset ON \times \mathbb{R} \times (M || \delta)^{\omega}$ in M[g]. For $\gamma \in ON$ we let $A[\gamma]$ denote the set

 $\{\langle x, \vec{a} \rangle \in \mathbb{R} \mid \langle \gamma, x, \vec{a} \rangle \in A\}.$

This is a subset of $\omega^{\omega} \times (M \| \delta)^{\omega}$ in M[g].

Really we are defining names, so we will have names $\dot{A}[\gamma]$ for $A[\gamma]$. The association $\gamma \mapsto \dot{A}[\gamma]$ will belong to M.

We let $\mathcal{A}[\gamma, x]$ be the corresponding auxiliary games: I tries to witness that $\langle \gamma, x, \vec{a} \rangle$ belongs to $\dot{A}[h]$ for some h, where \vec{a} are the auxiliary moves, and II tries to witness the opposite.

To define A: work with $x = \lceil y_{\xi} \mid \xi < \alpha \rceil$, γ , and \vec{a} , all in M[g]. Put

 $\langle \gamma, x, \vec{a} \rangle \in A$ iff I has a winning strategy in $G(\gamma, x, \vec{a})$

where $G(\gamma, x, \vec{a})$ is played as follows:

I and II collaborate as usual playing $y_{\alpha} = \langle y_{\alpha}(i) \mid i < \omega \rangle \in \mathbb{R}$. In addition they play moves in the auxiliary game $\mathcal{A}_{\infty}[x, y_{\alpha}]$.

They continue until (if ever) $i < \omega$ is reached so that $\overline{f}(y_{\alpha} | i)$ is defined.

Set $n_{\alpha} = \overline{f}(y_{\alpha} | i)$. If there exists $\xi < \alpha$ so that $n_{\alpha} = f(y_{\xi})$, the players simply continue playing y_{α} and the auxiliary moves of $\mathcal{A}_{\infty}[x, y_{\alpha}]$.

(Intuitively: as long as it seems that α is the last round, the players play the auxiliary moves of \mathcal{A}_{∞} , I trying to witness $\langle x, y_{\alpha} \rangle \in A$ and II trying to witness the opposite.)

If $n_{\alpha} = \overline{f}(y_{\alpha} \upharpoonright i)$ does not equal any previous n_{ξ} :

Let N = Ult(M, E), let $\pi: M \to N$ be the ultrapower embedding, let $\gamma' = \pi(\gamma')$, $\mathcal{A}' = \pi(\mathcal{A})$, and $\delta' = \pi(\delta)$. Let $a' = \pi(\vec{a} \upharpoonright n_{\alpha})$.

We set $x' = \lceil y_{\xi} \mid \xi < \alpha + 1 \rceil$. (We obtain x' continuously as y_{α} is played. Note x' and x agree to n_{α} .)

I plays $\gamma^* < \gamma'$, so that

• a' is a legal position in $\mathcal{A}'[\gamma^*, x']$.

(Note: no knowledge of y_{α} is needed for the first n_{α} rounds of $\mathcal{A}'[\gamma^*, x']$.)

The players now continue playing y_{α} (extending the previously played $y_{\alpha} \upharpoonright i$).

In addition they play auxiliary moves in the game $\mathcal{A}'[\gamma^*, x']$, continuing from a'.

(I tries to witness that $\langle \gamma^*, x', \vec{a}' \rangle \in \dot{A}'[h']$ for some h', generic for the collapse of δ' .)

As always player II is the closed player. She wins if she can last ω moves. As usual the definition is by induction on γ .

The part of $G(\gamma, x, \vec{a})$ involving $\mathcal{A}_{\infty}[x, y_{\alpha}]$ we call the "first half". The part involving $\mathcal{A}'[\gamma^*, x']$ we call the "second half".

Note: the second half of G is a game which belongs to N[g]. (To decide the rules of the second half we need knowledge of $x = \lceil y_{\xi} \mid$ $\xi < \alpha \rceil$, so that we can figure x' as we are given y_{α} . x belongs to N[g] because of our initial assumption on the strength of E.)

This note is important. N[g] is a "small" generic extension of N; small with respect to the Woodin cardinal $\delta' = \pi(\delta)$. If II wins the second half, we can find a winning strategy in N[g], and this strategy can shifted along the even models of an iteration given by $\pi(\sigma_{mix})$.

Case 1: There exists some γ so that (in M) I wins $G(\gamma, x_0, \emptyset)$. (Where $x_0 = \lceil \emptyset \rceil$.)

We will show that (in V) I wins $G_{\text{cont}-f}(C)$.

Fix an imaginary opponent playing for II in $G_{\text{cont}-f}(C)$.

Working against the imaginary opponent we construct:

- $y_{\xi} \in \mathbb{R}$. We set $x_{\alpha} = \lceil y_{\xi} \mid \xi < \alpha \rceil$.
- Iterates M_{α} of M, with $j_{0,\alpha}: M \to M_{\alpha}$.
- Mixed pivots $\mathcal{T}_{\alpha}, \vec{a}_{\alpha}, \{k^{\alpha}(n), \gamma_{n}^{\alpha}\}$ for x_{α} over the model M_{α} , played according to $j_{0,\alpha}(\sigma_{\text{mix}})$.

 \mathcal{T}_{α} will be continuously illfounded on the even models. (This will follow from our requirement in the second half of $G(\gamma, x, \vec{a})$, that $\gamma^* < \gamma'$.) The construction is fairly similar to the kinds of constructions handled before. The key point is the following:

Key point: The pivot at $\alpha + 1$ agrees with the $j_{\alpha,\alpha+1}$ image of the pivot at α , up to n_{α} .

(Similarly for the witness of continuous illfoundedness of the even branches.)

When reaching a **limit** ordinal λ , we can therefore let the pivot at λ be the limit of (the appropriate images of) the pivots at α , as $\alpha \to \lambda$.

This makes sense because of our key point, because $n_{\alpha} \longrightarrow \infty$ as $\alpha \rightarrow \lambda$, and because $x_{\alpha} \longrightarrow x_{\lambda}$ as $\alpha \rightarrow \lambda$.

Once the pivot at λ is defined:

The iteration strategy picks an odd branch of \mathcal{T}_{λ} . The play so far is generic over the direct limit and belongs to a (shift of) $\dot{A}[\gamma][h]$ for some γ and h. This allows us to proceed as usual.

Why mixed pivots?

The pivot at $\alpha + 1$ will start out like the $j_{\alpha,\alpha+1}$ image of the pivot at α , and will continue this way long enough to construct the $j_{\alpha,\alpha+1}$ image of $\vec{a}_{\alpha} \upharpoonright n_{\alpha}$.

Only then will the pivot at $\alpha + 1$ change passing from the γ of the pivot at α , to some smaller γ^* .

Thus, the change from γ to γ^* occurs in the ''middle'' of the pivot.

Further, the change from γ to γ^* occurs on an odd model of \mathcal{T}'_{α} . In fact a model along b'_{α} .

(This has to do with the fact that P'_{α} , the direct limit of models along b'_{α} , exactly equals $Ult(P_{\alpha}, E_{\alpha})$.)

So the change from the pivot at α to the pivot at $\alpha + 1$ involves skipping from the even model of \mathcal{T}'_{α} where the image of $\vec{a}_{\alpha} \upharpoonright n_{\alpha}$ is first constructed, to some later odd model on b'_{α} . (Then pad to make this model "even".)

We continue the construction until we reach an α so that, when playing the (appropriate shift of) $G(*, x_{\alpha}, \vec{a}_{\alpha})$, we stay within the "first half".

When playing the first half of $G(*, x_{\alpha}, \vec{a}_{\alpha})$, we use (the appropriate shift of) $\sigma_{\text{piv}-\infty}$ to ascribe auxiliary moves for II.

We obtain y_{α} and \mathcal{T}_{∞} which is part of a pivot for $\langle x, y_{\alpha} \rangle$ and the name \dot{A}_{∞} (shifted).

$$M \xrightarrow{} M_{\alpha} \xrightarrow{b_{\alpha}} P_{\alpha} \xrightarrow{b_{\infty}} M_{\infty}$$

The iteration strategy produces an odd branch b_{∞} , and we conclude that $\langle x, y_{\alpha} \rangle \in A$.

(Remember, in the first half of $G(*, x, \vec{a})$ I tries to witness that $\langle x, y \rangle$ belongs to the Σ_2^1 set A.)

Thus I wins $G_{\text{cont}-f}$ and we are done.