Determinacy Proofs for Long games

Itay Neeman
Department of Mathematics University of California Los Angeles
Los Angeles, CA 90095-1555
ineeman@math.ucla.edu

3. Continuously coded games with Σ_{2}^{1} payoff:
(a) Preliminaries revisited.
(b) Names.
(c) Playing for I.

Recall that $G_{\text {cont-f }}(C)$ is played as follows:

I and II alternate playing natural numbers $y_{\alpha}(i)$, $i<\omega$, producing a real y_{α}.

If $f\left(y_{\alpha}\right)$ is not defined, the game ends. I wins iff $\left\langle y_{0}, y_{1}, \ldots . ., y_{\alpha}\right\rangle \in C$.

Otherwise we set $n_{\alpha}=f\left(y_{\alpha}\right)$. If there exists $\xi<\alpha$ so that $n_{\alpha}=n_{\xi}$, the game ends. Again I wins iff $\left\langle y_{0}, y_{1}, \ldots \ldots, y_{\alpha}\right\rangle \in C$.

Otherwise the game continues.

At any position $\left\langle y_{\xi} \mid \xi<\alpha\right\rangle$, the map $\xi \mapsto n_{\xi}$ embeds α into \mathbb{N}. This allows coding the position by a real, which we denote x_{α} or $\left.{ }^{\ulcorner } y_{\xi} \mid \xi<\alpha\right\urcorner$.

The payoff set, C, is Σ_{2}^{1} in the codes if there is a Σ_{2}^{1} set $A \subset \mathbb{R} \times \mathbb{R}$ so that

$$
\left\langle y_{0}, \ldots, y_{\alpha}\right\rangle \in C \Longleftrightarrow\left\langle\left\ulcorner y_{\xi} \mid \xi<\alpha\right\urcorner, y_{\alpha}\right\rangle \in A .
$$

Our goal is to prove that $G_{\text {cont- } f}(C)$ is determined whenever f is continuous and C is Σ_{2}^{1} in the codes.

Any reasonable use of $\xi \mapsto n_{\xi}$ to code $\left\langle y_{\xi}\right| \xi<$ $\alpha\rangle$ satisfies the following:

Note 1. The real codes $\left\ulcorner y_{\xi} \mid \xi<\alpha\right\urcorner$ and $\left\ulcorner y_{\xi} \mid \xi<\alpha+1\right\urcorner$ agree up to $n_{\alpha}=f\left(y_{\alpha}\right)$.

Note 2. For any limit $\lambda, n_{\alpha} \longrightarrow \infty$ as $\alpha \rightarrow \lambda$.
From this it follows that $x_{\alpha}=\left\ulcorner y_{\xi} \mid \xi<\alpha\right\urcorner$ converge to x_{λ} as $\alpha \rightarrow \lambda$.

We will use this later on. (We will have pivots $\mathcal{T}_{\alpha}, \vec{a}_{\alpha}$ for x_{α}. We will make sure they converge to a pivot for the limit of x_{α}, and use the fact that this is x_{λ}.)

We will have to work with trees which have more than one even branch.

We say that a branch is odd if from some point onwards it contains only odd models.

We say that a branch is even if it contains arbitrarily large even models.

Note: we allow "padding" in our trees, for example $M_{6}=M_{5}$ and $j_{5,6}=i d$.

In the past we used illfoundedness of the even model to force the iteration strategy to pick an odd branch.

An iteration tree \mathcal{T} is continuously illfounded on the even models if it comes equipped with ordinals $\eta_{i} \in M_{i}, i<\omega$ even, so that

For $k T l$ both even, $j_{k, l}\left(\eta_{k}\right)>\eta_{l}$ strictly.

If \mathcal{T} is cont. illfounded on the even models then all even branches of \mathcal{T} produce illfounded direct limit. An iteration strategy must therefore pick an odd branch.

Note: Being cont. illfounded is a "closed" property: Suppose \mathcal{T}_{n} are cont. illfounded on the even models, and this is witnessed by $\vec{\eta}^{n}=$ $\left\{\eta_{i}^{n}\right\}$. Suppose $\mathcal{T}_{n} \longrightarrow \mathcal{T}_{\infty}$ and $\vec{\eta}^{n} \longrightarrow \vec{\eta}^{\infty}$. Then \mathcal{T}_{∞} is cont. illfounded on the even models, and this is witnessed by $\vec{\eta}^{\infty}$.

Suppose $M=$ " δ is a Woodin cardinal", and in V there are M-generics for $\operatorname{col}(\omega, \delta)$. Let \dot{A} name a subset of $\omega^{\omega} \times(M \| \delta)^{\omega}$ in $M^{\text {col }(\omega, \delta)}$.

Work with some $x \in \mathbb{R}$. We define an auxiliary game, $\mathcal{A}[x]$, similar to the game we had before. But now, instead of " $x \in \dot{A}[h]$ ", I tries to witness that $\langle x, \vec{a}\rangle \in \dot{A}[h]$ where $\vec{a}=\left\langle a_{n}\right| n\langle\omega\rangle$ are the moves played in $\mathcal{A}[x]$.

$$
\begin{array}{c|lll}
\text { I } & \ldots & l_{n}, \mathcal{X}_{n}, p_{n} & \ldots \\
\hline \text { II } & & \mathcal{F}_{n}, \mathcal{D}_{n} & \ldots
\end{array}
$$

In round n I plays

- $l=l_{n}$, a number $<n$, or $l_{n}=$ "new".
- \mathcal{X}_{n}, a set of pairs of $M^{\mathrm{col}(\omega, \delta)}$-names.
- p_{n}, a condition in $\operatorname{col}(\omega, \delta)$.

II plays

- \mathcal{F}_{n} a function from \mathcal{X}_{n} into the ordinals.
- \mathcal{D}_{n}, a function from \mathcal{X}_{n} into \{dense sets in $\operatorname{col}(\omega, \delta)\}$.

Let $a_{n-\mathrm{I}}$ and $a_{n-\mathrm{II}}$ denote the moves in round n, played by I and II resp. Let $a_{n}=\left\langle a_{n-\mathrm{I}}, a_{n-\mathrm{II}}\right\rangle$ and let $\vec{a}=\left\langle a_{n} \mid n<\omega\right\rangle$.

| $\mathcal{A}[x]:$ | I | \ldots | $l_{n}, \mathcal{X}_{n}, p_{n}$ | \ldots | \ldots |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| | II | | | $\mathcal{F}_{n}, \mathcal{D}_{n}$ | \ldots |

As before I and II play $\mathcal{X}_{n}, \mathcal{F}_{n}, \mathcal{D}_{n}$ indirectly by playing types. These types are elements of $M \| \delta$. Thus a_{n} is an element of $M \| \delta$ and $\vec{a} \in(M \| \delta)^{\omega}$.

We require (when $l=l_{n}$ is not "new") that for every pair $\langle\dot{x}, \dot{a}\rangle \in \mathcal{X}_{n}$:

1. p_{n} forces " $\langle\dot{x}, \dot{a}\rangle \in \dot{A}$ ".
2. p_{n} forces " $\dot{x}(0)=\widetilde{x_{0}} ", \ldots, " \dot{x}(l)=\widetilde{x_{l}} "$.
3. p_{n} forces " $\dot{a}(0)=\widetilde{a_{0}} ", \ldots, " \dot{a}(l)=\widetilde{a_{l}} "$.
4. p_{n} belongs to $\mathcal{D}_{l}(\dot{x}, \dot{a})$.

We make the following requirement on II: 5. $\mathcal{F}_{n}(\dot{x}, \dot{a})<\mathcal{F}_{l}(\dot{x}, \dot{a})$ for every pair $\langle\dot{x}, \dot{a}\rangle \in \mathcal{X}_{n}$.

Note the addition of condition 3, requiring that \dot{a} must name the actual run of $\mathcal{A}[x], \vec{a}$.

In this revised $\mathcal{A}[x]$, I tries to witness that there exists some h so that $\langle x, \vec{a}\rangle \in \dot{A}[h]$, where \vec{a} is the sequence of auxiliary moves being played. II tries to witness the opposite.

As before, I can "go over all possible names" by playing in each round the first legal move.

We let $\sigma_{\text {gen }}[x, g]$ be the strategy for I which plays in each round the first legal move. (First with respect to the enumeration given by g.)

We have

Lemma 1. Suppose that \vec{a} is an infinite run of $\mathcal{A}[x]$, played according to $\sigma_{\text {gen }}[x, g]$. Then $\langle x, \vec{a}\rangle \notin \dot{A}[g]$. (This is only useful if $x, \vec{a} \in M[g]$.)

As before, ascribing auxiliary moves for II requires passing to models along an iteration tree.

Definition. A Pivot for x is a pair \mathcal{T}, \vec{a} so that

1. \mathcal{T} is an iteration tree on M with an even branch.
2. \vec{a} is an infinite play of $j \operatorname{even}(\mathcal{A})[x]$.
3. For every odd branch b of \mathcal{T}, there exists some h so that
(a) h is $\operatorname{col}\left(\omega, j_{b}(\delta)\right)$-generic $/ M_{b}$; and
(b) $\langle x, \vec{a}\rangle \in j_{b}(\dot{A})[h]$.
(Note the change in $3(\mathrm{~b})$ from " $x \in \ldots$..." to $"\langle x, \vec{a}\rangle \in \cdots$. .)

As before there is a strategy $\sigma_{\text {piv }}[x, g]$, playing for II in \mathcal{A}^{*}, so that all runs according to $\sigma_{\text {piv }}[x, g]$ are pivots.

But now this is not enough. We need a stronger method for ascribing moves for II. The method must be able to handle "changes of play" (also called "mixing") imposed by I.

Suppose we have an assignment $\gamma \mapsto \dot{A}[\gamma]$ in M. We define a game $\mathcal{A}_{\mathrm{mix}}^{*}[x]$, played as follows:

At the start of round n we have an even number $k(n)$; an iteration tree $\mathcal{T} \upharpoonright k(n)+1$ with final model $M_{k(n)}$; an ordinal γ_{n} in $M_{k(n)}$; and a position P_{n} of n rounds in $\mathcal{A}^{\mathrm{s}}\left[\gamma_{n}, x\right]$, the auxiliary game associated to $\dot{A}^{\mathrm{s}}\left[\gamma_{n}\right]$ and x, inside $M_{k(n)}$.
(We start with $k(0)=0$ and a given γ_{0}.)
I plays $l_{n}, \mathcal{X}_{n}, p_{n}$ in $M_{k(n)}$, a legal move in $\mathcal{A}^{\mathrm{s}}\left[\gamma_{n}, x\right]$ following P_{n}.

II plays extenders $E_{k(n)}, E_{k(n)+1}$ extending the iteration tree to create the models $M_{k(n)+1}$, $M_{k(n)+2}$, and the embedding $j=j_{k(n), k(n)+2}$ from $M_{k(n)}$ into $M_{k(n)+2}$.
(The T-predecessor of $k(n)+1$ is $k\left(l_{n}\right)+1$ if $l_{n} \neq$ "new", and $k(n)$ otherwise.)

We set $Q_{n}=j\left(P_{n}-, l_{n}, \mathcal{X}_{n}, p_{n}\right)$.
II plays $\mathcal{F}_{n}, \mathcal{D}_{n}$ in $M_{k(n)+2}$, a legal move in $\mathcal{A}^{\mathrm{s}}\left[j\left(\gamma_{n}\right), x\right]$ following Q_{n}.

We set $P_{n+1}=Q_{n}-, \mathcal{F}_{n}, \mathcal{D}_{n}$.
So far we essentially followed the rules of \mathcal{A}^{*}.

I has two options now.

I can set $k(n+1)=k(n)+2$, and $\gamma_{n+1}=j\left(\gamma_{n}\right)$. We then pass to the next round.
(This amounts to following the old \mathcal{A}^{*}.)
Alternatively, I can play $k(n+1)>k(n)+2$, extend the existing iteration tree to form $M_{k(n+1)}$, and play $\gamma_{n+1} \in M_{k(n+1)}$ subject to the following rule:

- P_{n+1} is a legal position in $\mathcal{A}^{\mathrm{s}}\left[\gamma_{n+1}, x\right]$. (\mathcal{A} here is shifted to $M_{k(n+1)}$.)

This is the "change of game".

Restriction: When extending $\mathcal{T} \upharpoonright k(n)+3$, I is not allowed to apply extenders to models in $\bigcup_{\bar{n}<n}[k(\bar{n})+2, k(\bar{n}+1))$.

Round n in $\mathcal{A}_{\text {mix }}^{*}$.
(I may set $k(n+1)=k(n)+2$ and $\gamma_{n+1}=$ $j_{k(n), k(n)+2}\left(\gamma_{n}\right)$. But I may also set $k(n+1)>$ $k(n)+2$ and start a fresh $\mathcal{A}^{\mathrm{s}}\left[\gamma_{n+1}\right]$.)

Suppose $\mathcal{T}, \vec{a},\left\{k(n), \gamma_{n}\right\}_{n<\omega}$ is a run of $\mathcal{A}_{\text {mix }}^{*}[x]$.
For an odd branch b of \mathcal{T}, note that the largest even model in b has the form $k(n)$ for some n. We use $n(b)$ to denote this n, and $k(b)$ to denote $k(n)$. We have $j_{k(b), b}: M_{k(b)} \rightarrow M_{b}$.

Definition. $\mathcal{T}, \vec{a},\left\{k(n), \gamma_{n}\right\}$ is a mixed pivot for x if for every odd branch b of \mathcal{T} there exists some h so that

- h is $\operatorname{col}\left(\omega, j_{b}(\delta)\right)$-generic $/ M_{b}$; and
- $\langle x, \vec{a}\rangle \in \dot{A}^{\mathrm{s}}\left[j_{k(b), b}\left(\gamma_{n(b)}\right)\right][h]$.

Lemma 2. There exists $\sigma_{\text {mix }}[x, g]$, a strategy for II in $\mathcal{A}_{\text {mix }}^{*}$, so that every run according to $\sigma_{\text {mix }}[x, g]$ is a mixed pivot for x.
The association $x, g \mapsto \sigma_{\text {mix }}[x, g]$ is continuous.

As before, the proof of Lemma 2 draws heavily on techniques of Martin-Steel's "A proof of projective determinacy" . The assumption that δ is a Woodin cardinal is crucial.

Fix a continuous function $f: \mathbb{R} \rightarrow \mathbb{N}$.

For $s \in \omega^{<\omega}$ put $\bar{f}(s)=n$ iff $f(x)=n$ for all x extending s. Wlog \bar{f} is recursive.

Fix a Σ_{2}^{1} set $A \subset \mathbb{R} \times \mathbb{R}$, say the set of all pairs satisfying the Σ_{2}^{1} statement ϕ.

Let C be the set of sequences $\left\langle y_{\xi} \mid \xi \leq \alpha\right\rangle$ so that $\left(\left\ulcorner y_{\xi} \mid \xi<\alpha\right\urcorner, y_{\alpha}\right) \in A$.

We wish to show that $G_{\text {cont-f }}(C)$ is determined.

Fix $M, \delta<\delta_{\infty}$, and E so that

1. M is an iterable class model.
2. δ and δ_{∞} are Woodin cardinals of M.
3. In \vee there is $g_{\infty}, \operatorname{col}\left(\omega, \delta_{\infty}\right)$-generic $/ M$.
4. E is an extender of $M, \operatorname{crit}(E)<\delta$, the ult embedding sends crit (E) above δ, and $\operatorname{Ult}(M, E)$ contains all subsets of δ in M.

The existence of such a model is our large cardinal assumption.

For expository simplicity E
fix g which is $\operatorname{col}(\omega, \delta)-$ generic/ M, and g_{∞} which is $\operatorname{col}\left(\omega, \delta_{\infty}\right)$-generic $/ M$, with $g \in M\left[g_{\infty}\right]$.

Note: If $x \in \mathbb{R}$ belongs to $M[g]$, then by 4 x belongs also to $\operatorname{UIt}(M, E)[g]$.

Let $\dot{A}_{\infty} \in M$ name the set of pairs of reals in $M\left[g_{\infty}\right]$ which satisfy ϕ in $M\left[g_{\infty}\right]$.

We have the associated auxiliary games, $\mathcal{A}_{\infty}[x, y]$, where I tries to witness $\langle x, y\rangle \in A$ and II tries to witness the opposite.

We work to define a class $A \subset O N \times \mathbb{R} \times(M \| \delta)^{\omega}$ in $M[g]$. For $\gamma \in \mathrm{ON}$ we let $A[\gamma]$ denote the set

$$
\{\langle x, \vec{a}\rangle \in \mathbb{R} \mid\langle\gamma, x, \vec{a}\rangle \in A\}
$$

This is a subset of $\omega^{\omega} \times(M \| \delta)^{\omega}$ in $M[g]$.

Really we are defining names, so we will have names $\dot{A}[\gamma]$ for $A[\gamma]$. The association $\gamma \mapsto \dot{A}[\gamma]$ will belong to M.

We let $\mathcal{A}[\gamma, x]$ be the corresponding auxiliary games: I tries to witness that $\langle\gamma, x, \vec{a}\rangle$ belongs to $\dot{A}[h]$ for some h, where \vec{a} are the auxiliary moves, and II tries to witness the opposite.

To define A : work with $x=\left\ulcorner y_{\xi} \mid \xi<\alpha\right\urcorner, \gamma$, and \vec{a}, all in $M[g]$. Put

$$
\begin{aligned}
& \langle\gamma, x, \vec{a}\rangle \in A \text { iff I has a winning strategy in } \\
& G(\gamma, x, \vec{a})
\end{aligned}
$$

where $G(\gamma, x, \vec{a})$ is played as follows:
I and II collaborate as usual playing $y_{\alpha}=\left\langle y_{\alpha}(i) \mid i<\omega\right\rangle \in \mathbb{R}$. In addition they play moves in the auxiliary game $\mathcal{A}_{\infty}\left[x, y_{\alpha}\right]$.

They continue until (if ever) $i<\omega$ is reached so that $\bar{f}\left(y_{\alpha} \upharpoonright i\right)$ is defined.

Set $n_{\alpha}=\bar{f}\left(y_{\alpha} \upharpoonright i\right)$. If there exists $\xi<\alpha$ so that $n_{\alpha}=f\left(y_{\xi}\right)$, the players simply continue playing y_{α} and the auxiliary moves of $\mathcal{A}_{\infty}\left[x, y_{\alpha}\right]$.
(Intuitively: as long as it seems that α is the last round, the players play the auxiliary moves of \mathcal{A}_{∞}, I trying to witness $\left\langle x, y_{\alpha}\right\rangle \in A$ and II trying to witness the opposite.)

If $n_{\alpha}=\bar{f}\left(y_{\alpha} \upharpoonright i\right)$ does not equal any previous n_{ξ} :
Let $N=\operatorname{Ult}(M, E)$, let $\pi: M \rightarrow N$ be the ultrapower embedding, let $\gamma^{\prime}=\pi\left(\gamma^{\prime}\right), \mathcal{A}^{\prime}=$ $\pi(\mathcal{A})$, and $\delta^{\prime}=\pi(\delta)$. Let $a^{\prime}=\pi\left(\vec{a} \upharpoonright n_{\alpha}\right)$.

We set $x^{\prime}=\left\ulcorner y_{\xi} \mid \xi<\alpha+1\right\urcorner$. (We obtain x^{\prime} continuously as y_{α} is played. Note x^{\prime} and x agree to n_{α}.)

I plays $\gamma^{*}<\gamma^{\prime}$, so that

- a^{\prime} is a legal position in $\mathcal{A}^{\prime}\left[\gamma^{*}, x^{\prime}\right]$.
(Note: no knowledge of y_{α} is needed for the first n_{α} rounds of $\mathcal{A}^{\prime}\left[\gamma^{*}, x^{\prime}\right]$.)

The players now continue playing y_{α} (extending the previously played $\left.y_{\alpha} \upharpoonright i\right)$.

In addition they play auxiliary moves in the game $\mathcal{A}^{\prime}\left[\gamma^{*}, x^{\prime}\right]$, continuing from a^{\prime}.
(I tries to witness that $\left\langle\gamma^{*}, x^{\prime}, \vec{a}^{\prime}\right\rangle \in \dot{A}^{\prime}\left[h^{\prime}\right]$ for some h^{\prime}, generic for the collapse of δ^{\prime}.)

As always player II is the closed player. She wins if she can last ω moves. As usual the definition is by induction on γ.

The part of $G(\gamma, x, \vec{a})$ involving $\mathcal{A}_{\infty}\left[x, y_{\alpha}\right]$ we call the "first half". The part involving $\mathcal{A}^{\prime}\left[\gamma^{*}, x^{\prime}\right]$ we call the "second half".

Note: the second half of G is a game which belongs to $N[g]$. (To decide the rules of the second half we need knowledge of $x=\left\ulcorner y_{\xi} \mid\right.$ $\xi<\alpha\urcorner$, so that we can figure x^{\prime} as we are given $y_{\alpha} . \quad x$ belongs to $N[g]$ because of our initial assumption on the strength of E.)

This note is important. $N[g]$ is a "small" generic extension of N; small with respect to the Woodin cardinal $\delta^{\prime}=\pi(\delta)$. If II wins the second half, we can find a winning strategy in $N[g]$, and this strategy can shifted along the even models of an iteration given by $\pi\left(\sigma_{\text {mix }}\right)$.

Case 1: There exists some γ so that (in M) I wins $G\left(\gamma, x_{0}, \emptyset\right)$. (Where $x_{0}=\ulcorner\emptyset\urcorner$.)

We will show that (in V) I wins $G_{\text {cont-f }}(C)$.

Fix an imaginary opponent playing for II in $G_{\text {cont-f }}(C)$.

Working against the imaginary opponent we construct:

- $y_{\xi} \in \mathbb{R}$. We set $x_{\alpha}=\left\ulcorner y_{\xi} \mid \xi<\alpha\right\urcorner$.
- Iterates M_{α} of M, with $j_{0, \alpha}: M \rightarrow M_{\alpha}$.
- Mixed pivots $\mathcal{T}_{\alpha}, \vec{a}_{\alpha},\left\{k^{\alpha}(n), \gamma_{n}^{\alpha}\right\}$ for x_{α} over the model M_{α}, played according to $j_{0, \alpha}\left(\sigma_{\text {mix }}\right)$.
\mathcal{T}_{α} will be continuously illfounded on the even models. (This will follow from our requirement in the second half of $G(\gamma, x, \vec{a})$, that $\gamma^{*}<\gamma^{\prime}$.)

The construction is fairly similar to the kinds of constructions handled before. The key point is the following:

Key point: The pivot at $\alpha+1$ agrees with the $j_{\alpha, \alpha+1}$ image of the pivot at α, up to n_{α}.
(Similarly for the witness of continuous illfoundedness of the even branches.)

When reaching a limit ordinal λ, we can therefore let the pivot at λ be the limit of (the appropriate images of) the pivots at α, as $\alpha \rightarrow \lambda$.

This makes sense because of our key point, because $n_{\alpha} \longrightarrow \infty$ as $\alpha \rightarrow \lambda$, and because $x_{\alpha} \longrightarrow x_{\lambda}$ as $\alpha \rightarrow \lambda$.

Once the pivot at λ is defined:
The iteration strategy picks an odd branch of \mathcal{T}_{λ}. The play so far is generic over the direct limit and belongs to a (shift of) $\dot{A}[\gamma][h]$ for some γ and h. This allows us to proceed as usual.

Why mixed pivots?

$\mathcal{T}_{\alpha+1}$ starts out like $\mathcal{T}_{\alpha}^{\prime}$.

The pivot at $\alpha+1$ will start out like the $j_{\alpha, \alpha+1}$ image of the pivot at α, and will continue this way Iong enough to construct the $j_{\alpha, \alpha+1}$ image of $\vec{a}_{\alpha} \upharpoonright n_{\alpha}$.

Only then will the pivot at $\alpha+1$ change passing from the γ of the pivot at α, to some smaller γ^{*}.

Thus, the change from γ to γ^{*} occurs in the "middle" of the pivot.

Further, the change from γ to γ^{*} occurs on an odd model of $\mathcal{T}_{\alpha}^{\prime}$. In fact a model along b_{α}^{\prime}.
(This has to do with the fact that P_{α}^{\prime}, the direct limit of models along b_{α}^{\prime}, exactly equals $\operatorname{Ult}\left(P_{\alpha}, E_{\alpha}\right)$.)

So the change from the pivot at α to the pivot at $\alpha+1$ involves skipping from the even model of $\mathcal{T}_{\alpha}^{\prime}$ where the image of $\vec{a}_{\alpha} \upharpoonright n_{\alpha}$ is first constructed, to some later odd model on b_{α}^{\prime}. (Then pad to make this model "even".)

We continue the construction until we reach an α so that, when playing the (appropriate shift of) $G\left(*, x_{\alpha}, \vec{a}_{\alpha}\right)$, we stay within the "first half".

When playing the first half of $G\left(*, x_{\alpha}, \vec{a}_{\alpha}\right)$, we use (the appropriate shift of) $\sigma_{\text {piv }-\infty}$ to ascribe auxiliary moves for II.

We obtain y_{α} and \mathcal{T}_{∞} which is part of a pivot for $\left\langle x, y_{\alpha}\right\rangle$ and the name \dot{A}_{∞} (shifted).

$$
M \cdots M_{\alpha} \sum_{\mathcal{T}_{\alpha}} b_{\underline{\alpha}} P_{\alpha} \sum_{\mathcal{T}_{\infty}} b_{\infty} M_{\infty}
$$

The iteration strategy produces an odd branch b_{∞}, and we conclude that $\left\langle x, y_{\alpha}\right\rangle \in A$.
(Remember, in the first half of $G(*, x, \vec{a})$ I tries to witness that $\langle x, y\rangle$ belongs to the Σ_{2}^{1} set A.)

Thus I wins $G_{\text {cont-f }}$ and we are done.

