Determinacy Proofs for Long games

Itay Neeman
Department of Mathematics University of California Los Angeles
Los Angeles, CA 90095-1555 ineeman@math.ucla.edu

1.(d) Example: Σ_{2}^{1} determinacy.
2. Games of length $\omega \cdot \omega$ with $\Sigma \frac{1}{2}$ payoff.
3. Continuously coded games with Σ_{2}^{1} payoff.

Recall: A is the set of all reals which satisfy a given Σ_{2}^{1} statement $\phi . \dot{A} \in M$ names the set of reals of $M^{\operatorname{col}(\omega, \delta)}$ which satisfy ϕ in $M^{\operatorname{col}(\omega, \delta)}$.
G is the game in which I and II play $x=$ $\left\langle x_{0}, x_{1}, \ldots\right\rangle \in \mathbb{R}$ and in addition play moves in the auxiliary game $\mathcal{A}[x]$.

I	x_{0}	$a_{0-\mathrm{I}}$		$a_{1-\mathrm{I}}$	x_{2}	\ldots
II	$a_{0-\mathrm{II}}$	x_{1}	$a_{1-\mathrm{II}}$			

The game is played in M. Infinite runs of G are won by II.

Using $\sigma_{\text {piv }}$ to ascribe auxiliary moves for II we showed that

Case 1. If I wins G in M, then (in V) I has a winning strategy in $G_{\omega}(A)$.

Let \dot{B} in M name the set of reals which do not satisfy ϕ in $M^{\operatorname{col}(\omega, \delta)}$.

Define $x \mapsto \mathcal{B}[x]$ and $x \mapsto \mathcal{B}^{*}[x]$ as before, but changing \dot{A} to \dot{B} and interchanging I and II.

We have $\tau_{\text {gen }}[x, g]$ and $\tau_{\text {piv }}[x, g]$ as before, but with the roles of I and II switched.

Let H be the following game, defined and played inside M :

| I | x_{0} | $b_{0-\mathrm{I}}$ | | $b_{1-\mathrm{I}}$ | x_{2} | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| II | | $b_{0-\mathrm{II}}$ | x_{1} | $b_{1-\mathrm{II}}$ | | |

I and II alternate playing natural numbers, producing $x=\left\langle x_{0}, x_{1}, \ldots\right\rangle \in \mathbb{R}$. In addition they play moves $b_{0-\mathrm{I}}, b_{0-\mathrm{II}}, \ldots$ in $\mathcal{B}[x]$.

This time I is the closed player; she wins if she can last all ω moves. Otherwise II wins.

Case 2: II wins H. Then an argument similar to that of Case 1 shows that (in V) II has a strategy to get into $B=\mathbb{R}-A$. In other words, II wins $G_{\omega}(A)$ in V .
\square (Case 2.)

We showed:

- If I wins G in M, then (in V) I wins $G_{\omega}(A)$.
- If II wins H in M, then (in \vee) II wins $G_{\omega}(A)$.

It is now enough to check that one of these cases must occur.

Suppose not. I.e., assume that, in M, II wins G and I wins H. Fix strategies $\Sigma^{\text {II }} \in M$ and $\Sigma^{\mathrm{I}} \in M$ witnessing this. We wish to derive a contradiction.

Recall the progress of the games G and H :

\[

\]

Working in $M[g]$, construct $x=\left\langle x_{0}, x_{1}, \ldots\right\rangle$, $\vec{a}=\left\langle a_{0-\mathrm{I}}, a_{0-\mathrm{II}}, \ldots\right\rangle$, and $\vec{b}=\left\langle b_{0-\mathrm{I}}, b_{0-\mathrm{II}}, \ldots\right\rangle$ as follows:

- $\Sigma^{\text {II }}$ (playing for II in G) produces x_{n} for odd n, and $a_{n-\mathrm{II}}$ for all n.
- $\sigma_{\text {gen }}[x, g]$ produces $a_{n-\mathrm{I}}$ for all n.
- $\Sigma^{\text {I }}$ (playing for I in H) produces x_{n} for even n and $b_{n-\mathrm{I}}$ for all n.
- $\tau_{\text {gen }}[x, g]$ produces $b_{n-\mathrm{II}}$ for all n.

We get $x \notin \dot{A}[g]$ by Lemma 1 . Similarly we get $x \notin \dot{B}[g]$ through our use of $\tau_{\text {gen }}$.

But \dot{A} and \dot{B} name complementary sets. Since $x \in M[g]$ this is a contradiction.

To sum: Defined in M the game

$G:$| I | x_{0} | $a_{0-\mathrm{I}}$ | | $a_{1-\mathrm{I}}$ | \ldots |
| :---: | :---: | :---: | :---: | :---: | :---: |
| II | $a_{0-\mathrm{II}}$ | x_{1} | $a_{1-\mathrm{II}}$ | | |

where I, II collaborate to produce $x \in \mathbb{R}$, and in addition play auxiliary moves: I trying to witness $x \in \dot{A}[h]$ for some h, II trying to witness the opposite. G is a closed game.

If in M I wins G, showed (using $\sigma_{\text {piv }}$) that in V I wins to get into some $j_{b}(\dot{A})[h]$, and hence by absoluteness into A.

Defined in M the game

$$
H: \begin{array}{c|ccccc}
\mathrm{I} & x_{0} & b_{0-\mathrm{I}} & & b_{1-\mathrm{I}} & \cdots \\
\hline \mathrm{II} & & b_{0-\mathrm{II}} & x_{1} & b_{1-\mathrm{II}} &
\end{array}
$$

This time II is trying to witness $x \in \dot{B}[h]$ for some h, and I is trying to witness the opposite.

If in M II wins H, showed (using $\tau_{\text {piv }}$) that in V II wins to get into some $j_{b}(\dot{B})[h]$, and hence by absoluteness into $B=\mathbb{R}-A$.

Finally, if both cases fail, we worked in $M[g]$ (using $\sigma_{\text {gen }}$ and $\tau_{\text {gen }}$) to construct $x \in M[g]$ which belongs to neither $\dot{A}[g]$ nor $\dot{B}[g]$, a contradiction.

Fix $C \subset \mathbb{R}^{\omega}$ a Σ_{2}^{1} set, say the set of all sequences $\left\langle y_{0}, y_{1}, \ldots\right\rangle \in \mathbb{R}^{\omega}$ which satisfy the Σ_{2}^{1} statement ϕ.

We wish to prove that $G_{\omega \cdot \omega}(C)$ is determined.

Fix M and an increasing sequence $\delta_{1}, \delta_{2}, \ldots, \delta_{\omega}$ so that

- M is a class model.
- Each δ_{ξ} is a Woodin cardinal in M.
- In \vee there is g which is $\operatorname{col}\left(\omega, \delta_{\omega}\right)$-gen $/ M$.
- M is iterable.

The existence of such M is our large cardinal assumption (needed to prove determinacy). We use δ_{∞} and g_{∞} to refer to δ_{ω} and g.

Let $\dot{A}_{\infty} \in M$ name the set of elements of $\mathbb{R}^{\omega} \cap$ $M\left[g_{\infty}\right]$ which satisfy ϕ in $M\left[g_{\infty}\right]$.

For $\left\langle y_{n}\right| n\langle\omega\rangle \in \mathbb{R}^{\omega}$ we have the associated game $\mathcal{A}_{\infty}\left[y_{n} \mid n<\omega\right]$. (Formally we should think of $\left\langle y_{n} \mid n<\omega\right\rangle$ as coded by some real x.)

The association is continuous, and we may talk about $\mathcal{A}_{\infty}\left[y_{0}, \ldots, y_{k-1}\right]$, a game of $k+1$ rounds.

We use $a_{0-\mathrm{I}}^{\infty}, a_{0-\mathrm{II}}^{\infty}, a_{1-\mathrm{I}}^{\infty}$, etc. to refer to moves in \mathcal{A}_{∞}.

We use a_{n}^{∞} to denote $\left\langle a_{n-\mathrm{I}}^{\infty}, a_{n-\mathrm{II}}^{\infty}\right\rangle$ and refer to runs of \mathcal{A}_{∞} as \vec{a}^{∞}.
(Recall that moves in $\mathcal{A}_{\infty}\left[y_{n} \mid n<\omega\right]$ are arranged so that I tries to witness $\left\langle y_{n} \mid n<\omega\right\rangle \in$ $\dot{A}_{\infty}[h]$ for some h, and II tries to witness the opposite.)

A k-sequences is a sequence

$$
\left\langle y_{0}, \ldots, y_{k-1}, a_{0}^{\infty}, \ldots, a_{k-1}^{\infty}, \gamma\right\rangle
$$

so that

- Each y_{i} is a real;
- $a_{0}^{\infty}, \ldots, a_{k-1}^{\infty}$ is a position in the auxiliary game $\mathcal{A}_{\infty}\left[y_{0}, \ldots, y_{k-1}\right]$; and
- γ is an ordinal.

We use S to denote k-sequences.

A valid extension for a k-sequence is a triplet $y_{k}, a_{k}^{\infty}, \gamma^{*}$ so that

- y_{k} is a real;
- $a_{k}^{\infty}=\left\langle a_{k-\mathrm{I}}^{\infty}, a_{k-\mathrm{II}}^{\infty}\right\rangle$ where $a_{k-\mathrm{I}}^{\infty}$ and $a_{k-\mathrm{II}}^{\infty}$ are legal moves for I and II respectively in the game $\mathcal{A}_{\infty}\left[y_{0}, \ldots, y_{k-1}\right]$,* following the position $a_{0}^{\infty}, \ldots, a_{k-1}^{\infty}$; and
- γ^{*} is an ordinal smaller than γ.

We use $S-, y_{k}, a_{k}^{\infty}, \gamma^{*}$ to denote the $k+1$ sequence

$$
\left\langle y_{0}, \ldots, y_{k-1}, y_{k}, a_{0}^{\infty}, \ldots, a_{k-1}^{\infty}, a_{k}^{\infty}, \gamma^{*}\right\rangle
$$

*Observe that knowledge of y_{k} is not needed to determine the rules for round k of this game.

For expository simplicity, fix for each n some g_{n} which is $\operatorname{col}\left(\omega, \delta_{n}\right)$-generic M. Do this so that the sequence $\left\langle g_{n} \mid n<\omega\right\rangle$ belongs to $M\left[g_{\infty}\right]$ and each g_{n} belongs to $M\left[g_{n+1}\right]$.

Below we define sets in $M\left[g_{n}\right]$ where strictly speaking we should be defining names in $M^{\mathrm{col}\left(\omega, \delta_{n}\right)}$.

We work to define sets A_{k} in $M\left[g_{k}\right](k \geq 1)$. A_{k} will be a set of k-sequences.

Given $a_{0}^{\infty}, \ldots, a_{k-1}^{\infty}, \gamma$ we let $A_{k}\left[a_{0}^{\infty}, \ldots, a_{k-1}^{\infty}, \gamma\right]$ be the set of tuples $\left\langle y_{0}, \ldots, y_{k-1}\right\rangle$ so that

$$
\left\langle y_{0}, \ldots, y_{k-1}, a_{0}^{\infty}, \ldots, a_{k-1}^{\infty}, \gamma\right\rangle \in A_{k} .
$$

$A_{k}\left[a_{0}^{\infty}, \ldots, a_{k-1}^{\infty}, \gamma\right]$ then is a subset of \mathbb{R}^{k} in $M\left[g_{k}\right]$. Really we are defining names, not sets. So we have a name $\dot{A}_{k}\left[a_{0}^{\infty}, \ldots, a_{k-1}^{\infty}, \gamma\right]$.

Let $\mathcal{A}_{k}\left[y_{0}, \ldots, y_{k-1}, a_{0}^{\infty}, \ldots, a_{k-1}^{\infty}, \gamma\right]$ be auxiliary game associated to $\left\langle y_{0}, \ldots, y_{k-1}\right\rangle$ and the name $\dot{A}_{k}\left[a_{0}^{\infty}, \ldots, a_{k-1}^{\infty}, \gamma\right]$.

We use $\mathcal{A}_{k}[S]$ to denote this game, and use $a_{0-\mathrm{I}}^{k}, a_{0-\mathrm{II}}^{k}$ etc. to denote moves in the game.
(Recall that these moves are such that I tries to witness that S belongs to $\dot{A}_{k}[h]$ for some h. II tries to witness the opposite.)

Given $S=\left\langle y_{0}, \ldots, y_{k-1}, a_{0}^{\infty}, \ldots, a_{k-1}^{\infty}, \gamma\right\rangle$, a k sequence, define a game $G_{k}(S)$ in which:

I and II play a valid extension $\gamma^{*}, a_{k}^{\infty}, y_{k}$. In addition I tries to witness that the extended sequence, S-, $y_{k}, a_{k}^{\infty}, \gamma^{*}$, belongs to A_{k+1}. II tries to witness the opposite.
$G_{k}(S):$

I	$\gamma^{*}, a_{k-\mathrm{I}}^{\infty}$	$y_{k}(0)$	$a_{0-\mathrm{I}}^{k+1}$
II	$a_{k-\mathrm{II}}^{\infty}$	$a_{0-\mathrm{II}}^{k+1}$	

	$a_{1-\mathrm{I}}^{k+1}$	$y_{k}(2)$
$y_{k}(1)$	$a_{1-\mathrm{II}}^{k+1}$	

I and II play

- γ^{*},
- $a_{k}^{\infty}=\left\langle a_{k-\mathrm{I}}^{\infty}, a_{k-\mathrm{II}}^{\infty}\right\rangle$, and
- $y_{k}=\left\langle y_{k}(0), y_{k}(1), \ldots\right\rangle$
which form a valid extension of S. (In particular γ^{*} is smaller than γ.)

In addition they play auxiliary moves in the game $\mathcal{A}_{k+1}\left[S-, y_{k}, a_{k}^{\infty}, \gamma^{*}\right]$.

II is the closed player; she wins if she can last ω moves. Otherwise I wins.

Define the sets A_{k} by:
$S \in A_{k}$ iff I has a winning strategy in $G_{k}(S)$
(for a k-sequence $S \in M\left[g_{k}\right]$).
If S belongs to A_{k}, we expect to be able to extend to $S^{*}=S-, y_{k}, a_{k}^{\infty}, \gamma^{*}$ which belongs to a "shift" of A_{k+1}.

Our definition of A_{k} depends on some knowledge of A_{k+1}. (We need knowledge of G_{k}, which involves the auxiliary game \mathcal{A}_{k+1}.)

The definition is by induction, not on k, but on γ.

Figuring out the rules of $G_{k}(S)$, where $S=\langle *, \ldots, *, \gamma\rangle$, requires knowledge of the sets $A_{k+1}\left[a_{0}^{\infty}, \ldots, a_{k}^{\infty}, \gamma^{*}\right]$, but only for $\gamma^{*}<\gamma$.

Determining whether S belongs to A_{k} thus requires knowledge of A_{k+1}, but only for $k+1$ sequences ending with $\gamma^{*}<\gamma$.

A 0 -sequence is simply an ordinal γ. We have for each γ the game $G_{0}(\gamma)$. This game belongs to M.

Case 1: There exists some γ so that (in M) I has a winning strategy in $G_{0}(\gamma)$.

We will show that (in V) I has a winning strategy in $G_{\omega \cdot \omega}(C)$.

Fix $\Sigma_{0} \in M$, a winning strategy for I (the open player) in $G_{0}(\gamma)$.

Fix an imaginary opponent, playing for II in $G_{\omega \cdot \omega}(C)$.

We will use Σ_{0}, the strategies $\sigma_{\text {piv }-1}, \sigma_{\text {piv }-2}, \ldots$, the strategy $\sigma_{\text {piv- }}$, and an iteration strategy for M, to play against the imaginary opponent.
$G_{0}(\gamma):$

I	$\gamma_{0}^{*}, a_{0-\mathrm{I}}^{\infty} \quad y_{0}(0)$	$a_{0-\mathrm{I}}^{1}$		
II	$a_{0-\mathrm{II}}^{\infty}$	$a_{0-\mathrm{II}}^{1}$		
	$a_{1-\mathrm{I}}^{1}$			$y_{0}(2) \quad \ldots$
	$y_{1-\mathrm{II}}^{1}(1)$			

Our opponent, $\Sigma_{0}, \sigma_{\text {piv- }}$ (for the first round), and $\sigma_{\text {piv-1 }}$ (for the remaining rounds) cover all moves in the game.

We obtain an iteration tree \mathcal{U}^{0} of length 3 , played by $\sigma_{\text {piv- }}$, with final model P_{2}^{0}, embedding $\pi_{0,2}^{0}: M \rightarrow P_{2}^{0}$, and moves $\bar{\gamma}_{0}^{*}, \bar{a}_{0}^{\infty}$ in P_{2}^{0}.

We obtain $y_{0} \in \mathbb{R}$, and an iteration tree \mathcal{T}_{0} (played by $\sigma_{\text {piv-1 }}$) with illfounded even model.

The iteration strategy picks an odd branch, b_{0} say. Let M_{1} be the direct limit along b_{0} and let $j_{0,1}$ be the direct limit embedding.

$$
\begin{aligned}
& M=P_{0}^{0} \quad P_{1}^{0} P_{2}^{0} \\
& M \gtrless_{\mathcal{T}_{0}}^{{ }^{\frac{b_{0}}{0}}} M_{1}=P_{0}^{1} P_{P_{1}^{1}}^{\pi_{0,2}^{1}} P_{2}^{1}
\end{aligned}
$$

Let $\mathcal{U}^{1}=j_{0,1}\left(\mathcal{U}^{0}\right)$, and similarly with $P_{2}^{1}, \pi_{0,2}^{1}$. Let $\gamma_{0}^{*}=j_{0,1}\left(\bar{\gamma}_{0}^{*}\right)$ and similarly a_{0}^{∞}.

Our use of $\sigma_{\text {piv }-1}$ guarantees that there exists some h_{1} so that

1. h_{1} is $\operatorname{col}\left(\omega, \delta_{1}^{\mathbf{s}}\right)$-generic/ M_{1}, and
2. $\left\langle y_{0}, a_{0}^{\infty}, \gamma_{0}^{*}\right\rangle \in \dot{A}_{1}^{s}\left[h_{1}\right]$.
($*^{s}$ denotes $j_{0,1}\left(\pi_{0,2}^{0}(*)\right)$.)
Note that by 2, player I (the open player) has a winning strategy in $G_{1}^{\mathrm{s}}\left(y_{0}, a_{0}^{\infty}, \gamma_{0}^{*}\right)$. Fix $\Sigma_{1} \in$ $M_{1}\left[h_{1}\right]$, a strategy for I witnessing this.

Note, Σ_{1} belongs to $M_{1}\left[h_{1}\right]$, a small generic extension of M. (Small with respect to δ_{2} and δ_{∞}.) This allows us to shift Σ_{1} along the even branch of trees given by $\sigma_{\text {piv }-\infty}$ and $\sigma_{\text {piv }-2}$.

Using Σ_{1} and $j_{0,1}\left(\sigma_{\text {piv }-\infty}\right)$ we get
$M \underset{\tau_{0}}{b_{0}} M_{1}=P_{0}^{1} \quad P_{1}^{1} \quad P_{2}^{1} \quad P_{3}^{1} \quad P_{4}^{1}$
Then using $j_{0,1}\left(\sigma_{\text {piv-2 }}\right)$ and shifts of Σ_{1} get

$$
\pi_{0,4}^{2}
$$

$M \sum_{\mathcal{T}_{0}}{ }^{b_{0}} M_{1} \sum_{\widehat{T_{1}}}^{b_{1}} M_{2}=P_{0}^{2} \quad P_{4}^{2}$
(where $P_{0}^{2}=j_{1,2}\left(P_{0}^{1}\right)$, etc. $)$.

We get $\gamma_{1}^{*}, a_{1}^{\infty}$, and y_{1}. Our use of $\sigma_{\text {piv-2 }}$ guarantees that there exists h_{2} so that

1. h_{2} is $\operatorname{col}\left(\omega, \delta_{2}^{s s}\right)$-generic $/ M_{2}$, and
2. $\left\langle y_{0}, y_{1}, a_{0}^{\infty-s}, a_{1}^{\infty}, \gamma_{1}^{*}\right\rangle \in \dot{A}_{2}^{s s}\left[h_{2}\right]$.
(A second ${ }^{5}$ stands for application of $j_{1,2} \circ \pi_{2,4}^{1}$.)
By 2, player I (the open player) wins

$$
G_{2}^{\mathrm{s} s}\left(y_{0}, y_{1}, a_{0}^{\infty-\mathrm{s}}, a_{1}^{\infty}, \gamma_{1}^{*}\right) .
$$

This game belongs to $M\left[h_{2}\right]$. Fix $\Sigma_{2} \in M\left[h_{2}\right]$, a strategy witnessing that I wins.

Continue as before.

In general we have:

In $P_{2 k}^{k}$ we have the k-sequence $S_{k}=\left\langle y_{0}, \ldots, y_{k-1}, a_{0}^{\infty-\mathrm{s} \cdots \mathrm{s}}, \ldots, a_{k-1}^{\infty}{ }^{--\cdots-}, \gamma_{k-1}^{*}\right\rangle$.
S_{k+1} (in $P_{2 k+2}^{k+1}$) is obtained as a valid extension of $j_{k, k+1}\left(\pi_{2 k, 2 k+2}^{k}\left(S_{k}\right)\right)$. In particular:
$(\dagger) \gamma_{k}^{*}$ is smaller than $j_{k, k+1}\left(\pi_{2 k, 2 k+2}^{k}\left(\gamma_{k-1}^{*}\right)\right)$.

We end with a sequence of reals $\left\langle y_{n} \mid n<\omega\right\rangle$, a sequence of iteration trees

and an iteration tree \mathcal{U}_{∞} on M_{∞} as follows:

By (\dagger) the even branch of \mathcal{U}_{∞} is illfounded.

The iteration strategy for M produces an odd branch c of \mathcal{U}_{∞}. Let M_{c} be the direct limit, and let $\pi_{c}: M_{\infty} \rightarrow M_{c}$ be the direct limit embedding. Note M_{c}, played by an iteration strategy, is wellfounded.

Now \mathcal{U}_{∞} is part of a play according to $j_{0, \infty}\left(\sigma_{\text {piv- }-\infty}\right)\left[y_{n} \mid n<\omega\right]$.

Our use of $j_{0, \infty}\left(\sigma_{\text {piv- }}\right)\left[y_{n} \mid n<\omega\right]$ guarantees that there exists some h_{∞} so that

1. h_{∞} is $\operatorname{col}\left(\omega, \pi_{c}\left(j_{0, \infty}\left(\delta_{\infty}\right)\right)\right)$-generic $/ M_{c}$, and
2. $\left\langle y_{n} \mid n<\omega\right\rangle \in \pi_{c}\left(j_{0, \infty}\left(\dot{A}_{\infty}\right)\right)\left[h_{\infty}\right]$.

From 2 we see that $\left\langle y_{n} \mid n<\omega\right\rangle$ satisfies the Σ_{2}^{1} statement ϕ, inside $M_{c}\left[h_{\infty}\right]$.

By absoluteness ϕ is satisfied in V.

So $\left\langle y_{n} \mid n<\omega\right\rangle \in C$ and I won, as required.
\square (Case 1.)

Assuming there is some γ so that (in M) I wins $G_{0}(\gamma)$, we showed that (in V) I wins $G_{\omega \cdot \omega}(C)$.

Fix $\gamma_{\mathrm{L}}<\gamma_{\mathrm{H}}$ indiscernibles for M, above δ_{∞}.
Suppose $S=\left\langle y_{0}, \ldots, y_{k-1}, a_{0}^{\infty}, \ldots, a_{k-1}^{\infty}, \gamma_{\mathrm{L}}\right\rangle$ is a k-sequence in $M\left[g_{k}\right]$ and does not belong A_{k}.

So II wins $G_{k}(S)$. By indiscernibility II also wins $G_{k}\left(S_{\mathrm{H}}\right)$ where $S_{\mathrm{H}}=\left\langle *, \ldots, \gamma_{\mathrm{H}}\right\rangle$. Fix a winning strategy $\Sigma_{\text {II }-k}$.

I	$\gamma^{*}, a_{k-\mathrm{I}}^{\infty}$	$y_{k}(0)$	$a_{0-\mathrm{I}}^{k+1}$
II	$a_{k-\mathrm{II}}^{\infty}$	$a_{0-\mathrm{II}}^{k+1}$	

	$a_{1-\mathrm{I}}^{k+1}$	$y_{k}(2)$	\ldots
$y_{k}(1)$	$a_{1-\mathrm{II}}^{k+1}$		

Play $\gamma^{*}=\gamma_{\mathrm{L}}$. Use $\Sigma_{\text {II }-k}, \sigma_{\text {gen }-\infty}, \sigma_{\text {gen }-(k+1)}$ to obtain $a_{k}^{\infty}, \vec{a}^{k+1}$, and (half of) y_{k} in $M\left[g_{k+1}\right]$.

Our use of $\sigma_{\text {gen }-(k+1)}$ guarantees that $S^{\prime}=\left\langle S_{\mathrm{H}}-, y_{k}, a_{k}^{\infty}, \gamma_{\mathrm{L}}\right\rangle \notin \dot{A}_{k+1}\left[g_{k+1}\right]$.

If S^{\prime} belongs to $M\left[g_{k+1}\right]$ this means that II wins $G_{k+1}\left(S^{\prime}\right)$.

Continue this way. Our use of $\sigma_{\text {gen }}-\infty$ guarantees that $\left\langle y_{n} \mid n<\omega\right\rangle$ does not belong to $\dot{A}\left[g_{\infty}\right]$.

If there is γ so that I wins the closed game $G_{0}(\gamma)$, then I has a winning strategy in $G_{\omega \cdot \omega}(C)$.

Mirroring this with sets B_{k} and games H_{k} we get:

If there is γ so that II wins the closed game $H_{0}(\gamma)$, then II has a winning strategy in $G_{\omega \cdot \omega}(C)$.

Finally, if II wins $G_{0}\left(\gamma_{\mathrm{L}}\right)$ and I wins $H_{0}\left(\gamma_{\mathrm{L}}\right)$, we can work in $M\left[g_{n}\right], n<\omega$, and produce $\left\langle y_{n}\right| n\langle\omega\rangle \in M\left[g_{\infty}\right]^{*}$ which belongs to neither $\dot{A}\left[g_{\infty}\right]$ nor $\dot{B}\left[g_{\infty}\right]$, a contradiction.

It follows that $G_{\omega \cdot \omega}(C)$ is determined.
${ }^{*}$ Note $\left\langle g_{n}\right| n\langle\omega\rangle \in M\left[g_{\infty}\right]$.

