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Let C ⊂ R<ω1 be given.∗ Let f :R → N, a partial

function, be given. Gcont−f(C) is played as

follows:

I . . . . . . . . . yα(0) yα(2)

II yα(1) yα(3) · · ·

In round α, I and II alternate playing natural

numbers yα(i), i < ω, producing a real yα.

If f(yα) is not defined, the game ends. I wins

iff 〈y0, y1, . . . . . . , yα〉 ∈ C.

Otherwise we set nα = f(yα). If there exists

ξ < α so that nα = nξ, the game ends. Again

I wins iff 〈y0, y1, . . . . . . , yα〉 ∈ C.

Otherwise the game continues.

The game ends at a countable α; the map

ξ 7→ nξ embeds α into N. This map is produced

continuously in ξ. The game is said to have

continuously coded length.
∗Following standard abuse of notation, we use R to de-
note Nω.
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Let C ⊂ Rω = Nω·ω be given. In Gω·ω(C) the

players plays ω rounds as follows, producing

yk ∈ R for k < ω.

I y0(0) . . . . . . y1(0) . . .

II y0(1) y1(1) . . .

I wins iff 〈yk | k < ω〉 belongs to C.

Let C ⊂ R = Nω be given. In Gω(C) the players

plays one round as follows, producing y ∈ R.

I y(0) y(2) . . .

II y(1) y(3) . . .

I wins iff y ∈ C.
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We intend to prove that Gcont−f(C) are deter-

mined, for all continuous f and all Σ1
2 payoff

sets C.

As an illustrative case we will first prove that

Gω·ω(C) are determined, for all Σ1
2 payoff sets

C.

Before that, we will prove that Gω(C) are de-

termined for all Σ1
2 sets C ⊂ R.

Determinacy for games of length ω was proved

by Martin and Steel.

Determinacy for games of fixed length ω · α, α

limit, was proved by Woodin.

Determinacy for games of continuously coded

length was proved by Neeman.
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An extender on κ is a directed system of mea-

sures on κ. If E is an extender on κ, we use

dom(E) to denote κ.

An extender E allows us to form an ultrapower

of V, denoted Ult(V, E), and an elementary

ultrapower embedding π: V → Ult(V, E).

We use P, Q, M, N to denote models of ZFC.

We say that Q and Q∗ agree to κ if P(κ)∩Q∗ =

P(κ) ∩ Q.

Suppose Q |= “E is an extender on κ”. Sup-

pose Q∗ and Q agree to κ. Then E can be ap-

plied also to Q∗: We can form the ultrapower

Ult(Q∗, E), and an elementary ultrapower em-

bedding σ:Q∗ → Ult(Q∗, E).

Ult(Q∗, E) needn’t always be wellfounded. If it

is wellfounded, we assume it’s transitive.
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An iteration tree T of length ω consists of

• a tree order T on ω,

• a sequence of models 〈Mk | k < ω〉, and

• embeddings jk,l:Mk → Ml for k T l.

Each model Ml+1 for l + 1 > 0 is an ultra-

power of a preceeding model. More precisely:

Ml+1 = Ult(Mk, El), where El an extender

picked from Ml, and k ≤ l is the T predecessor

of l + 1. jk,l+1 is the ultrapower embedding.

Ml+1

El ∈ Ml

Mk

jk,l+1

OO

(Ml and Mk must agree to dom(El).)

An iteration tree on M is a tree with M0 = M .
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j0,2

OO

j0,1

;;xxxxxxxx

Our trees will generally

have an even branch,

M0, M2, M4, . . ., giving

rise to the direct limit

Meven.

The tree structure on

the odd models will

usually be some permu-

tation of ω<ω. With

each odd branch b

we associate the direct

limit Mb.

(In this example, 0 T 1, 0 T 2, 1 T 3, 0 T 3,

etc.)
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In the iteration game∗ on M , players “good”

and “bad” collaborate to produce a sequence

of iteration trees as follows:

M
b0 //iiiiiiiiiiiii

T0

UUUUUUUUUUUUU

M1
b1 //iiiiiiiiiiiii

T1

UUUUUUUUUUUUU

M2
b2 //iiiiiiiiiiiii

T2

UUUUUUUUUUUUU

M3
//______

//______ Mω
bω //iiiiiiiiiiiii

Tω

UUUUUUUUUUUUU

Mω+1 //______

“Bad” plays an iteration tree Tξ on Mξ.

“Good” plays a branch bξ through Tξ. We let

Mξ+1 be the direct limit model determined by

bξ and proceed to the next round. For limit λ

we let Mλ be the direct limit of Mξ for preced-

ing ξ. We start with M0 = M .

If ever a model (Mξ, ξ < ω1) is reached which

is illfounded, “bad” wins. Otherwise “good”

wins.
∗The definition given here is specialized to our context.
The concept of iteration games is due to Martin–Steel.
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We also consider iteration games were round ξ

has the following form:

//______ Mξ

Eξ $$bξ
//iiiiiiiiiiiii

Tξ

UUUUUUUUUUUUU

Pξ Mξ+1 //______

“Bad” plays an iteration tree Tξ on Mξ.

“Good” plays a branch bξ, giving rise to the

direct limit, Pξ.

Then “good” plays an extender Eξ in Pξ, with

dom(Eξ) within the level of agreement between

Mξ and Pξ. We set Mξ+1 = Ult(Mξ, Eξ) and

continue to the next round.

If ever a model (Pξ or Mξ, ξ < ω1) is reached

which is illfounded, “bad” wins. Otherwise

“good” wins.

We refer to this game too as an iteration

game.
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M is iterable if the good player has a win-

ning strategy for each of the iteration games

described above. We refer to such winning

strategies as iteration strategies.

Countable elementary substructures of V are

iterable in this sense (Martin–Steel).
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Suppose M |= “δ is a Woodin cardinal”, and

in V there are M–generics for col(ω, δ). Let Ȧ

name a set of reals in Mcol(ω,δ).

Work with some x ∈ R. We work to define an

auxiliary game, A[x], of ω moves, taken from

M . In this game I tries to witness that x ∈

Ȧ[h] for some generic h. II tries to witness the

opposite.

The auxiliary game is played as follows:

I . . . ln,Xn, pn . . .

II Fn,Dn . . .

In round n I plays

• l = ln, a number < n, or ln = “new”.

• Xn, a set of names for reals of Mcol(ω,δ).

• pn, a condition in col(ω, δ).

II plays

• Fn a function from Xn into the ordinals.

• Dn, a function from Xn into {dense sets in

col(ω, δ)}.
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A[x] : I . . . ln,Xn, pn . . .

II Fn,Dn . . .

If ln = “new” we make no requirements on I.

Otherwise, we require pn < pl and Xn ⊂ Xl. We

further require that for every name ẋ ∈ Xn:

1. pn forces “ẋ ∈ Ȧ”.

2. pn forces “ẋ(0) = x̌0”, ....,“ẋ(l) = x̌l”.

3. pn belongs to Dl(ẋ).

We make the following requirement on II:

4. For every name ẋ ∈ Xn, Fn(ẋ) < Fl(ẋ).

If there is h so that x ∈ Ȧ[h], I can pick a name

for x, play Xn containing this name, and play

pn ∈ h. Condition 4 ensures defeat for II.

On the other hand, if there is an infinite run

of A[x] where I covered all possible names and

chains of conditions, condition 4 ensures that

x 6∈ Ȧ[h] for all generic h.
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Note 1. Rather than play the sets Xn directly,
I plays their type. I plays κn < δ, and a set un of
formulae with parameters in M‖κn∪{κn, δ, Ȧ}.∗

We take Xn to be the set of names which sat-
isfy all these formulae.

The fact that this still allows I enough con-
trol over her choice of Xn has to do with our
assumption that δ is a Woodin cardinal.

Fn and Dn are played similarly.

Observe that moves in A[x] are therefore ele-
ments of M‖ δ.

Note 2. The association x 7→ A[x] is continu-
ous: The rules governing the first n+1 rounds
of A[x] depend only on x� n.

We in fact defined an association s 7→ A[s] (s ∈
ω<ω, A[s] a game of lh(s) + 1 many rounds).
This association belongs to M .

∗By M‖κn we mean VM
κn

.
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Recall that g is col(ω, δ)–generic/M . We alter-

nate between thinking of g as a generic enu-

meration of δ, and as a generic enumeration of

M‖ δ.

Let σgen[x, g], a strategy for I in A[x] be defined

as follows:

σgen[x, g] plays in each round the first (with

respect to the enumeration g) legal move.

Note. The association x, g 7→ σgen[x, g] is con-

tinuous.

Lemma 1. Suppose that there exists an infi-

nite run of A[x], played according to σgen[x, g].

Then x 6∈ Ȧ[g]. (This is only useful if x ∈ M [g].)

Proof: In playing for I, σgen[g, x] goes over all

possible names and all possible generics. (This

uses the genericity of the enumeration g.) So

in fact x 6∈ Ȧ[h] for all generic h. �
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We wish to phrase a similar lemma with a strat-

egy for II, which puts x in A. To do this we

have to give II additional control. We let II

“shift” the play board along an even branch of

an iteration tree.

M =M0

��

M1 M2

��

M3 M4

��

M5 M6 · · ·

I
l0
X0

p0

///o/o/o/o/o/o/o/o/o/o

II
F0

D0

I
l1
X1

p1

///o/o/o/o/o/o/o/o/o/o

II
F1

D1

I
l2
X2

p2

///o/o/o/o/o/o/o/o/o/o
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The game A∗[x] is played as follows:

I . . . ln,Xn, pn . . .

II E2n, E2n+1,Fn,Dn . . .

At the start of round n we have a model M2n,

an embedding j0,2n:M → M2n, and a position

Pn of n rounds in j0,2n(A)[x].

I plays ln,Xn, pn, a legal move in j0,2n(A)[x]

following Pn.

II plays extenders E2n, E2n+1 giving rise to

models M2n+1, M2n+2, and to an embedding

j2n,2n+2:M2n → M2n+2. (The T–predecessor

of 2n + 1 is 2ln + 1 if ln 6= “new” and 2n oth-

erwise.)

We let Qn = j2n,2n+2(Pn−−, ln,Xn, pn). (This

is the “shifting” mentioned before.)

II plays Fn,Dn, a legal move in j0,2n+2(A)[x]

following Qn.

We let Pn+1 = Qn−−,Fn,Dn and proceed to

the next round.
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Definition. A pivot for x is a pair T , ~a so that

1. T is an iteration tree on M , with an even

branch.

2. ~a is a run of jeven(A)[x].

3. For every odd branch b of T , there exists

some h so that

(a) h is col(ω, jb(δ))–generic/Mb; and

(b) x ∈ jb(Ȧ)[h].

Any run of A∗[x] produces T , ~a which satisfy

conditions 1 and 2.

Lemma 2. There exists σpiv[x, g], a strategy

for II in A∗[x], so that every run according to

σpiv[x, g] is a pivot.

The association x, g 7→ σpiv[x, g] is continuous.

The proof of Lemma 2 draws heavily on the

techniques of Martin–Steel’s “A proof of pro-

jective determinacy”. The assumption that δ

is a Woodin cardinal is crucial.
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To sum: Have continuous associations

x 7→ A[x]; x, g 7→ σgen[x, g]; x 7→ A∗[x]; and

x, g 7→ σpiv[x, g].

σgen[x, g] is a strategy for I in A[x].

If ~a is an infinite run of A[x] according to

σgen[x, g], then x 6∈ Ȧ[g].

σpiv[x, g] is a strategy for II in A∗[x].

If T , ~a is an infinite run of A∗[x] according to

σpiv[x, g], then

for every odd branch b of T , there exists

some h so that

• h is col(ω, jb(δ))–generic/Mb; and

• x ∈ jb(Ȧ)[h].
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Σ1
2 determinacy:

Fix A ⊂ R, a Σ1
2 set (say the set of reals which

satisfy a given Σ1
2 statement φ).

Suppose there is an iterable class model M

with a Woodin cardinal δ. Suppose that (in

V) there is g which is col(ω, δ)–generic/M .

We intend to prove that (in V) Gω(A) is de-

termined.

Let Ȧ ∈ M name A. More precisely, Ȧ names

the set of reals of Mcol(ω,δ) which satisfy φ in

Mcol(ω,δ).

We have x 7→ A[x], x, g 7→ σgen[x, g], etc. as

before.
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Let G be the following game, defined and

played inside M :

I x0 a0−I a1−I x2 . . .

II a0−II x1 a1−II

I and II alternate playing natural numbers, pro-

ducing together x = 〈x0, x1, . . .〉 ∈ R. In addi-

tion they play moves a0−I, a0−II, . . . in A[x].

II is the closed player; she wins if she can last

all ω moves. Otherwise I wins.

G is a closed game, hence determined. A win-

ning strategy exists in M .

Case 1: I wins G. Fix Σ ∈ M a winning strat-

egy for I (the open player).

We wish to show that I wins Gω(A) in V. Let

us play Gω(A) against an imaginary opponent.

We describe how to play, and win.
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We construct a run x ∈ R of Gω(A). At the

same time we construct T , ~a, a run of A∗[x].

The participants in our construction are:

• The imaginary opponent: playing xn for

odd n.

• The strategy σpiv[g, x]: playing for II in

A∗[x].

• The strategy Σ and its shifts along the

even branch of T : playing xn for even n

and playing for I in A∗[x] (i.e. playing for I

in shifts of A[x]).

We obtain x ∈ R and T , ~a a run of A∗[x] ac-

cording to σpiv[x, g].

We must check that x belongs to A.
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M =M0

��

M1 M2

��

M3 M4

��

M5 M6 · · ·

Σ x0

Σ
l0
X0

p0

///o/o/o/o/o/o/o/o/o/o

σpiv
F0

D0

Oppnt x1

j0,2(Σ)
l1
X1

p1

///o/o/o/o/o/o/o/o/o/o

σpiv
F1

D1

j0,4(Σ) x2

j0,4(Σ)
l2
X2

p2

///o/o/o/o/o/o/o/o/o/o
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Note that x,~a is an infinite run of jeven(G) ac-

cording to jeven(Σ).

Now Σ is a strategy for the open player in

G. So there are no infinite runs according to

Σ. But there is an infinite run according to

jeven(Σ). Thus Meven is illfounded.

M is iterable. So there exists some branch b

of T so that Mb is wellfounded. b must be an

odd branch.

By Lemma 2, T , ~a is a pivot for x. Thus there

is h so that

• h is col(ω, jb(δ))–generic/Mb and

• x ∈ jb(Ȧ)[h].

This means that in Mb[h], x satisfies the Σ1
2

statement φ.

By absoluteness, x satisfies φ in V. (This uses

the wellfoundedness of Mb.)

So x ∈ A as required. �(Case 1.)

22


