Determinacy Proofs for Long games

Itay Neeman
Department of Mathematics University of California Los Angeles
Los Angeles, CA 90095-1555 ineeman@math.ucla.edu

1. Preliminaries:
(a) The games.
(b) Extenders, iteration trees.
(c) Auxiliary game representations.
(d) Example: Σ_{2}^{1} determinacy.
2. Games of length $\omega \cdot \omega$ with Σ_{2}^{1} payoff.
3. Continuously coded games with Σ_{2}^{1} payoff.

Let $C \subset \mathbb{R}^{<\omega_{1}}$ be given.* Let $f: \mathbb{R} \rightarrow \mathbb{N}$, a partial function, be given. $G_{\text {cont }-f}(C)$ is played as follows:

I	$\ldots \ldots \ldots y_{\alpha}(0) \quad y_{\alpha}(2)$			
II		$y_{\alpha}(1)$	$y_{\alpha}(3)$	\cdots

In round α, I and II alternate playing natural numbers $y_{\alpha}(i), i<\omega$, producing a real y_{α}.

If $f\left(y_{\alpha}\right)$ is not defined, the game ends. I wins iff $\left\langle y_{0}, y_{1}, \ldots . ., y_{\alpha}\right\rangle \in C$.

Otherwise we set $n_{\alpha}=f\left(y_{\alpha}\right)$. If there exists $\xi<\alpha$ so that $n_{\alpha}=n_{\xi}$, the game ends. Again I wins iff $\left\langle y_{0}, y_{1}, \ldots \ldots, y_{\alpha}\right\rangle \in C$.

Otherwise the game continues.
The game ends at a countable α; the map $\xi \mapsto n_{\xi}$ embeds α into \mathbb{N}. This map is produced continuously in ξ. The game is said to have continuously coded length.
*Following standard abuse of notation, we use \mathbb{R} to denote \mathbb{N}^{ω}.

Let $C \subset \mathbb{R}^{\omega}=\mathbb{N}^{\omega \cdot \omega}$ be given. In $G_{\omega \cdot \omega}(C)$ the players plays ω rounds as follows, producing $y_{k} \in \mathbb{R}$ for $k<\omega$.

| I | $y_{0}(0)$ | $\ldots \ldots$ | $y_{1}(0)$ | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- |
| II | $y_{0}(1)$ | | $y_{1}(1)$ | \ldots |

I wins iff $\left\langle y_{k} \mid k<\omega\right\rangle$ belongs to C.

Let $C \subset \mathbb{R}=\mathbb{N}^{\omega}$ be given. In $G_{\omega}(C)$ the players plays one round as follows, producing $y \in \mathbb{R}$.

I	$y(0)$	$y(2)$	\ldots	
II	$y(1)$	$y(3)$	\ldots	

I wins iff $y \in C$.

We intend to prove that $G_{\text {cont-f }}(C)$ are determined, for all continuous f and all Σ_{2}^{1} payoff sets C.

As an illustrative case we will first prove that $G_{\omega \cdot \omega}(C)$ are determined, for all Σ_{2}^{1} payoff sets C.

Before that, we will prove that $G_{\omega}(C)$ are determined for all Σ_{2}^{1} sets $C \subset \mathbb{R}$.

Determinacy for games of length ω was proved by Martin and Steel.

Determinacy for games of fixed length $\omega \cdot \alpha, \alpha$ limit, was proved by Woodin.

Determinacy for games of continuously coded length was proved by Neeman.

An extender on κ is a directed system of measures on κ. If E is an extender on κ, we use dom (E) to denote κ.

An extender E allows us to form an ultrapower of V, denoted $\operatorname{Ult}(V, E)$, and an elementary ultrapower embedding $\pi: V \rightarrow \operatorname{UIt}(V, E)$.

We use P, Q, M, N to denote models of ZFC.

We say that Q and Q^{*} agree to κ if $\mathcal{P}(\kappa) \cap Q^{*}=$ $\mathcal{P}(\kappa) \cap Q$.

Suppose $Q=$ " E is an extender on κ ". Suppose Q^{*} and Q agree to κ. Then E can be applied also to Q^{*} : We can form the ultrapower UIt $\left(Q^{*}, E\right)$, and an elementary ultrapower embedding $\sigma: Q^{*} \rightarrow \operatorname{UIt}\left(Q^{*}, E\right)$.

Ult $\left(Q^{*}, E\right)$ needn't always be wellfounded. If it is wellfounded, we assume it's transitive.

An iteration tree \mathcal{T} of length ω consists of

- a tree order T on ω,
- a sequence of models $\left\langle M_{k} \mid k<\omega\right\rangle$, and
- embeddings $j_{k, l}: M_{k} \rightarrow M_{l}$ for $k T l$.

Each model M_{l+1} for $l+1>0$ is an ultrapower of a preceeding model. More precisely: $M_{l+1}=\operatorname{UIt}\left(M_{k}, E_{l}\right)$, where E_{l} an extender picked from M_{l}, and $k \leq l$ is the T predecessor of $l+1 . j_{k, l+1}$ is the ultrapower embedding.

(M_{l} and M_{k} must agree to $\operatorname{dom}\left(E_{l}\right)$.)

An iteration tree on M is a tree with $M_{0}=M$.

Our trees will generally have an even branch, $M_{0}, M_{2}, M_{4}, \ldots, \quad$ giving rise to the direct limit Meven.

The tree structure on the odd models will usually be some permutation of $\omega^{<\omega}$. With each odd branch b we associate the direct limit M_{b}.
(In this example, $0 T 1,0 T 2,1 T 3,0 T 3$, etc.)

In the iteration game* on M, players "good" and "bad" collaborate to produce a sequence of iteration trees as follows:

$$
\begin{aligned}
& M \sum_{T_{0}}^{\stackrel{b_{0}}{\longrightarrow}} M_{1} \sum_{T_{1}}^{b_{1}} M_{2} \sum_{T_{2}}^{{ }^{2}} M_{3} \\
& \ldots M_{\omega}<{ }_{\mathcal{T}_{\omega}} b_{\omega} M_{\omega+1 \cdots}
\end{aligned}
$$

"Bad" plays an iteration tree \mathcal{T}_{ξ} on M_{ξ}. "Good" plays a branch b_{ξ} through \mathcal{T}_{ξ}. We let $M_{\xi+1}$ be the direct limit model determined by b_{ξ} and proceed to the next round. For limit λ we let M_{λ} be the direct limit of M_{ξ} for preceding ξ. We start with $M_{0}=M$.

If ever a model ($M_{\xi}, \xi<\omega_{1}$) is reached which is illfounded, "bad" wins. Otherwise "good" wins.
*The definition given here is specialized to our context. The concept of iteration games is due to Martin-Steel.

We also consider iteration games were round ξ has the following form:

"Bad" plays an iteration tree \mathcal{T}_{ξ} on M_{ξ}. "Good" plays a branch b_{ξ}, giving rise to the direct limit, P_{ξ}.

Then "good" plays an extender E_{ξ} in P_{ξ}, with $\operatorname{dom}\left(E_{\xi}\right)$ within the level of agreement between M_{ξ} and P_{ξ}. We set $M_{\xi+1}=\operatorname{Ult}\left(M_{\xi}, E_{\xi}\right)$ and continue to the next round.

If ever a model (P_{ξ} or $M_{\xi}, \xi<\omega_{1}$) is reached which is illfounded, "bad" wins. Otherwise "good" wins.

We refer to this game too as an iteration game.
M is iterable if the good player has a winning strategy for each of the iteration games described above. We refer to such winning strategies as iteration strategies.

Countable elementary substructures of V are iterable in this sense (Martin-Steel).

Suppose $M=$ " δ is a Woodin cardinal", and in V there are M-generics for $\operatorname{col}(\omega, \delta)$. Let \dot{A} name a set of reals in $M^{\mathrm{col}(\omega, \delta)}$.

Work with some $x \in \mathbb{R}$. We work to define an auxiliary game, $\mathcal{A}[x]$, of ω moves, taken from M. In this game I tries to witness that $x \in$ $\dot{A}[h]$ for some generic h. II tries to witness the opposite.

The auxiliary game is played as follows:

I	\ldots	$l_{n}, \mathcal{X}_{n}, p_{n}$	$\quad \ldots$	
II			$\mathcal{F}_{n}, \mathcal{D}_{n}$	\ldots

In round n I plays

- $l=l_{n}$, a number $<n$, or $l_{n}=$ "new".
- \mathcal{X}_{n}, a set of names for reals of $M^{\text {col }(\omega, \delta)}$.
- p_{n}, a condition in $\operatorname{col}(\omega, \delta)$.

II plays

- \mathcal{F}_{n} a function from \mathcal{X}_{n} into the ordinals.
- \mathcal{D}_{n}, a function from \mathcal{X}_{n} into \{dense sets in $\operatorname{col}(\omega, \delta)\}$.

$\mathcal{A}[x]:$	I	\ldots	$l_{n}, \mathcal{X}_{n}, p_{n}$		\ldots	
	II			$\mathcal{F}_{n}, \mathcal{D}_{n}$		\ldots

If $l_{n}=$ "new" we make no requirements on I. Otherwise, we require $p_{n}<p_{l}$ and $\mathcal{X}_{n} \subset \mathcal{X}_{l}$. We further require that for every name $\dot{x} \in \mathcal{X}_{n}$:

1. p_{n} forces " $\dot{x} \in \dot{A}$ ".
2. p_{n} forces " $\dot{x}(0)=\breve{x_{0}} ", \ldots, " \dot{x}(l)=\breve{x_{l}}{ }^{\prime}$ ".
3. p_{n} belongs to $\mathcal{D}_{l}(\dot{x})$.

We make the following requirement on II:
4. For every name $\dot{x} \in \mathcal{X}_{n}, \mathcal{F}_{n}(\dot{x})<\mathcal{F}_{l}(\dot{x})$.

If there is h so that $x \in \dot{A}[h]$, I can pick a name for x, play \mathcal{X}_{n} containing this name, and play $p_{n} \in h$. Condition 4 ensures defeat for II.

On the other hand, if there is an infinite run of $\mathcal{A}[x]$ where I covered all possible names and chains of conditions, condition 4 ensures that $x \notin \dot{A}[h]$ for all generic h.

Note 1. Rather than play the sets \mathcal{X}_{n} directly, I plays their type. I plays $\kappa_{n}<\delta$, and a set u_{n} of formulae with parameters in $M \| \kappa_{n} \cup\left\{\kappa_{n}, \delta, \dot{A}\right\}$.* We take \mathcal{X}_{n} to be the set of names which satisfy all these formulae.

The fact that this still allows I enough control over her choice of \mathcal{X}_{n} has to do with our assumption that δ is a Woodin cardinal.
\mathcal{F}_{n} and \mathcal{D}_{n} are played similarly.
Observe that moves in $\mathcal{A}[x]$ are therefore elements of $M \| \delta$.

Note 2. The association $x \mapsto \mathcal{A}[x]$ is continuous: The rules governing the first $n+1$ rounds of $\mathcal{A}[x]$ depend only on $x \upharpoonright n$.

We in fact defined an association $s \mapsto \mathcal{A}[s](s \in$ $\omega^{<\omega}, \mathcal{A}[s]$ a game of $\operatorname{lh}(s)+1$ many rounds). This association belongs to M.
*By $M \| \kappa_{n}$ we mean $\vee_{\kappa_{n}}^{M}$.

Recall that g is $\operatorname{col}(\omega, \delta)$-generic/ M. We alternate between thinking of g as a generic enumeration of δ, and as a generic enumeration of $M \| \delta$.

Let $\sigma_{\text {gen }}[x, g]$, a strategy for I in $\mathcal{A}[x]$ be defined as follows:
$\sigma_{\text {gen }}[x, g]$ plays in each round the first (with respect to the enumeration g) legal move.

Note. The association $x, g \mapsto \sigma_{\text {gen }}[x, g]$ is continuous.

Lemma 1. Suppose that there exists an infinite run of $\mathcal{A}[x]$, played according to $\sigma_{\text {gen }}[x, g]$. Then $x \notin \dot{A}[g]$. (This is only useful if $x \in M[g]$.)

Proof: In playing for I, $\sigma_{\text {gen }}[g, x]$ goes over all possible names and all possible generics. (This uses the genericity of the enumeration g.) So in fact $x \notin \dot{A}[h]$ for all generic h.

We wish to phrase a similar lemma with a strategy for II, which puts x in A. To do this we have to give II additional control. We let II "shift" the play board along an even branch of an iteration tree.

The game $\mathcal{A}^{*}[x]$ is played as follows:

I	\ldots	$l_{n}, \mathcal{X}_{n}, p_{n}$	\ldots
II		$E_{2 n}, E_{2 n+1}, \mathcal{F}_{n}, \mathcal{D}_{n}$	\ldots

At the start of round n we have a model $M_{2 n}$, an embedding $j_{0,2 n}: M \rightarrow M_{2 n}$, and a position P_{n} of n rounds in $j_{0,2 n}(\mathcal{A})[x]$.

I plays $l_{n}, \mathcal{X}_{n}, p_{n}$, a legal move in $j_{0,2 n}(\mathcal{A})[x]$ following P_{n}.

II plays extenders $E_{2 n}, E_{2 n+1}$ giving rise to models $M_{2 n+1}, M_{2 n+2}$, and to an embedding $j_{2 n, 2 n+2}: M_{2 n} \rightarrow M_{2 n+2}$. (The T-predecessor of $2 n+1$ is $2 l_{n}+1$ if $l_{n} \neq$ "new" and $2 n$ otherwise.)

We let $Q_{n}=j_{2 n, 2 n+2}\left(P_{n}-, l_{n}, \mathcal{X}_{n}, p_{n}\right)$. (This is the "shifting" mentioned before.)

II plays $\mathcal{F}_{n}, \mathcal{D}_{n}$, a legal move in $j_{0,2 n+2}(\mathcal{A})[x]$ following Q_{n}.

We let $P_{n+1}=Q_{n}-, \mathcal{F}_{n}, \mathcal{D}_{n}$ and proceed to the next round.

Definition. A pivot for x is a pair \mathcal{T}, \vec{a} so that

1. \mathcal{T} is an iteration tree on M, with an even branch.
2. \vec{a} is a run of $j \operatorname{even}(\mathcal{A})[x]$.
3. For every odd branch b of \mathcal{T}, there exists some h so that
(a) h is $\operatorname{col}\left(\omega, j_{b}(\delta)\right)$-generic $/ M_{b}$; and
(b) $x \in j_{b}(\dot{A})[h]$.

Any run of $\mathcal{A}^{*}[x]$ produces \mathcal{T}, \vec{a} which satisfy conditions 1 and 2.

Lemma 2. There exists $\sigma_{\text {piv }}[x, g]$, a strategy for II in $\mathcal{A}^{*}[x]$, so that every run according to $\sigma_{\text {piv }}[x, g]$ is a pivot.
The association $x, g \mapsto \sigma_{\text {piv }}[x, g]$ is continuous.
The proof of Lemma 2 draws heavily on the techniques of Martin-Steel's "A proof of projective determinacy". The assumption that δ is a Woodin cardinal is crucial.

To sum: Have continuous associations $x \mapsto \mathcal{A}[x] ; x, g \mapsto \sigma_{\text {gen }}[x, g] ; x \mapsto \mathcal{A}^{*}[x] ;$ and $x, g \mapsto \sigma_{\mathrm{piv}}[x, g]$.
$\sigma_{\text {gen }}[x, g]$ is a strategy for I in $\mathcal{A}[x]$.

If \vec{a} is an infinite run of $\mathcal{A}[x]$ according to $\sigma_{\text {gen }}[x, g]$, then $x \notin \dot{A}[g]$.
$\sigma_{\text {piv }}[x, g]$ is a strategy for II in $\mathcal{A}^{*}[x]$.

If \mathcal{T}, \vec{a} is an infinite run of $\mathcal{A}^{*}[x]$ according to $\sigma_{\mathrm{piv}}[x, g]$, then
for every odd branch b of \mathcal{T}, there exists some h so that

- h is $\operatorname{col}\left(\omega, j_{b}(\delta)\right)$-generic $/ M_{b}$; and
- $x \in j_{b}(\dot{A})[h]$.

Σ_{2}^{1} determinacy:

Fix $A \subset \mathbb{R}$, a Σ_{2}^{1} set (say the set of reals which satisfy a given Σ_{2}^{1} statement ϕ).

Suppose there is an iterable class model M with a Woodin cardinal δ. Suppose that (in \checkmark) there is g which is $\operatorname{col}(\omega, \delta)$-generic/ M.

We intend to prove that (in \vee) $G_{\omega}(A)$ is determined.

Let $\dot{A} \in M$ name A. More precisely, \dot{A} names the set of reals of $M^{\mathrm{col}(\omega, \delta)}$ which satisfy ϕ in $M^{\mathrm{Col}(\omega, \delta)}$.

We have $x \mapsto \mathcal{A}[x], x, g \mapsto \sigma_{\text {gen }}[x, g]$, etc. as before.

Let G be the following game, defined and played inside M :

I	x_{0}	$a_{0-\mathrm{I}}$		$a_{1-\mathrm{I}}$	x_{2}

I and II alternate playing natural numbers, producing together $x=\left\langle x_{0}, x_{1}, \ldots\right\rangle \in \mathbb{R}$. In addition they play moves $a_{0-\mathrm{I}}, a_{0-\mathrm{II}}, \ldots$ in $\mathcal{A}[x]$.

II is the closed player; she wins if she can last all ω moves. Otherwise I wins.
G is a closed game, hence determined. A winning strategy exists in M.

Case 1: I wins G. Fix $\Sigma \in M$ a winning strategy for I (the open player).

We wish to show that I wins $G_{\omega}(A)$ in V. Let us play $G_{\omega}(A)$ against an imaginary opponent. We describe how to play, and win.

We construct a run $x \in \mathbb{R}$ of $G_{\omega}(A)$. At the same time we construct \mathcal{T}, \vec{a}, a run of $\mathcal{A}^{*}[x]$.

The participants in our construction are:

- The imaginary opponent: playing x_{n} for odd n.
- The strategy $\sigma_{\text {piv }}[g, x]$: playing for II in $\mathcal{A}^{*}[x]$.
- The strategy Σ and its shifts along the even branch of \mathcal{T} : playing x_{n} for even n and playing for I in $\mathcal{A}^{*}[x]$ (i.e. playing for I in shifts of $\mathcal{A}[x]$).

We obtain $x \in \mathbb{R}$ and \mathcal{T}, \vec{a} a run of $\mathcal{A}^{*}[x]$ according to $\sigma_{\text {piv }}[x, g]$.

We must check that x belongs to A.

Note that x, \vec{a} is an infinite run of j even (G) according to $j_{\text {even }}(\Sigma)$.

Now Σ is a strategy for the open player in G. So there are no infinite runs according to Σ. But there is an infinite run according to $j_{\text {even }}(\Sigma)$. Thus M even is illfounded.
M is iterable. So there exists some branch b of \mathcal{T} so that M_{b} is wellfounded. b must be an odd branch.

By Lemma 2, \mathcal{T}, \vec{a} is a pivot for x. Thus there is h so that

- h is $\operatorname{col}\left(\omega, j_{b}(\delta)\right)$-generic $/ M_{b}$ and
- $x \in j_{b}(\dot{A})[h]$.

This means that in $M_{b}[h], x$ satisfies the Σ_{2}^{1} statement ϕ.

By absoluteness, x satisfies ϕ in V. (This uses the wellfoundedness of M_{b}.)

So $x \in A$ as required.
\square (Case 1.)

