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Abstract. We present a characterization of supercompactness measures for ω1 in L(R),

and of countable products of such measures, using inner models. We give two applications

of this characterization, the first obtaining the consistency of δ
1
3 = ω2 with ZFC+AD

L(R),

and the second proving the uniqueness of the supercompactness measure over Pω1
(λ) in

L(R) for λ > δ
2
1.

Starting with the work of Steel [13] it became clear that there is a deep con-
nection between inner model theory, particularly for minimal inner models with
ω Woodin cardinals, and the study of L(R) under determinacy. The connection

centers on the discovery that HODL(R) is a fine structural inner model, in the
exact sense of the notion developed previously through the work of [3, 7, 8] up
to Θ,1 and in the more general sense of [14], that puts iteration strategies as

well as extenders into the models, at Θ. To be precise, HODL(R) is the direct
limit of all countable, iterable inner models with ω Woodin cardinals, together
with an iteration strategy for this direct limit. This fact was used extensively by
Woodin and Steel, among other things to study measures and ultrafilters: Steel
used the directed system to show that for every regular κ < Θ, the ω–club filter
over κ is an ultrafilter in L(R). Woodin used the system to show that ω1 is <Θ–
supercompact in L(R) (meaning that there is a sequence 〈µλ | λ < Θ〉 ∈ L(R)
so that µλ is a supercompactness measure over Pω1

(λ) for each λ) and huge to
κ for each measurable κ below the largest Suslin cardinal.

Here we expand the connection in two ways. We use the directed system
to obtain an ultrafilter over [Pω1

(λ)]<ω1 , and to prove the uniqueness of the
supercompactness measure over Pω1

(λ) for λ > δ
2
1.

Recall that ω1 is λ–supercompact if there is a fine, normal, countably com-
plete ultrafilter over Pω1

(λ). The ultrafilter, or more precisely its characteristic
function, is a supercompactness measure over Pω1

(λ). Solovay derived the
existence of such a measure from the determinacy of infinite games on ordinals
below λ. He defined a filter Fλ, essentially the club filter over Pω1

(λ), and used
determinacy for infinite games on ordinals to show that it is an ultrafilter, and
hence a supercompactness measure. For λ up to the largest Suslin cardinal,
Harrington–Kechris [4] proved the determinacy of the ordinal games relevant to
Solovay’s argument from AD. In L(R), δ

2
1 is the largest Suslin cardinal, and it

followed therefore that in L(R) under AD, ω1 is λ–supercompact for each λ < δ
2
1.

This material is based upon work supported by the National Science Foundation under
Grant No. DMS-0094174.

1By Θ and δ
2
1 here and throughout the paper we mean ΘL(R) and (δ2

1)L(R).

1
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With a very elegant argument that uses just ZF+DCω Woodin [16] proved that
any supercompactness ultrafilter F∗ over Pω1

(λ) must contain Solovay’s filter
Fλ. If Fλ is itself an ultrafilter over Pω1

(λ) then it follows that F∗ = Fλ. Thus,
using Harrington–Kechris [4], Fλ is the unique supercompactness ultrafilter over
Pω1

(λ) in L(R), for λ < δ
2
1.

In Section 4 we use the directed system of inner models to construct a super-
compactness ultrafilter over Pω1

(λ) in L(R), and adapt the argument of Woodin
[16] to apply to this ultrafilter instead of Solovay’s ultrafilter Fλ. The construc-
tion works for all λ < Θ, and we therefore obtain:

Theorem. For each λ < ΘL(R) there is a unique supercompactness measure
over Pω1

(λ) in L(R).

This extends the uniqueness proved in Woodin [16]. (Existence had already
been known up to Θ, see the first paragraph above.)

Let U denote the set Pω1
(ωω). In Section 3 we use the directed system to

obtain an ultrafilter over [U ]<ω1 , that is over the set of increasing countable
sequences of countable subsets of ωω. We prove for this ultrafilter the same
kind of boundedness and uniformization results that Becker [2] proves for the
supercompactness ultrafilter over U , and use it to force over L(R) to collapse ωω

to ω1 without adding reals and without collapsing ωω+1. The resulting extension
satisfies δ

1
3 = ω2. Further forcing as in Steel–Van Wesep [15] and Woodin [17]

adds the axiom of choice, leading to:

Theorem (Neeman, Woodin). ZFC+AD
L(R) is consistent with δ

1
3 = ω2.

Similar results hold with higher levels of complexity, and in fact every Suslin
cardinal of L(R) can be collapsed to ω1 without adding reals and without col-
lapsing its successor. These results are due independently to Woodin and the
author. It is not known whether similar uses of ultrafilters can be made to force
over L(R) and collapse ordinals to ω2, rather than to ω1. A positive answer
would be very interesting, as it could lead to a model in which δ

1
3 = ω3.

In Section 2 we use the directed system to obtain an ultrafilter over ω1, and an
ultrafilter over [ω1]

<ω1 . The results there are not new, but we prove them in a
way that very easily carries over to the settings of the later sections. The section
can be read without knowledge of fine structure, and its point is to illustrate
the main ideas that come up repeatedly in the constructions of ultrafilters in
Sections 3 and 4.

§1. Preliminaries. We work throughout the paper under the following large
cardinal assumption:

For every real u, M ♯
ω(u) exists.

M ♯
ω(u) is the minimal iterable fine structural inner model over u with a sharp for

ω Woodin cardinals. Our use of the large cardinals of M ♯
ω(u), and of consequences

of its fine structural properties, is explained below.

Remark 1.1. Our large cardinal assumption is slightly more than follows from
determinacy in L(R). But all the proofs in the paper can be refined to only use
the models that can be obtained from determinacy in L(R), and our results are

therefore theorems of ZFC+AD
L(R).
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By a model with a sharp for ω Woodin cardinals we mean a model of the form
M = (VM

δ )♯ where δ, which we denote δ(M), is the supremum of ω Woodin
cardinals of M . We often confuse between the countable model with the sharp
and the class model obtained by iterating the sharp through the ordinals, that
is L(VM

δ ).

Let H be col(ω,<δ)–generic over M . Define R∗[H] to be
⋃

α<δ RM [H↾α]. We
refer to L(R∗[H]) as the symmetric collapse of M induced by H, and to
R∗[H]—which is equal to RL(R∗[H])—as the reals in the symmetric collapse

of M induced by H. A set of reals R can be realized as the reals of a

symmetric collapse of M if it is equal to R∗[H] for some H which is col(ω,<δ)–
generic over M . Our main use of the Woodin cardinals of M comes in through
the following theorem. For a proof of the theorem see Neeman [9].

Theorem 1.2 (Steel, Woodin). Let M be an iterable countable model with a
sharp for ω Woodin cardinals. Then there exists, in a generic extension of V
collapsing R to ω, a model P with an elementary embedding π : M → P , so that
RV can be realized as the reals of a symmetric collapse of P .

Moreover, given any ordinal τ < δ(M), one can arrange that crit(π) > τ .

The embedding π in Theorem 1.2 sends Silver indiscernible for M to Silver
indiscernibles for P , which, using the fact that R = RV can be realized as the
reals of a symmetric collapse of P , are Silver indiscernibles for R. The following
is therefore a direct consequence of Theorem 1.2:

Corollary 1.3. Let M be an iterable countable model with a sharp for ω
Woodin cardinals. Let x belong to M‖ δ(M) and let α1 < · · · < αk be Silver
indiscernibles for M . Let α∗

1 < · · · < α∗
k be Silver indiscernibles for R. Let

ϕ(v, u1, . . . , uk) be a formula.
Suppose that ϕ[x, α1, . . . , αk] is forced to hold in all symmetric collapses of M .

Then ϕ[x, α∗
1, . . . , α

∗
k] holds in L(R).

Note that, using the homogeneity of the poset col(ω,<δ), ϕ[x, α1, . . . , αk] is
forced to hold in all symmetric collapses of M iff it is forced to hold in some
symmetric collapses of M .

The remaining results in this section summarize our use of fine structure. They
are not needed for the material in Section 2. Every model below is fine structural
over a real. Recall that a tree order is an order T on an ordinal α so that:

1. T is a suborder of <↾ α.
2. For each η < α, the set {ξ | ξ T η} is linearly ordered by T .
3. For each ξ so that ξ + 1 < α, the ordinal ξ + 1 is a successor in T .
4. For each limit ordinal λ < α, the set {ξ | ξ T λ} is cofinal in λ.

Definition 1.4. A (maximal, almost normal, fine structural) iteration tree

T of length α on a model M consists of a tree order T on α and a sequence 〈Eξ |
ξ +1 < α〉, so that the following conditions hold (for some 〈Mξ, jζ,ξ | ζ T ξ < α〉,
which is determined uniquely by the conditions):

1. M0 = M .
2. For each ξ so that ξ + 1 < α, Eξ is an extender on the sequence of Mξ.
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3. Mξ+1 = Ult(M̄,Eξ) and jζ,ξ+1 : M̄ → Mξ+1 is the ultrapower embedding,
where ζ is the T–predecessor of ξ + 1 and M̄ is the largest initial segment
of Mζ to which Eξ can be applied.

4. For limit λ < α, Mλ is the direct limit of the system 〈Mζ , jζ,ξ | ζ T ξ T λ〉,
and jζ,λ : Mζ → Mλ for (all sufficiently large) ζ T λ are the direct limit
embeddings.

5. The remaining embeddings jζ,ξ for ζ T ξ < α are obtained by composition.
6. The sequence 〈lh(Eξ) | ξ +1 < α〉 is increasing on every interval [β, γ] with

β the T–predecessor of γ + 1.

The iteration tree T is normal if the entire sequence 〈lh(Eξ) | ξ + 1 < α〉 is
increasing.

Abusing notation slightly we write 〈Mξ, Eξ, jζ,ξ | ζ T ξ < α〉 for the iteration
tree T . There is a double abuse here: if α is a successor then Eα−1 is not defined;
and Mξ and jζ,ξ are not part of the tree T , but rather are determined by T and
M . The ultrapowers in item (3) are fine structural, see Andretta–Neeman–Steel
[1] for more details. If M̄ is a strict initial segment of Mζ then jζ,ξ+1 does not
embed the entire model Mζ into Mξ, and we say that ξ + 1 is a drop point

of T . An iteration tree T of successor length β + 1, with a final model Mβ , is
proper if there are no drop points on the branch [0, β]T . In this case the tree
gives rise to an embedding j0,β : M → Mβ .

The creation of an iteration tree on M is usually divided into two tasks, one
involving the choice of Eξ and the T -predecessor of ξ+1, and the other involving
the choice of the T–branch [0, λ]T = {ζ | ζ T λ} for each limit λ. Choices for the
former are usually dictated very directly by circumstances. Choices for the latter
generally are not directly dictated, and affect the wellfoundedness of the models
along the tree. A mechanism for making these choices is called an iteration
strategy for M . More precisely: a potential iteration strategy is a partial function
Σ which assigns cofinal branches to iteration trees of limit lengths. An iteration
tree T is consistent with Σ if [0, λ]T = Σ(T ↾ λ) for every limit λ < lh(T ). Every
model on an iteration tree on M consistent with Σ is a Σ–iterate of M . Σ is
an ω1 + 1 iteration strategy for M if:

1. The domain of Σ includes all trees of limit lengths ≤ ω1, consistent with
Σ, on Σ–iterates of M .

2. All Σ–iterates of M are wellfounded.

A countable model M is ω1+1 iterable if there is an ω1+1 iteration strategy for
M . Henceforth we write iterable instead of ω1 + 1 iterable, and similarly with
iteration strategies. An iteration strategy Σ helps in the creation of iteration
trees of lengths up to and including ω1 + 1. This is enough for all uses on
countable models.

Fact 1.5. Let M be an iterable countable model so that no α ≤ ON ∩ M is
Woodin with respect to all functions definable over M with parameters, and so
that no strict initial segment of M has a sharp for ω Woodin cardinals. (M ♯

ω(u),
its iterates, and many of its initial segments all fall into this category.) Then
M has a unique iteration strategy ΣM , and this strategy is characterized by
the condition that ΣM (T ) = b iff the direct limit of the models of T along b is
iterable.
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The following facts are immediate consequences of Fact 1.5:

Fact 1.6. Let M satisfy the assumptions of Fact 1.5. Let T be an iteration
tree on M , consistent with ΣM , leading to a final model M∗. Then an iteration
tree U on M∗ is consistent with ΣM∗ iff T ⌢U is consistent with ΣM .

Fact 1.7. Let M̄ and M satisfy the assumptions of Fact 1.5, with M̄ = M‖ τ
for some cardinal τ of M . Then every iteration tree on M̄ is also an iteration
tree on M , and an iteration tree T on M̄ is consistent with ΣM̄ iff it is consistent
with ΣM .

When M has a sharp for ω Woodin cardinals, ΣM does not belong to L(R).
But we shall see below that many restrictions of the strategy do.

η is a cut point of M if M has no extenders indexed at or above η with
critical points below η. A proper iteration tree 〈Mξ, Eξ, jζ,ξ | ζ T ξ < α + 1〉 of
successor length α+1 on M acts below η if every element of Mα is definable in
Mα with parameters in range(j0,α) ∪ j0,α(η). (Using the almost normality of T
this implies that T is a tree on M‖ η′ where η′ is the next cut point of M above
η.) The end model of such a tree is a proper iterate of M acting below η.

Fact 1.8. Let M = M ♯
ω(u). Let 〈Mξ, Eξ, jζ,ξ | ζ T ξ < α + 1〉 be a proper

iteration tree on M , consistent with ΣM , and acting below η. Let N be the final
model of the tree. Then N is uniquely determined by (M and) N‖ j0,α(η).

Let η be a cut point of M . By Σ↾ η we mean the restriction of Σ to the
smallest domain which includes all trees leading to proper countable Σ–iterates
of M acting below η.

If M is a model of the form (VM
δ )♯ where δ is the supremum of ω Woodin

cardinals of M then we use δ0(M) to denote the first Woodin cardinal of M ,
and use κ0(M) to denote the first cardinal strong to δ0(M) in M . If M does not
reach a sharp for ω Woodin cardinals then we set κ0(M) = ON ∩ M .

Fact 1.9. There is a function Γ, definable in L(R), so that for every model M
satisfying the assumptions in Fact 1.5, and every iteration tree T in the domain
of ΣM ↾κ0(M):

1. 〈M, T 〉 ∈ dom(Γ).
2. Γ(M, T ) = ΣM (T ).

In particular, ΣM ↾κ0(M) belongs to L(R), and is definable in L(R) from M .

Fact 1.10. Let M satisfy the assumptions in Fact 1.5. Call η locally Woodin

in M if η is a cardinal of M and Woodin in L(M‖ η). Let η∗ be the first mea-
surable limit of locally Woodin cardinals of M . (η∗ is much smaller than κ0(M),
in fact smaller than the first cardinal τ of M which is Woodin in L((M‖ τ)♯).)
Then ΣM ↾ η∗ is Π1

2(M) in the codes, uniformly in M .

For M = M ♯
ω(u) the restriction ΣM ↾ δ0(M) does not belong to L(R). Facts

1.9 and 1.10 thus sit at the two extreme ends of the range of iteration strategies
in L(R).

Fact 1.11. Let M satisfy the assumptions of Fact 1.5. Let T1 and T2 be
two proper countable iteration trees on M , consistent with ΣM , leading to end
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models M∗
1 and M∗

2 , and embeddings j1 : M → M∗
1 and j2 : M → M∗

2 . Suppose
that M∗

1 = M∗
2 . Then j1 = j2.

Fact 1.11 is a consequence of the Dodd–Jensen lemma, which states that every
iteration embedding from M to M∗ is pointwise minimal among elementary
embeddings from M into M∗. In our context it is due to Steel [12].

Fact 1.12. Let M satisfy the assumptions of Fact 1.5. Let N1 and N2 be
proper, countable ΣM–iterates of M . Then there exists a countable model P
which is both a normal proper ΣN1

–iterate of N1 and a normal proper ΣN2
–

iterate of N2. By Fact 1.6, P is a ΣM–iterate of M . If η is a cut point of M and
N1 and N2 are ΣM–iterates of M acting below η, then so is P .

The same is true with the two models N1 and N2 replaced by countably many
models, Ni, i < ω.

P

N1

πN1,P
=={{{{

N2

πN2,P
aaCCCC

M
πM,N1

aaCCCC πM,N2

=={{{{

Diagram 1. Fact 1.12

Each of πN1,P ◦ πM,N1
and πN2,P ◦ πM,N2

is a ΣM–iteration embedding. By
Fact 1.11 the two embeddings are equal, and therefore Diagram 1 commutes.

Fact 1.12 is a consequence of the comparison argument, a central tool in inner
model theory and one of the most important uses of fine structure. The fact is
also central to this paper. It allows defining the directed systems D(η) below,
and these systems are the basis for the entire paper.

For each countable model M let ΓM be the function defined by ΓM (T ) = b iff
T is an iteration tree of countable limit length on M , b = Γ(M, T ), and b is a
cofinal branch through T . Γ here is taken from Fact 1.9.

Definition 1.13. M is nice to η if all proper ΓM–iterates of M acting below
η are wellfounded, and Facts 1.6, 1.7, 1.11, and 1.12 hold for trees on M acting
below η with Σ replaced by Γ.

If M satisfies the assumptions of Fact 1.5 and η ≤ κ0(M) then ΓM↾ η = ΣM ↾ η
by Fact 1.9, and M is therefore nice to η. Definition 1.13 in this case abstracts
the properties of ΣM ↾ η needed for Definition 1.14 below. Notice that L(R) can
tell which models M are nice to η and identify ΓM for these models, but it cannot
tell which models are iterable or identify ΣM .

Definition 1.14. Let M be fine structural over u, let η be a cut point of M ,
and suppose that M is nice to η. Define D(η) to be the set of proper, countable
ΓM–iterates of M acting below η. For N,N∗ ∈ D(η) with N∗ a ΓN–iterate of

N , define π
(η)
N,N∗ to be the unique iteration embedding. Uniqueness follows from

Fact 1.11, or more precisely the inclusion of this fact in Definition 1.13. Define
S(η) to be the system 〈N,πN,N∗ | N,N∗ ∈ D(η) and N∗ is a ΓN–iterate of N〉.
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This system is directed, because of the inclusion of Fact 1.12 in Definition 1.13.

Let M
(η)
∞ be the direct limit of S(η), and let π

(η)
N,∞ for N ∈ D(η) be the direct

limit embeddings.

Fact 1.15. For M = M ♯
ω(u) and η = κ0(M), the direct limit M

(η)
∞ agrees

with HODL(R)(u) up to δ
2
1, and π

(η)
M,∞(η) = δ

2
1.

The fact is due to Steel [13] and [11, §8], where it was used to settle various
classical questions concerning L(R) under AD. Among other things Steel showed

that HODL(R) satisfies the GCH, and that for κ < Θ there is no sequence of κ+

distinct subsets of κ in L(R).
To reach beyond δ

2
1 one has to take η = δ0(M) and replace ΓM by ΣM in

Definition 1.14 above. The directed system in this case does not belong to L(R).
By approximating the system inside L(R) Woodin (see [14]) proved that its direct

limit agrees with HODL(R)(u) up to Θ, and that π
(δ0(M))
M,∞ (δ0(M)) = Θ. Woodin

also characterized cardinals of L(R) in terms of their properties in HODL(R)(u) =

M
(δ0(M))
∞ (u). Among other things he showed that:

Fact 1.16. ωω is equal to the first locally Woodin cardinal of M
(δ0(M))
∞ .

Remark 1.17. Let τ be a cardinal cut point of M so that M‖ τ is nice. Then

π
(η)
M,∞↾ τ and M

(η)
∞ ‖ supπ

(η)
M,∞

′′τ depend only on (η and) M‖ τ . In fact they are

equal to π
(µ)
N,∞ and N

(µ)
∞ respectively, where N = M‖ τ and µ = min(τ, η).

§2. An ultrafilter over ω1. Let M be a countable model with, as least, a
measurable cardinal.

An iteration tree T on M is linear if the T–predecessor of ξ + 1 is ξ for all ξ.
Models on linear iteration trees on M are linear iterates of M . M is linearly

iterable if all its countable linear iterates are wellfounded.
Let a(M) be the first measurable cardinal of M . Assuming that M is linearly

iterable define CM = {a(P ) | P is a countable linear iterate of M}. Notice that
M is countable and all iterations here are countable, so that CM ⊂ ωV

1 .

Claim 2.1. Let Mi, i < ω, be countable linearly iterable models, each with at
least a measurable cardinal. Then there is a countable linearly iterable model M∗

with a measurable cardinal so that CM∗ ⊂
⋂

i<ω CMi
.

Proof. Let u be a real coding the sequence 〈Mi | i < ω〉, and, using the
large cardinal assumption in Section 1, take M∗ to be an iterable model with a
measurable cardinal and with u ∈ M∗. ⊣

Claim 2.1 shows that the collection {CM | M is a countable linearly iterable
model with a measurable cardinal} generates a countably complete filter over
ω1. Let F denote this filter. The filter is defined from operations on countable
models which can be identified in L(R). Thus F ∈ L(R).

Claim 2.2. F is an ultrafilter in L(R).

Proof. Let X ⊂ ω1 belong to L(R). Every set in L(R) is definable from a real
and finitely many indiscernibles for R. Fix then some real u and indiscernibles



8 ITAY NEEMAN

α∗
1 < · · · < α∗

k for R so that ξ ∈ X iff L(R) |= ϕ[ξ, u, α∗
1, . . . , α

∗
k]. Let M = M ♯

ω(u)
and let α1 < · · · < αk be indiscernibles for M .

Suppose first that ϕ[a(M), u, α1, . . . , αk] is forced to hold in all symmetric col-
lapses of M . We show that CM ⊂ X. Let ξ ∈ CM , and fix a countable linear
iterate P of M so that ξ = a(P ). Let j : M → P be the iteration embedding. By
elementarity, ϕ[a(P ), u, j(α1), . . . , j(αk)] is forced to hold in all symmetric col-
lapses of P . Since a(P ) = ξ < δ(P ) and j(α1), . . . , j(αk) are Silver indiscernibles
for P , it follows from Corollary 1.3 that L(R) |= ϕ[ξ, u, α∗

1, . . . , α
∗
k], and hence

ξ ∈ X.
Suppose next that ϕ[a(M), u, α1, . . . , αk] is not forced to hold in all symmetric

collapses of M . Then by the homogeneity of col(ω,<δ(M)), the formula is forced
to fail in all the symmetric collapses, and an argument similar to the one in the
previous paragraph shows that CM ⊂ ω1 − X. ⊣

It is easy to check that in fact F is the club filter on ω1. Steel [11, Theorem
8.26] had already used the directed system of inner models to show that the
club filter on ω1 is an ultrafilter in L(R) (and in any case this is a well known
consequence of AD). The point here is not to prove that the club filter is an
ultrafilter, but rather to construct an ultrafilter over a set U through a very
general scheme: assigning to each iterable model M some a(M) ∈ U , setting
CM = {a(P ) | P is an iterate of M}, and considering the filter generated by the
sets CM . This scheme easily adapts to produce ultrafilters over many sets U , as
we see below and in the next section.

For a countable, linearly iterable M with a measurable limit of measurable
cardinals, let κ(M) be the first measurable limit of measurable cardinals in M ,
let α(M) be the order type of the set of measurable cardinals of M below κ(M),
and let 〈τξ(M) | ξ < α(M)〉 enumerate the measurable cardinals of M below
κ(M) in increasing order.

Set a∗(M) = 〈τξ(M) | ξ < α(M)〉 and set C∗
M = {a∗(P ) | P is a countable

linear iterate of M}. C∗
M is then a subset of [ω1]

<ω1 . The proofs of Claims 2.1
and 2.2 carry over to these new settings, and show that the collection {CM |
M is a countable linearly iterable model with a measurable limit of measurable
cardinals} generates a countably complete ultrafilter F∗ over [ω1]

<ω1 in L(R).

Claim 2.3. Let f : [ω1]
<ω1 → ω2

L(R) belong to L(R). Then there is X ∈ F∗

so that f↾ X is bounded below ω2.

By ω2, and more generally ωξ, here and below we mean ωξ
L(R).

Proof of Claim 2.3. For each real y let y+ be the first Silver indiscernible
for y above ω1. The ordinals y+, y ∈ R, are cofinal in ω2 = ω2

L(R). A real x
codes an ordinal η < ω2 if x has the form y♯ and η = y+. Let U = {〈s, x〉 |
s ∈ [ω1]

<ω1 and x codes an ordinal above f(s)}. Let u, k < ω, and ϕ be
such 〈s, x〉 ∈ U iff L(R) |= ϕ[x, s, u, α∗

1, . . . , α
∗
k] where α∗

1 < · · · < α∗
k are Silver

indiscernibles for R. Let M = M ♯
ω(u). Let α1 < · · · < αk be Silver indiscernibles

for M . Define A ⊂ R by setting x ∈ A iff there is a countable linear iterate
P of M , with iteration embedding j, and a symmetric collapse of P in which
ϕ[x, a∗(P ), u, j(α1), . . . , j(αk)] holds true. Note that:

1. A is Σ1
2.
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2. x ∈ A implies that x codes an ordinal. (In fact x codes an ordinal above
f(s) for some s ∈ C∗

M .)
3. For every s ∈ C∗

M there is x ∈ A which codes an ordinal above f(s).

The second and third conditions are immediate consequences of Corollary 1.3.
The first follows from the definition of A noting that the set of countable linear
iteration trees on M is Π1

1(M) in the codes. From conditions (1) and (2) it
follows that the set of ordinals coded by reals in A is bounded below ω2. From
this and condition (3) it follow that f↾ C∗

M is bounded below ω2. ⊣

Definition 2.4. Call X ⊂ [ω1]
<ω1 nice if:

1. X belongs to F∗.
2. X is closed, meaning that if s ∈ ω<ω1

1 has limit length, and s↾α ∈ X for
cofinally many α < lh(s), then s ∈ X.

3. For each s ∈ X, {r | s⌢r ∈ X} belongs to F∗.

Claim 2.5. Each C∗
M is nice.

Proof. C∗
M belongs to F∗ by definition, and condition (2) can be proved by

composing iterations.
As for condition (3), let s ∈ C∗

M and let Q be a linear iterate of M so that
s = a(Q). Let µ ∈ Q be a measure on κ(Q) and let Q∗ = Ult(Q,µ). Let
h be col(ω, κ(Q))–generic over Q∗. Then κ(Q∗) is still a measurable limit of
measurable cardinals in Q∗[h], and by composing iterations of Q∗[h] with the
iteration leading from M to Q it is easy to check that r ∈ C∗

Q∗[h] ⇒ s⌢r ∈ C∗
M ,

and therefore {r | s⌢r ∈ C∗
M} ∈ F∗. ⊣

Let P be the poset consisting of pairs 〈s,X〉 where s ∈ [ω1]
<ω1 , X ⊂ [ω1]

<ω1 ,
and {r | s⌢r ∈ X} is nice, ordered by the condition 〈s′,X ′〉 ≤ 〈s,X〉 iff s′

extends s, X ′ ⊂ X, and s′ ∈ X. P belongs to L(R).
Definition 2.4 is such that if X is nice and s ∈ X, then {r | s⌢r ∈ X} is nice.

From this, the countable closure in Definition 2.4, and the countable closure of
F∗, it follows that P is countably closed. Forcing with P over L(R) adds a fast

club in ω1, that is a club C which is contained in any club subset of ω1 in L(R).
By countable closure the forcing does not collapse ω1. Moreover, using Claim
2.3 one can show that forcing with P over L(R) does not collapse ω2 either.

In the next section we use a similar forcing to add, over L(R), a fast club
in Pω1

(ωω), thereby collapsing ωω to ω1, without collapsing ω1 and without
collapsing ωω+1.

§3. An ultrafilter over Pω1
(ωω). Recall that η is locally Woodin in M if

η is a cardinal of M and η is Woodin in L(M‖ η). Let K be the set of countable
models M which are nice to their first locally Woodin cardinal (see Definition
1.13). For M ∈ K let η(M) be the least locally Woodin cardinal of M , and
define:

1. a(M) = πM,∞
′′η(M).

2. CM = {a(P ) | P is a proper, countable, ΓM–iterate of M acting below
η(M)}.
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πM,∞ here is the direct limit embedding of the system S(η(M)) of Definition 1.14.
We omit the superscript (η(M)) throughout. All iterates of each model M are
proper, countable, and acting below η(M). We omit mention of this below.

K is not empty, and indeed the models M ♯
ω(u), u ∈ R, are all in K. K,

M 7→ a(M), and M 7→ CM all belong to L(R). πM,∞(η(M)) is equal to ωω, see
Fact 1.16. CM is therefore a subset of Pω1

(ωω). Our plan is to show that the
sets CM , M ∈ K, generate a supercompactness measure over Pω1

(ωω) in L(R).

Claim 3.1. Let M ∈ K. Then:

1. If ξ ∈ a(M) then ξ ∈ a(P ) for every ΓM–iterate P of M .
2. For every ξ ∈ ωω there is an iterate M∗ of M so that a ∈ CM∗ =⇒ ξ ∈ a.
3. For every countable a ⊂ ωω there is an iterate P of M so that a ⊂ a(P ).

Proof. Condition (1) follows immediately from the commutativity of the
system S. For condition (2), fix ξ ∈ ωω and using the fact that πM,∞(η(M)) = ωω

find a ΓM–iterate M∗ of M so that ξ ∈ πM∗,∞
′′η(M∗). Then by condition (1),

ξ ∈ a(P ) for every ΓM∗–iterate P of M∗. Finally, for condition (3), fix for each
ξ ∈ a a ΓM–iterate Mξ of M so that ξ ∈ a(Mξ), and using Fact 1.12 find P
which is a ΓMξ

–iterate of Mξ for each ξ ∈ a. ⊣

Lemma 3.2. Let M ∈ K. Let u ∈ R be Turing above a real coding M . Let
P = M ♯

ω(u). Then a(P ) ∈ CM .

Proof. Using condition (3) of Claim 3.1 construct sequences 〈Pn | n < ω〉
and 〈Mn | n < ω〉 so that:

(i) P0 = P and Pn+1 is an iterate of Pn for each n, and similarly for M .
(ii) a(Pn+1) ⊃ a(Mn), and a(Mn+1) ⊃ a(Pn+1).

Let P ∗ be the direct limit of the system 〈Pn, πPn,Pm
| n < m < ω〉, and define

M∗ similarly. Then by condition (ii), πP∗,∞
′′η(P ∗) = πM∗,∞

′′η(M∗), in other
words a(P ∗) = a(M∗). Let P̄ = P‖ η(P )+ and let P̄ ∗ = P ∗‖ η(P ∗)+. By Remark
1.17, a(P̄ ) = a(P ) and a(P̄ ∗) = a(P ∗).

Let ϕ be a formula so that L(R) |= ϕ[M,Q] iff there is a ΓM–iterate M∗ of M so
that a(M∗) = a(Q). Such a formula exists since the various directed systems are
definable in L(R). We showed that L(R) |= ϕ[M, P̄ ∗]. By Corollary 1.3, ϕ[M, P̄ ∗]
holds in a symmetric collapse of P ∗. Using the elementarity of the iteration
embedding πP,P∗ , ϕ[M, P̄ ] holds in a symmetric collapse of P . (Note that M
is coded by a real in P , and is not moved by any of the embeddings.) Using
Corollary 1.3, ϕ[M, P̄ ] holds in L(R), and therefore a(P ) = a(P̄ ) ∈ CM . ⊣

Corollary 3.3. The collection CM , M ∈ K, has the countable intersection
property.

Proof. Let Mn, n < ω, belong to K. Let u be a real which codes the
sequence 〈Mn | n < ω〉, and let P = M ♯

ω(u). By the previous lemma, a(P ) ∈⋂
n<ω a(Mn). ⊣

Let F be the filter over Pω1
(ωω) generated by the sets CM , M ∈ K.

Claim 3.4. F is an ultrafilter in L(R).

Proof. Similar to the proof of Claim 2.2. ⊣
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Claim 3.5. F is normal in L(R).

Proof. Let f : Pω1
(ωω) → ωω be a function so that f(a) ∈ a for each a 6= ∅.

We have to show that f is constant on a set in F .
Fix a real u, k < ω, and a formula ψ, so that

f(a) = β iff L(R) |= ψ[a, β, u, α∗
1, . . . , α

∗
k]

where α∗
1 < · · · < α∗

k are Silver indiscernibles for R. For simplicity assume that
k = 0, so that the indiscernibles can be omitted below. For convenience below
we use M̄ to abbreviate M‖ η(M)+, and similarly with P .

Let M = M ♯
ω(u). Since f(a(M)) ∈ a(M) = πM,∞

′′η(M), there is γ < η(M) so
that f(a(M)) = πM,∞(γ). By Remark 1.17 it follows that ψ[a(M̄), πM̄,∞(γ), u]

holds in L(R). This can be written as a statement ϕ[M̄, γ, u] about M̄ , γ, and
u. By Corollary 1.3 this statement holds in a symmetric collapses of M .

Fix now a ΓM–iterate P of M . By the elementarity of the embedding πP,M ,
ϕ[P̄ , πM,P (γ), u] holds in a symmetric collapse of P . Using Corollary 1.3 it follows
that f(P̄ ) = πP̄ ,∞(πM,P (γ)). By Remark 1.17 then f(a(P )) = πP,∞(πM,P (γ)),
hence f(a(P )) = πM,∞(γ) = a(M).

We showed that f(a(P )) = f(a(M)) for each ΓM–iterate P of M , in other
words f(a) = f(a(M)) for each a ∈ CM . Thus f is constant on CM . ⊣

Corollary 3.6. F is a supercompactness measure over Pω1
(ωω) in L(R). ⊣

The existence of a supercompactness measure over Pω1
(ωω) in L(R) under

AD was proved by Harrington–Kechris [4]. Becker [2] showed that the measure
is unique, and analyzed it more deeply, obtaining boundedness, coding, and
uniformization results on measure one sets for functions on Pω1

(ωω). One can of
course obtain the same results from the inner models construction given above,
but we leave this as a pleasant exercise for the reader. Here instead we pass to the
space [Pω1

(ωω)]<ω1 . With just a small modification to the construction we get
an ultrafilter over this space, and we shall prove boundedness and uniformization
results for this ultrafilter.

Let K∗ be the set of countable models M which are nice to their first measur-
able limit of locally Woodin cardinals. For M ∈ K∗ let η∗(M) be the first mea-
surable limit of locally Woodin cardinals of M , let α(M) be the order type of the
set of locally Woodin cardinals of M below η∗(M), and let 〈ηξ(M) | ξ < α(M)〉
enumerate the locally Woodin cardinals of M below η∗(M) in increasing order.

For each β < α(M) let νβ = supξ<β ηξ and let gβ be col(ω, νβ
+)–generic

over M . M [gξ] is fine structural over a real coding M‖ νβ
+, and ηβ is the

first locally Woodin cardinal of M [gβ ]. Define aβ(M) = a(M [gβ ]), that is

aβ(M) = π
(ηβ)

M [gβ ],∞
′′ηβ . (The definition is independent of the particular choice

of the generic gβ .) Since ηβ is the first locally Woodin cardinal of M [gβ ], aβ(M)
is a subset of ωω. Set now:

1. a∗(M) = 〈aβ(M) | β < α(M)〉.
2. C∗

M = {a∗(P ) | P is a proper, countable, ΓM–iterate of M acting below
η∗(M)}.

Lemma 3.7. Let F∗ be the filter generated by the collection C∗
M , M ∈ K∗.

Then F∗ is an ultrafilter in L(R) and has the countable intersection property.
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F∗ concentrates on increasing countable sequences of elements of Pω1
(ωω), and

every measure one set has sequences of arbitrary countable length. (We say that
F∗ concentrates on long sequences in [Pω1

(ωω)]<ω1 .)

Proof. An argument similar to the one in the proof of Lemma 3.2 shows that
the collection C∗

M , M ∈ K∗, has the countable intersection property. A straight-
forward adaptation of the proof of Claim 2.2 shows that F∗ is an ultrafilter in
L(R). For every M ∈ K∗ and every α < ω1 it is easy to produce a ΓM–iterate
P of M so that a∗(P ) is increasing and has length > α. From this and the fact
that F∗ is an ultrafilter it follows that F∗ concentrates on long sequences in
[Pω1

(ωω)]<ω1 . ⊣

Lemma 3.8 (Boundedness). Let f : [Pω1
(ωω)]<ω1 → ωω+1 belong to L(R). Then

there is X ∈ F∗ so that f↾ X is bounded below ωω+1.

Proof. Similar to the proof of Claim 2.3, but using Σ1
3 boundedness (re-

call that ωω+1 = δ
1
3 in L(R)) and Fact 1.10 as replacements for the use of Σ1

2

boundedness and condition (1) in the proof of Claim 2.3. ⊣

Let WO be the set of wellorders of ω. We use ot to mean “order type.” For
a∗ = 〈aξ | ξ < α〉 we write ot(a∗) for supξ<α ot(aξ).

Lemma 3.9 (Uniformization). Let F : [Pω1
(ωω)]<ω1 → P(R) − {∅} belong to

L(R). Then there is X ∈ F∗ and a function f : X × WO → R in L(R) so that
f(a∗, w) ∈ F (a) for all a∗ ∈ X and w ∈ WO with ot(w) ≥ ot(a∗).

Proof. Fix a real u, k < ω, and a formula ϕ so that x ∈ F (a∗) iff L(R) |=
ϕ[u, x, a∗, α∗

1, . . . , α
∗
k] where α∗

1 < . . . α∗
k are Silver indiscernibles for R. For

simplicity suppose that k = 0 so that the indiscernibles can be omitted below.
Let M = M ♯

ω(u) and let X = C∗
M . Let ~e enumerate M in order type ω.

Let a∗ ∈ C∗
M and let P be a ΓM–iterate of M acting below η∗(M) so that

a∗ = a∗(P ). From the fact that a∗(P ) = a∗ it follows that η∗(P ) = ot(a∗). Since
the iteration tree leading to P acts below η∗(M), every element of P is definable
in P from parameters in range(πM,P ) ∪ η∗(P ). One can therefore produce an
enumeration of P definably from ~e and any w ∈ WO with ot(w) ≥ ot(a∗). From
an enumeration of P in turn one can definably produce a symmetric collapse of
P and an enumeration of the reals in that symmetric collapse.

A short argument using Corollary 1.3 shows that every symmetric collapse of P
has a real x which belongs to F (a∗(P )). Using the enumerations of the previous
paragraph one can therefore produce a function h in L(R), so that h(P,w) is
defined and belongs to F (a∗(P )) whenever P is a ΓM–iterate of M acting below
η∗(M).

From Fact 1.8 it follows that there is a function g ∈ L(R) which assigns to
each a∗ ∈ C∗

M an iterate P of M so that a∗(P ) = a∗. Set f(a∗, w) = h(g(a∗), w).
Then f(a∗, w) ∈ F (a∗) whenever a∗ ∈ C∗

M and ot(w) ≥ ot(a∗). ⊣

Adapting definitions from Section 2, call X ⊂ [Pω1
(ωω)]<ω1 nice if: X belongs

to F∗, X is closed, and for each s ∈ X, {r | s⌢r ∈ X} belongs to F∗. The proof
of Claim 2.5 carries over to the current context, showing that each C∗

M is nice.
Let P be the poset consisting of pairs 〈s,X〉 where s ∈ [Pω1

(ωω)]<ω1 , X ⊂
[Pω1

(ωω)]<ω1 , and {r | s⌢r ∈ X} is nice, ordered by the condition 〈s′,X ′〉 ≤
〈s,X〉 iff s′ extends s, X ′ ⊂ X, and s′ ∈ X. P belongs to L(R).
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To prevent confusion below let λ denote ωω
L(R). Let H be P–generic over

L(R). Let b =
⋃
{s | (∃X)〈s,X〉 ∈ H}. b has the form 〈bξ | ξ < ω1〉, with

bξ ∈ Pω1
(λ) for each ξ.

Lemma 3.10. L(R)[H] |=“δ
1
3 = ω2.”

Proof. P is ω–closed, so that ω1
L(R) = ω1

L(R)[H] and (δ1
3)

L(R) = (δ1
3)

L(R)[H].
By the genericity of H, for every countable a ⊂ λ there is ξ so that bξ ⊃ a. It
follows that λ =

⋃
ξ<ω1

bξ and hence card(λ) = ω1 in L(R)[H]. Using Lemma

3.8 one can prove that ωω+1
L(R), which is equal to δ

1
3, is not collapsed by H. So

ωω+1
L(R) is equal to ω2

L(R)[H]. ⊣

Next we force over L(R)[H] to add the axiom of choice, while preserving the
fact that δ

1
3 = ω2. We follow the route established by Steel–Van Wesep [15] and

Woodin [17]: forcing first to add codes for countable ordinals, arguing that the
resulting model satisfies DCω1

, and forcing over it to enumerate the reals in order
type ω2.

Let G be col(ω,<ω1)–generic over L(R)[H]. col(ω,<ω1) is c.c.c., so that no
cardinals are collapsed in the move from L(R)[H] to L(R)[H][G]. Of course
G adds reals, but by Neeman–Zapletal [10] there is an elementary embedding

Ψ: L(R) → L(R̂), where R̂ are the reals of L(R)[H][G], with Ψ↾ ON = id. It

follows that (δ1
3)

L(R) = (δ1
3)

L(R̂), and since no cardinals are collapsed by the
addition of G, L(R)[H][G] satisfies δ

1
3 = ω2.

Claim 3.11. Let X ⊂ H(ω1) and let F : X → P(R) − {∅} be a function so
that the relation y ∈ F (x) is Σ1(R∪ {R}) over L(R). Then there is, in L(R)[G],

a function f : X̂ → R̂ so that f(x) ∈ F̂ (x) for all x ∈ X̂.

As a general matter of notation, here and below, we use Ẑ for Z ∈ L(R) to

denote Ψ(Z). If Z is defined in L(R) from reals and ordinals c1, . . . , ck, then Ẑ
is the object defined from the same reals and ordinals and in the same manner,
but in L(R̂).

Proof of Claim 3.11. If X were a subset of R, the conclusion of the claim
would follow simply from Σ2

1 uniformization in L(R), proved by Martin–Steel [5].
Using the generic G one can obtain a function which codes elements of H(ω1)
by reals, and reduce the general case to the case of X ⊂ R. ⊣

Claim 3.12. Let k ∈ L(R)[G] be a function assigning to each s ∈ [Pω1
(λ)]<ω1

a set k(s) ⊂ [Pω1
(λ)]<ω1 so that {r | s⌢r ∈ k(s)} is nice, where [Pω1

(λ)]<ω1 and

“nice” are both interpreted in L(R̂) = L(RL(R)[G]). Then there is some condition
〈s,X〉 ∈ H so that X ⊂ k(s).

Proof. Immediate from the genericity of H×G and the observation that any
set in the ultrafilter F̂∗ can be refined to a set in F∗. ⊣

Definition 3.13. Let Ȧ be a P × col(ω,<ω1)–name. Let 〈s,X〉 ∈ P, let
α < ω1, and let g = 〈gξ | ξ < α〉 with gξ : ω → ξ for each ξ. We write

〈s,X, g〉 ° x ∈ Ȧ just in case that x ∈ Ȧ[Ė × (g⌢Ḟ )] is forced by 〈s,X, ∅〉 in the
forcing to add a generic E × F for P × col(ω, [α, ω1)).
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DCω1
for reals is the statement “every countably closed tree T ⊂ R<ω1 with

no terminal nodes has a branch of length ω1.”

Lemma 3.14. For every sufficiently closed ordinal ν, Lν(R)[H][G] satisfies
DCω1

for reals.

By “sufficiently closed” in Lemma 3.14 we mean that Lν(R) satisfies some
large enough fragment of ZF+DC+AD. For s ∈ [Pω1

(λ)]ω1 and M a countable
model in K∗ let Xs,M be the set {s⌢r | r ∈ C∗

M}. Every condition 〈s,X〉 ∈ P

can be refined to a condition of the form 〈s,Xs,M 〉. All conditions of the form
〈s,Xs,M 〉 belong to Lν(R), as they are definable from reals using a directed
system which by Fact 1.10 has low projective complexity, and Lν(R) is correct
about projective statements. Certainly all the conditions in col(ω,<ω1) belong
to Lν(R). It follows therefore that H ×G is P× col(ω,<ω1)–generic over Lν(R).

Proof of Lemma 3.14. Suppose the lemma fails. Its statement, or more
precisely an equivalent statement using the forcing language, is Π1(R ∪ {R})
over L(R). Picking a minimal witness to its failure we can find ν, a tree T in

Lν(R)[H][G], and a name Ṫ ∈ Lν(R) for T , so that the relation 〈s,X, g〉 ° x ∈ Ṫ
is Σ1(R ∪ {R}) over L(R).

Let U be the set of sequences g = 〈gξ | ξ < α〉 where α < ω1 and gξ : ω → ξ
for each ξ < α. Let F be the function which assigns to each 〈g, s, t〉 ∈ U ×
[Pω1

(λ)]<ω1 × R<ω1 the set of pairs 〈M,y〉 ∈ K∗ × R so that 〈s,Xs,M , g〉 °

t⌢〈y〉 ∈ Ṫ . By Claim 3.11 there is a function f ∈ L(R)[G] so that F̂ (g, s, t) 6= ∅

=⇒ f(g, s, t) ∈ F̂ (g, s, t). Using f , G, H, and Claim 3.12 it is not hard to
construct a branch Y = 〈yξ | ξ < ω1〉 through T .

We showed so far that T has a branch Y of length ω1 in L(R)[H][G]. It remains

to see that Y belongs to Lν(R)[H][G]. Let Ẏ ∈ L(R) be a name for Y . Suppose

for contradiction that there is no name Ż ∈ Lν(R) so that Ż[H][G] = Ẏ [H][G].
Suppose for simplicity that this fact is forced by the empty condition.

The relation 〈s,X, q〉 ° Ẏξ̌(ň) = m̌ is definable over L(R) from a real and
finitely many Silver indiscernibles. Suppose for notational simplicity that the
number of indiscernibles needed is zero. Fix a real u and a formula ϕ so that
〈s,Xs,N , q〉 ° Ẏξ̌(ň) = m̌ iff L(R) |= ϕ[u, s,N, q, ξ, n,m]. Let M = M ♯

ω(u).

Without loss of generality we may assume that 〈∅, C∗
M 〉 ∈ H. Using Corollary

1.3 one can see that Yξ(n) = m iff there are q, P , and N so that:

1. q is a condition in col(ω,<ω1), P is a ΓM–iterate of M acting below η∗(M),
and N is a countable model which belongs to a symmetric collapse of P .

2. The statements “N ∈ K∗” and ϕ[u, a∗(P ), N, q, ξ, n,m] hold in that sym-
metric collapse.

3. q ∈ G and 〈a∗(P ),Xa∗(P ),N 〉 ∈ H.

Condition (2) is absolute between L(R) and Lν(R) since it is first order over a
countable structure. Condition (1) and the function 〈s,N〉 7→ Xs,N are absolute

since Lν(R) is correct about projective statements on reals and ΓM is Π1
2 by Fact

1.10. Using the three conditions one can therefore identify Y inside Lν(R)[H][G].
⊣

Corollary 3.15. L(R)[H][G] satisfies DCω1
for reals. ⊣
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Remark 3.16. Our main interest is in Corollary 3.15. But the statement of
the corollary is not Π1(R∪{R}) over L(R). We had to prove the stronger Lemma
3.14 since its statement is Π1(R ∪ {R}), and its failure can be subjected to an
application of Claim 3.11. This approach follows Woodin [17], who used it to
prove DCω1

for reals in L(R)[G].

Since every element of L(R)[H][G] is definable in this model from H, G, ordi-
nals, and real parameters, it follows from Corollary 3.15 that the full axiom DCω1

holds in L(R)[H][G]. Let Q be the poset col(ω2, R̂) as computed in L(R)[H][G].
Let F be Q–generic over L(R)[H][G]. Q is ω1 closed. Using DCω1

in L(R)[H][G],
the standard forcing proof shows that the addition of F does not add reals and
does not collapse ω2. Thus L(R)[H][G][F ] continues to satisfy “δ1

3 = ω2.” Since
the reals can be wellordered in L(R)[H][G][F ], and since every element of the
model is definable from H, G, F , and ordinal and real parameters, L(R)[H][G][F ]
satisfies the axiom of choice. We have:

Theorem 3.17 (Neeman, Woodin). ZFC+AD
L(R) is consistent with δ

1
3 = ω2.

⊣

Similar results hold for δ
1
n, n > 3, and for larger cardinals up to δ

2
1. In

fact every Suslin cardinal of L(R) can be collapsed to ω1 without collapsing
its successor, by an argument which for the most part is similar to the one
above collapsing ωω. These results, and Theorem 3.17, are due independently to
Woodin and the author.

§4. Uniqueness. For λ ≤ δ
2
1 the construction in Section 3 generalizes, using

Facts 1.9 and 1.15, to produce a supercompactness measure over Pω1
(λ). Next

we extend the construction to cover all λ between δ
2
1 and Θ, using a directed

system, discovered by Woodin, that captures HODL(R) up to levels arbitrarily
high in Θ. We begin by describing the system.

Let k < ω and let a ∈ H(ω1) be transitive. Define Tk(a) to be the type of k
Silver indiscernibles in M ♯

ω(a) with parameters in a.

Fact 4.1 (Woodin). For each k < ω, the operation a 7→ Tk(a) belongs to
L(R), and is in fact definable over L(R) from k + 1 Silver indiscernibles for R.

Let W = {countable M | M has a sharp for ω Woodin cardinals and no
strict initial segment of M has a sharp for ω Woodin cardinals}. Let M ∈ W .
Recall that δ0(M) is the first Woodin cardinal of M , and κ0(M) is the first
cardinal strong to δ0(M) in M . Suppose that M is nice to κ0(M) (see Definition
1.13). Let T = 〈Mξ, Eξ, jζ,ξ | ζ T ξ < α + 1〉 be a proper iteration tree of
length α + 1, leading to a final model Mα. Suppose that T is normal, meaning
that 〈lh(Eξ) | ξ < α〉 is increasing, and that α is a limit. Let δ(T ) denote
supξ<α lh(Eξ) and let ∆(T ) denote

⋃
ξ<α Mξ‖ lh(Eξ). ∆(T ) is an initial segment

of Mα, independent of the final branch [0, α]T used by the tree. We refer to it
as the lined-up part of T .

Definition 4.2. T is k–correct if either:

1. T acts below κ0(M) and is consistent with ΓM ; or
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2. All strict initial segments of T are consistent with ΓM , j0,α(δ0(M)) = δ(T ),
and j0,α sends Tk(M‖ δ0(M)) to Tk(∆(T )).

If condition (2) holds then we say that T is full and that the branch [0, α]T is
k–correct.

For P ∈ W define ρk(M) to be the supremum of the ordinals α < δ0(P ) which
are definable from k indiscernibles (and no other parameters) in M ♯

ω(P‖ δ0(P )).
ρk(P ) can be determined from knowledge of Tk(P‖ δ0(P )), so the operation
P 7→ ρk(P ) belongs to L(R).

Fact 4.3. Let M ∈ W and suppose that M is iterable. Let T be a full
iteration tree on M . Let α + 1 = lh(T ). Then:

1. T ↾α is consistent with ΣM .
2. Let b = ΣM (T ↾α), let Mb be the direct limit of the models of T along b,

and let jb : M → Mb be the direct limit embedding. Then jb and j0,α agree
to ρk(M).

Condition (1) in Fact 4.3 follows from condition (2) in Definition 4.2, the fact
that ΣM ↾ κ0(M) = ΓM↾ κ0(M), and the fact that every strict initial segment of
T can be extended to a tree which acts below κ0(M). Condition (2) in Fact 4.3
is a condition of agreement between the “true” branch ΣM (T ↾ α), and the k–
correct branch [0, α]T picked by T . It is due to Woodin, using the investigation
of iteration trees with distinct cofinal branches in Martin–Steel [6].

Remark 4.4. The ordinals ρk(M), k < ω, are cofinal in δ0(M). It follows
from this and condition (2) in Fact 4.3 that ΣM (T ↾ α) is the only cofinal branch
through T ↾ α which is k–correct for all k.

Definition 4.5. A k–correct iteration sequence on M ∈ W is a sequence
〈Mn, Tn | n < ω〉 so that M0 = M , and for each n < ω, Tn is a k–correct
iteration tree on Mn with final model Mn+1. Each of the models Mn is a k–
correct iterate of M . The direct limit Mω of the sequence is k–wellfounded

if its membership relation is wellfounded on
⋃

n<ω jn,ω
′′ρk(Mn).

M is k–iterable if:

1. Every k–correct iteration tree T of countable limit length on a k–iterate of
M has a cofinal branch b so that T ⌢b is k–correct.

2. The direct limit of every k–correct iteration sequence on M is k–wellfounded.

Let M ∈ W be k–iterable. Let D = {〈Q,x〉 | Q is a k–iterate of M and
x ∈ Q‖ ρk(Q)}. Define an equivalence relation ∼ on D by setting 〈Q1, x1〉 ∼
〈Q2, x2〉 iff there are k–correct iteration trees U1 on Q1 and U2 on Q2, leading
to final models Q∗

1 and Q∗
2, and embeddings j1 : Q1 → Q∗

1 and j2 : Q2 → Q∗
2, so

that j1(x1) = j2(x2). Define a relation R on D similarly but replacing the final
condition j1(x1) = j2(x2) by j1(x1) ∈ j2(x2).

Define Mk
∞ to be the transitive collapse of the structure (D/∼;R), and for

every 〈Q,x〉 ∈ D define πk
Q,∞(x) to be the equivalence class of 〈Q,x〉. Paral-

lels of Facts 1.11 and 1.12 for k–correct iterations show that these definitions
make sense. If M is iterable then, using Fact 4.3, Mk

∞ agrees with the limit

M
(δ0(M))
∞ of the “true” directed system mentioned at the end of Section 1, up to



INNER MODELS AND ULTRAFILTERS IN L(R). 17

π
(δ0(M))
M,∞ (ρk(M)). But the true directed system does not belong to L(R), while

the k–correct system does. The k–correct systems were defined by Woodin, who

used them to identify HOD
L(R) as the join of a fine structural model with a

restriction of its iteration strategy. Among other things he showed:

Fact 4.6 (Woodin, see Steel [14]). Mk
∞ is an initial segment of HODL(R)(u).

Moreover there are ordinals νk, k < ω, independent of M and cofinal in Θ, so
that ON ∩ Mk

∞ ≥ νk for each k.

Using Fact 4.6 we can generalize the construction in Section 3 to λ > δ
2
1.

Fix λ < Θ. Fix k so that νk > λ. Let K be the set of k–iterable models in
W . For each M ∈ K set a(M) = λ ∩ πk

M,∞
′′ρk(M). Define further:

1. a(Mn | n < ω) =
⋃

n<ω a(Mn).
2. CM = {a(Mn | n < ω) | 〈Mn, Tn | n < ω〉 is a k–correct iteration sequence

on M}.

Remark 4.7. Let 〈Mn, Tn | n < ω〉 be a k–correct iteration sequence on M .
Let jn,n+1 : Mn → Mn+1 be the embedding generated by the tree Tn. Let Mω

be the direct limit of the system 〈Mn, jn,n+1 | n < ω〉. If M is iterable and the
trees Tn are all consistent with ΣM , then Mω ∈ K and a(Mn | n < ω) = a(Mω).
Condition (1) in this case is an exact parallel of condition (1) at the start of
Section 3. We need the more complicated condition here to allow for the case of
trees which are k–correct but not according to ΣM (remember that the former
property can be recognized in L(R), but the latter cannot) and for M which are
k–iterable but not iterable.

Claim 4.8. Let M ∈ K. Let u be a real Turing above a real coding M and a
real defining λ (from Silver indiscernibles for R). Let P = M ♯

ω(u). Then a(P )
belongs to CM .

Proof. By a back-and-forth argument construct k–correct iteration sequences
〈Mn, Tn | n < ω〉 and 〈Pn,Un | n < ω〉 so that a(Mn | n < ω) = a(Pn | n < ω).
Without loss of generality suppose that the trees Un are consistent with ΣP . (If
not, simply change their final branches to be the ones given by ΣP . The change
does not affect a(Pn | n < ω).) Let jn,n+1 : Pn → Pn+1 be the embeddings gener-
ated by the trees Un. Let P ∗ be the direct limit of the chain 〈Pn, jn,n+1 | n < ω〉.
Let j : P → P ∗ be the direct limit embedding.

Since a(Mn | n < ω) = a(P ∗), a(P ∗) belongs to CM . P ∗ is a ΣP –iterate of
P and therefore iterable itself. An argument using Corollary 1.3, similar to the
one in Claim 3.2, deduces a(P ) ∈ CM from a(P ∗) ∈ CM . ⊣

Corollary 4.9. The collection CM , M ∈ K, has the countable intersection
property. ⊣

Let F be the filter generated by the sets CM .

Claim 4.10. F is a supercompactness measure over Pω1
(λ) in L(R).

Proof. Similar to the proofs in Section 3, using the same switch from a
k–correct iteration to a ΣP –iteration that was used in the proof of Claim 4.8.
(These switches can be made so long as P is iterable.) ⊣
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Remark 4.11. The proof of Claim 4.10 in fact shows that the collection {CP |
P ∈ W and P is iterable} generates F . We used the larger collection {CM |
M ∈ K} in the definitions since k–iterability can be recognized in L(R), while
iterability cannot.

Lemma 4.12. Let µ be a supercompactness measure over Pω1
(λ) in L(R).

Then µ = F .

Proof. We adapt the proof of Woodin [16] to apply to F . Suppose that
µ 6= F , and fix some A ⊂ Pω1

(λ) on which the two differ. Switching to the
complement of A if necessary we may assume that µ(A) = 1 and A 6∈ F . There
is then some k–correct M so that A ∩ CM = ∅.

For each x ∈ Pω1
(λ) define the game Gx to be played according to Diagram 4

and the following rules:

1. (Rule for I.) αn ∈ x.
2. (Rule for II.) 〈Mn, Tn | n < ω〉 is a k–correct iteration sequence on M .
3. (Rule for II.) αn ∈ a(Mn) and a(Mn) ⊂ x.

Infinite runs of Gx are won by player II.

I α1 α2 · · ·
II T0,M1 T1,M2 · · ·

Diagram 2. The game Ga

Claim 4.13. If II has a winning quasi-strategy in Gx then x ∈ CM .

Proof. Using II’s winning quasi-strategy and DCω construct an infinite play
〈αn+1, Tn,Mn+1 | n < ω〉 subject to the rules of Gx with {αn | 1 ≤ n < ω} = x.
Then a(Mn | n < ω) = x and therefore x ∈ CM . ⊣

Player I is the open player in Gx, and her moves come from a wellordered set.
Thus, in L(R), either I has a winning strategy in Gx or else II has a winning
quasi-strategy in the game. Since A ∩ CM = ∅, it follows from the last claim
that I has a winning strategy in Gx for every x ∈ A. As I is the open player and
her moves come from a wellordered set, she has a canonical winning strategy
definable from Gx. Thus there is a function x 7→ σx in L(R) so that for each
x ∈ A, σx is a winning strategy for I in Gx.

By a position we mean a sequence p = 〈α1, T0,M1, . . . , αl, Tl−1,Ml〉 so that
αn ∈ a(Mn) for each n ≤ l. For x so that p is consistent with σx define fp(x) =
σx(p). The rules of Gx require αl+1 ∈ x, so fp is a regressive function.

Set A0 = A. Using the normality of the supercompactness measure µ construct
a sequence 〈αn+1, An+1, Tn,Mn+1 | n < ω〉 so that for each l < ω:

1. For every x ∈ Al, pl = 〈α1, T0,M1, . . . , αl, Tl−1,Ml〉 is consistent with σx.
2. Al+1 ⊂ Al, µ(Al+1) = 1, and fpl

is constant on Al+1.
3. αl+1 is the constant value taken by fpl

on Al+1.
4. Tl is a k–correct iteration tree on Ml, leading to a final model Ml+1 so that

αl+1 ∈ a(Ml+1).
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Let A =
⋂

n<ω An and let a =
⋃

n<ω a(Mn). Since µ is ω–complete, µ(A) = 1.
Since µ is fine, there is x ∈ A with x ⊃ a. Fix such an x. By condi-
tion (3), condition (4), and the definition of the functions fp, the sequence
〈αn+1, Tn,Mn+1 | n < ω〉 is an infinite play of Gx consistent with σx. But
this is a contradiction as σx is a winning strategy for player I, the open player
in Gx. ⊣

Corollary 4.14. For each λ < ΘL(R) there is a unique supercompactness
measure over Pω1

(λ) in L(R). ⊣
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