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Abstract. We present a method of unraveling Π1
1 sets which greatly simplifies the

construction in Neeman [6]. Apart from adding elegance, this method is also useful for

proofs of determinacy involving long games, see Neeman [5].

By a tree we mean a set of finite sequences, closed under initial segments.
Given a tree S let [S] denote the set of infinite branches through S. Given further
a set A ⊂ [S] let GS(A) be the game in which players I and II collaborate to
create a branch 〈a0, a1, . . . 〉 through S. The players take turn, I picking an for
even n, and II picking an for odd n, subject to the rule that 〈a0, . . . , an〉 ∈ S. The
first player to violate this rule loses. If the rule is maintained for ω steps, then
player I wins just in case that 〈ai | i < ω〉 belongs to A. GS(A) is determined

if one of the players has a winning strategy.

Definition 1 (Martin [3]). Let S be a tree. A triple (T, π,Ψ) is a covering

of S just in case that:

1. T is a tree.
2. π : [T ] → [S].
3. Ψ: Strat(T ) → Strat(S) (where Strat(T ) is the set of strategies on T , and

similarly for S). Ψ sends strategies for I on T to strategies for I on S, and
similarly for II.

4. Ψ and π are connected through the following lifting condition: Suppose
that Σ ∈ Strat(T ) and y ∈ [S] is according to Ψ(Σ). Then there is x ∈ [T ],
according to Σ, so that π(x) = y.

The covering (T, π,Ψ) unravels a set A ⊂ [S] just in case that π−1(A) is clopen
in [T ].

Using condition (4) it is easy to check that a winning strategy in the game
GT (π−1(A)) is sent by Ψ to a winning strategy in the game GS(A). If π−1(A)
is clopen then GT (π−1(A)) is determined by a theorem of Gale–Stewart [1]. It
follows that if A can be unraveled, then GS(A) is determined.

Covers and the property of unraveling were introduced by Martin [3], who
went on to inductively unravel all Borel sets, thereby obtaining an inductive
proof of Borel determinacy, simplifying his earlier proof of Borel determinacy in
[2]. Martin [4] took matters a bit further, and unraveled all ∆1

1 sets (in the case
of uncountable trees this is a larger pointclass than Borel).

This material is based upon work supported by the National Science Foundation under
Grant No. DMS-0094174.
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For reasons concerning the lower bounds on the large cardinal strength of
determinacy for levels of the Borel hierarchy on Π1

1 sets (see Steel [7]), it seemed
natural to conjecture that it should be possible to unravel Π1

1 sets using the
following large cardinal assumption: (∗) there is a cardinal κ, so that for every
Z ⊂ P(κ), there is a measure µ on κ so that Z belongs to Ult(M,µ).

Neeman [6] unraveled Π1
1 subsets of R = [ω<ω] using this assumption, and ob-

tained precisely the determinacy results suggested by Steel [7]. The construction
in Neeman [6] involved a challenge game, in which player I proposes a system of
trees, whose inverse limit she claims is a cover for S. Player II can either accept,
in which case the game proceeds on the inverse limit proposed by I; or else player
II can reject one of the levels of the system, in which case I must present this
level as an inverse limit over the previous level, II must reject a level of this new
system, etc.

Overall the construction in Neeman [6] was quite complicated, but it turns
out that many of these complications are not necessary. We present here a
substantially simpler construction of a cover which unravels a given Π1

1 subset
of R = [ω<ω].

The construction is based on “rank games,” which we introduce in this paper.
These games allow the players to pick an ordinal together, somehow dividing the
task between them in such a way that we can (in ultrapowers by measures given
by the large cardinal assumption (∗) above) manipulate a strategy for either
player into picking specific ordinals.

In Section 1 we introduce rank games, and begin to define the cover (T, π,Ψ).
More precisely we define T and π in that section. The definition of Ψ and the
proof of the lifting condition (4) in Definition 1 are spread over Sections 2 and
3. Section 2 defines Ψ(Σ) in the case that Σ is a strategy for I, and proves that
condition (4) holds in this case. Section 3 handles the case that Σ is a strategy
for II.

It turns out that the rank games we introduce here are useful also in proofs of
determinacy for long games, and this matter is investigated in Neeman [5]. The
paper uses these rank games in a proof of the determinacy of games ending at
the first admissible relative to the play, from optimal large cardinal assumptions.

§1. Rank games. Fix throughout the paper a map s 7→�s which associates
to each node s ∈ ω<ω a linear order �s on lh(s) + 1, in such a way that if s

extends t then �s extends �t. For each x ∈ ωω let �x=
⋃

n<ω �x�n. This is
then a linear order on ω. For simplicity suppose that 0 is the largest element in
�s, for each s.

Let h : V → V − {0} be the injection defined by h(x) = x if x 6∈ ω and
h(x) = 1 + x if x ∈ ω.

Given a cardinal κ, a set A ⊂ Vκ+1, a node s ∈ ω<ω, and a some w ∈ Vκ,
define the (s, w)–section of A, denoted As,w, to be the set {U ⊂ Vκ | {〈s, w〉}×
({0}∪h′′U) ∈ A}. The (s, w)–section of A is then a subset of Vκ+1. The purpose
of the definition is to allow coding Vκ many subsets of Vκ+1 as one. The following
claim phrases this precisely:
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Claim 1.1. Suppose that to each s ∈ ω<ω and each w ∈ Vκ we have associated
some B(s, w) ⊂ Vκ+1. Then there is a set A ⊂ Vκ+1 which codes this associa-
tion, in the sense that for every s and w, As,w is precisely equal to B(s, w).

Proof. Set A = { {〈s, w〉} × ({0} ∪ h′′U) | U ∈ B(s, w)}. a

Remark 1.2. The point of the move from U to {0}∪h′′U is to make sure that
〈s, w〉 × ∅ never comes up when dealing with sections. (We have to avoid this
set since it is impossible to recover s and w from it.) This is a minor technical
point, and for the sake of notational clarity we ignore it below, writing U where
we should be writing {0} ∪ h′′U .

Definition 1.3. The basic rank game associated to κ, A, s, and w is played
according to the following rules:

• Player I plays U ⊂ Vκ which belongs to the (s, w)–section of A;
• Player II plays 〈κ̄, Ā〉 so that:

1. κ̄ < κ, and κ̄ is larger than the Von-Neumann rank of w,
2. Ā ⊂ Vκ̄+1, and
3. 〈κ̄, Ā〉 ∈ U .

This ends the game.

The basic rank game thus starts with the pair 〈κ,A〉, and through the moves
in the game the players collaborate to choose a new pair 〈κ̄, Ā〉, with κ̄ < κ. The
actual choice is made by player II, but notice that I may regulate this choice
through the restriction that 〈κ̄, Ā〉 must belong to U . Player I’s choice of U in
turn is regulated by the initial set A.

To a large extent our interest is in the new move κ̄. The basic rank game
lets the players choose this ordinal together. We now use the basic rank game to
define a game in which players I and II collaborate to play x ∈ ωω, and in addition
produce (among other things) an embedding of �x into the ordinals. Each of
the ordinals in the range of this embedding is chosen through a collaboration
between the two players, using a basic rank game.

I
II

· · · · · · · · · x(n − 1)
Un

〈κn, An〉
· · · · · ·

Diagram 1. Round n in the repeated rank game.

Definition 1.4. Fix a cardinal κ and a set A ⊂ Vκ+1. In the repeated rank

game associated to κ and A, players I and II collaborate to produce x ∈ ωω

and a sequence of pairs 〈κn, An〉 (n < ω) so that the map i 7→ κi embeds �x

into the ordinals. We set κ0 = κ and A0 = A to begin with. The game proceeds
according to Diagram 1 and the following format, beginning with round 1:

• At the start of round n we have x�n − 1 and the pairs 〈κi, Ai〉 for i < n.
We know inductively that i �x�n−1 j iff κi ≤ κj for i, j < n.

• The appropriate player—I if n − 1 is even and II if n − 1 is odd—plays
x(n − 1) ∈ ω.
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〈κ0, A0〉 0

...

〈κpn
, Apn

〉 pn

〈κn, An〉 // n

...

〈κ5, A5〉 5

〈κ2, A2〉 2
wn

〈κ4, A4〉 4

ax�n

Diagram 2. Configuration at round n of the repeated rank game.

• Let pn be the successor of n in the order �x�n. Let wn = {〈κj , Aj〉 | j ≺x�n

n}. (Both assignments are illustrated in Diagram 2.)
• Players I and II now pick Un and 〈κn, An〉 subject to the rules of the basic

rank game associated to κpn
, Apn

, x� n, and wn.

In the case of the last item notice that, by the rules of the basic rank game, κn

is smaller than κpn
and larger than the Von-Neumann rank of wn, hence larger

than κj for each j ≺x�n n. It follows that κj ≤ κn iff j �x�n n for each j ≤ n.
By induction then, the map i 7→ κi embeds �x into the ordinals, and we get the
following claim:

Claim 1.5. Suppose that x ∈ ωω and 〈κn, An〉 (n < ω) are part of an infinite
play of the repeated rank game. Then �x is wellfounded. a

It is worthwhile abstracting some of the properties of the objects which come
up during round n of the repeated rank game.

Let s ∈ ω<ω. A sequence s∗ ∈ ω<ω is a suitable extension of s if it extends
s and if in addition lh(s) is the successor of lh(s∗) in �s∗ . In the context of
the repeated rank game, displayed in Diagram 2, x�n is a suitable extension of
x� pn.

Let as denote the set {j < lh(s) | j ≺s lh(s)}. Diagram 2 illustrates ax�n. We
say that w is suitable for s if it has the form {〈κj , Aj〉 | j ∈ as} with the map
j 7→ κj order preserving from �s (more precisely its restriction to as) into the
ordinals. Notice that this map is then determined uniquely by w and s. In the
context of the repeated rank game, wn is suitable for x� n.

Let s∗ ∈ ω<ω be an extension of s. Let w∗ have the form {〈κ∗

j , A
∗

j 〉 | j ∈ a∗}
with a∗ an initial segment in �s∗ and with the map j 7→ κ∗

j order preserving
from �s∗� a∗ into the ordinals. (For example any w∗ which is suitable for s∗ has
this form.) Let w be suitable for s and let j 7→ κj be the unique map witnessing
this. We say that w∗ extends w (wrt s, s∗), or that w is an initial segment of
w∗, just in case that the map j 7→ κ∗

j extends the map j 7→ κj .

Claim 1.6. Suppose that sn, wn (n < ω) are such that s0 = ∅, sn+1 is a
suitable extension of sn for each n, each wn is suitable for sn, and wn+1 extends
wn for each n. Let x =

⋃
n<ω sn. Then:
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1. �x is illfounded; and
2. The wellfounded part of �x is precisely

⋃
n<ω asn

.

Proof. Let kn = lh(sn). From the assumption that sn+1 is a suitable exten-
sion of sn it follows that kn+1 �x kn. So �x is illfounded.

Let j 7→ κn
j witness that wn is suitable for sn. The domain of this map is

the set asn
, and the map embeds the restriction of �x to asn

into the ordinals.
Since wn+1 extends wn for each n, the union of the maps makes sense, witnessing
that �x is wellfounded on

⋃
n<ω asn

. It’s easy to check that
⋃

n<ω asn
is closed

downward in �x, and that every j ∈ ω−
⋃

n<ω asn
sits above some kn in �x and

therefore belongs to the illfounded part of �x. It follows that the wellfounded
part is precisely equal to

⋃
n<ω asn

. a

Suppose now that κ is measurable. For each measure µ on κ let iµ denote the
ultrapower embedding of V by µ.

Definition 1.7. Let A ⊂ Vκ+1. In the inverted rank game associated to
κ and A players I and II collaborated to create, among other things, a sequence
of objects sn, wn (n < ω) satisfying the assumptions of the previous claim. We
set A0 = A, s0 = ∅, and w0 = ∅ to begin with. The game proceeds according to
Diagram 3 and the following format, beginning with round 1:

• At the start of round n we have sn−1, wn−1, and a set An−1 ⊂ Vκ+1.
• Player II plays sn ∈ ω<ω, wn ∈ Vκ, and Un ⊂ Vκ so that sn is a suitable

extension of sn−1, wn is suitable for sn, wn extends wn−1, and Un belongs
to the (sn, wn)–section of An−1.

• Player I plays µn and An so that µn is a measure on κ, An ⊂ Vκ+1, and
〈κ,An〉 belongs to iµn

(U).

I
II

· · · · · · · · ·
µn, An

sn, wn, Un
· · · · · ·

Diagram 3. Round n in the inverted rank game.

Notice the reversal of roles in this game compared to the basic rank game.
Here it is player II that picks Un, and player I that picks An. Note further that
I is accorded better freedom here than was given to II in the basic rank game.
She is not asked to play κ̄ below κ with 〈κ̄, An〉 ∈ Un. Instead she gets to push
the universe up using an ultrapower embedding iµn

by her choice of measure µn,
refer to iµn

(Un) instead of Un itself, and continue to use the same κ. This is
illustrated in Diagram 4.

Suppose now that κ satisfies the following assumption:

(∗) For every Z ⊂ Vκ+1 there exists a measure µ on κ so that Z belongs to the
ultrapower Ult(V, µ).

For the rest of the paper we work with a fixed κ satisfying this assumption.

Definition 1.8. Define T be the following game tree: In round 0 player I picks
a set A ⊂ Vκ+1. Player II can accept, or reject this set. This completes round 0.
If player II accepts then the two players continue by playing the repeated rank
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iµn
(Un)

κ+1 An

κ Un

iµn

EE

wn

Diagram 4. Pushing Un up.

game associated to κ and A. If player II rejects then the two players continue
by playing the inverted rank game associated to κ and A.

T should be viewed as a game where player I proposes an outline of a division
of work between herself and player II, with the aim of producing x ∈ R and
witnessing that �x is wellfounded. This is the set A, and the division of work
is the repeated rank game associated to κ and A, which the players undertake
if II accepts. If II rejects, then she gets to test player I’s fairness through the
reversal of roles in the inverted rank game.

Definition 1.9. Let π : T → ω<ω be the natural projection: If v ∈ T is a
position in which II accepts, covering rounds 0 through n − 1 say, then π(v) is
the sequence x� n− 1 constructed through the moves in the repeated rank game
made in v. If v ∈ T is a position in which II rejects then π(v) = sn where sn

is the last sequence played by II through her moves in v for the inverted rank
game. (If v only involves moves in round 0 of T then π(v) = ∅.)

For an infinite branch ~v ∈ [T ] let π(~v) =
⋃

n<ω π(~v� n).

Claim 1.10. Let C ⊂ R be the set of x so that �x is wellfounded. Then
π−1(C) is a clopen subset of [T ].

Proof. π−1(C) consists precisely of those plays in which II accepts. a

For each x ∈ ωω so that �x is illfounded, let ~k(x) be the left-most infinite
descending chain in �x. Precisely this is the chain 〈kn | n < ω〉 determined by:
k0 = 0; and for each n, kn+1 is equal to the least k > kn which (a) belongs to
the illfounded part of �x, and (b) sits below kn in �x

Claim 1.11. The function ~v 7→ ~k(π(~v)) is Lipschitz continuous on the set
{~v ∈ T | II rejects in ~v}. More precisely, for ~v ∈ T in which II rejects,
k0(π(~v)), . . . , kn(π(~v)) depend only the moves in rounds 0 through n in ~v.

Proof. Let ~v be a run of T in which II rejects. Let sn, wn, Un, µn, and
An denote the moves in round n of ~v. Let x =

⋃
n<ω sn. The left-most infinite

descending chain in �x is then precisely the sequence 〈kn = lh(sn) | n < ω〉.
(This uses Claim 1.6 and the fact that for each n, sn+1 is a suitable extension of
sn.) The claim follows. a
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Our plan is to expand T and π to a cover of ω<ω. Once we do this we’ll be
done: By Claim 1.10 that cover unravels the Π1

1 set C = {x | �x is wellfounded}.
Since s 7→�s is arbitrary it follows that any Π1

1 set can be unraveled.
Moreover, Neeman [6, §6] shows that for any countable collection of Π1

1 sets
Di, there is a map s 7→�s so that any cover with the property given by Claim
1.11 unravels each of the sets Di. Once we expand T and π to a cover it will
therefore follow that any countable collection of Π1

1 sets can be unraveled, by
a cover using T and π. From this one can obtain a wide array of determinacy
results, see Neeman [6, §7].

§2. Strategies for player I. Let s ∈ ω<ω. An s–iteration consists of
sequences 〈Mj | j ≤ lh(s)〉 and 〈µj | 0 < j ≤ lh(s)〉 so that:

• For each 0 < j ≤ lh(s), µj is a measure in Mj ;
• Mk = Ult(Mj , µj) where k is the �s successor of j; and
• Mk = V in the case that k is smallest in �s.

This is simply an iteration of V, of order type �s. For j �s k we use ij,k : Mj →
Mk to denote the embedding induced by the iteration. We use in to denote the
embedding ik,n where k is smallest in �s. This is an embedding from V into
Mn.

Recall that T is the tree of Definition 1.8, and π is the projection of Definition
1.9. We call a position v in T whole if it ends with a complete round (as opposed
to just the first move in that round for example). Otherwise v is medial. Note
that if v is a whole position in which II rejects, then the first player to move
after v is player II, see Diagram 3. If v is a medial position in which II rejects,
then the first player to move after v is player I.

Definition 2.1. A cluster for s ∈ ω<ω consists of an s–iteration together
with positions a ∈ i0(T ) and rj ∈ ij(T ) for j ≤ lh(s), so that: a is a whole
position in which II accepts, covering rounds 0 through lh(s), with i0(π)(a)
equal to s; and each rj is a position (either whole or medial) in which II does
not accept, with ij(π)(rj) equal to s� j. (For j = 0 we allow rj to be the empty
position. Except for this case, rj must be a non-empty position in which II
rejects. Note that the position a is in the shift of T to M0, and the positions rn

j

are in the shifts of T to the models Mj .)
A cluster is according to Σ, where Σ is a strategy for one of the players in T ,

just in case that the position a is consistent with i0(Σ), and for each j ≤ lh(s),
the position rj is consistent with ij(Σ).

Definition 2.2. Let n = lh(s), and let s̄ = s� n−1. Let p be the successor of
n in �s. (These settings are related to the situation illustrated in Diagram 2.)
Let {Mj , µj , rj , a} be a cluster for s, and let {M̄j , µ̄j , r̄j , ā} be a cluster for s̄. We
say that {Mj , µj , rj , a} extends {M̄j , µ̄j , r̄j , ā} just in case that the following
conditions hold:

1. Mj = M̄j , µj = µ̄j , and rj = r̄j for each j ≺s n;
2. Mn = M̄p, and rn strictly extends r̄p;

1

1The requirement Mn = M̄p is in fact implied by condition (1). We have Mn =

Ult(Mj , µj) = Ult(M̄j , µ̄j) = M̄p where j is the �s predecessor of n, or equivalently the
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3. For j �s p, Mj = i(M̄j), µj = i(µ̄j), and rj = i(r̄j), where i = iMn
µn

is the

ultrapower embedding of Mn (= M̄p) by µn; and
4. M0 = i(M̄0) and a strictly extends i(ā), where again i = iMn

µn
.

This situation is illustrated in Diagram 5.
Notice that for each k < n there is an elementary embedding h : M̄k → Mk.

h is equal to the identity if k ≺s p, and equal to iMn
µn

if k �s p. Notice that in
both cases, µk = h(µ̄k). We refer to h as the extension embedding associated
to M̄k and the two clusters.

rj = r̄j rn ) r̄p rj = i
Mn
µn

(r̄j) a ) i
Mn
µn

(ā)

M4 M2 M5
// Mn

iMn
µn

// Mp
// M0

g
eca_][

Y
W

‖ ‖ ‖ ‖

M̄4 µ̄4

// M̄2 µ̄2

// M̄5
// M̄p

// M̄0

V
XZ]_ac

e
h

iMn
µn

;;
w

w
w

w
w

w
w

w
w

w
w

w
w

w
w

Diagram 5. {Mj , µj , rj , a} extends {M̄j , µ̄j , r̄j , ā}.

Lemma 2.3. Fix a strategy Σ for one of the players in T . Let x ∈ ωω. Suppose
that there is a sequence of clusters {Mn

j , µn
j , rn

j , an} so that:

1. For each n < ω, {Mn
j , µn

j , rn
j , an} is a cluster for x� n;

2. Each of the clusters {Mn
j , µn

j , rn
j , an} is according to Σ; and

3. For each n > 0, {Mn
j , µn

j , rn
j , an} extends {Mn−1

j , µn−1
j , rn−1

j , an−1}.

Then there exists a branch ~v ∈ [T ] so that ~v is consistent with Σ and π(~v) = x.

Remark 2.4. Clusters satisfying the conditions of the lemma are naturally
created by strategies for player I in T , as we shall see later on, in Lemma 2.6.

Remark 2.5. The conclusion of the lemma fits with the requirements for cov-
ers, and we shall use this later on.

Proof of Lemma 2.3. For each k and each n > k let h
n−1,n
k : Mn−1

k → Mn
k

be the extension embedding associated to Mk and the clusters {Mn
j , µn

j , rn
j , an}

and {Mn−1
j , µn−1

j , rn−1
j , an−1}. Let M∞

k be the direct limit of the models Mn
k

under the embeddings h
n−1,n
k . Let h

n,∞
k : Mn

k → M∞

k be the direct limit embed-
dings. This is illustrated in Diagram 6.

Case 1: If �x is wellfounded. We work in this case, essentially using the
positions an (which are increasing, modulo some elementary embeddings, by
condition (4) in Definition 2.2) to construct an infinite branch through the shift

�s̄ predecessor of p. The first and last equalities come from the definition of an iteration, and
the middle equality is by condition (1)
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M∞

2 M∞

p M∞

0

Mn+1
p

hn+1,∞
p

HH

Mn
4

// Mn
2

//

h
n,∞
2

DD

Mn
n

// Mn
p

//

hn,n+1
p

OO

Mn
0

KK

Mn−1
4

h
n−1,n
4

OO

µ
n−1

4

// Mn−1
2

h
n−1,n
2

OO

// Mn−1
p

hn−1,n
p

==
|

|
|

|
|

|
|

|

// Mn−1
0

h
n−1,n
0

??
�

�
�

�
�

�
�

�

M0
0

44

Diagram 6. The direct limits M∞

k .

of T to M∞

0 . Then using absoluteness and elementarity we will pull the existence
of a suitable branch back to V.

For k 6= 0 let µ∞

k = hn,∞(µn
k ) for some/any n ≥ k. (It doesn’t matter

which n is used, since µn
k = h

n−1,n
k (µn−1

k ) for each n > k.) Notice then that
〈M∞

k | k < ω〉, 〈µ∞

k | 0 6= k < ω〉 is an iteration of V of order type �x. This
means that: for k the smallest in �x, M∞

k = V; for each successor k in �x,
M∞

k is the ultrapower of M∞

j by µ∞

j , where j is the �x predecessor of k; and
for each limit k in �x, M∞

k is the direct limit of the models M∞

j for j ≺x k.
All these properties can be verified easily using the various definitions and the
commutativity of Diagram 6 (with the horizontal embeddings coming from the
iterations of the relevant clusters).

Since �x is wellfounded, 〈M∞

k | k < ω〉, 〈µ∞

k | 0 6= k < ω〉 is an iteration of V
of wellfounded order type. It follows that M∞

0 , the final model of this iteration,
is wellfounded. We will use the wellfoundedness of M∞

0 later on.
For n < ω let in : V → Mn

0 be the iteration embedding induced by the cluster
{Mn

j , µn
j , rn

j , an}. The definition of a cluster is such that an is a position in
in(T ), with in(π)(an) compatible with x. From the fact that the clusters here
are according to Σ it follows further that an is consistent with in(Σ). It is easy
to check that the map in : V → Mn

0 (horizontal in Diagram 6) is equal to the

map h
0,n
0 = h

n−1,n
0 ◦ · · · ◦ h

0,1
0 (diagonal from M0

0 to Mn
n in Diagram 6). So an

is a position in h
0,n
0 (T ), consistent with h

0,n
0 (Σ), and such that h

0,n
0 (π)(an) is

compatible with x. Using the elementarity of h
n,∞
0 to transfer this to M∞

0 we



10 ITAY NEEMAN

get that h
n,∞
0 (an) is a position in h

0,∞
0 (T ), consistent with h

0,∞
0 (Σ), and such

that h
0,∞
0 (π)(hn,∞

0 (an)) is compatible with x.
Let ~a∞ =

⋃
n<ω h

n,∞
0 (an). Definition 2.2 is such that for each n, an+1 strictly

extends hn,n+1(an). So ~a is infinite. Using the conclusion of the previous para-
graph it follows that:

1. ~a is an infinite branch through h
0,∞
0 (T ),

2. ~a is consistent with h
0,∞
0 (Σ), and

3. h
0,∞
0 (π)(~a) = x.

Since M∞

0 is wellfounded, the existence of a sequence ~a satisfying these condi-
tions reflects from V to M∞

0 . Thus M∞

0 |=“there exists a sequence ~a satisfying
conditions (1)–(3).” Pulling this statement back using the elementary embed-

ding h
0,∞
0 : V → M∞

0 it follows that there is an infinite branch ~a through T , so
that ~a is consistent with Σ and π(~a) = x. a (Case 1)

Case 2: If �x is illfounded.
For each n let en be the �x least e ≤ n which belongs to the illfounded part

of �x. For each n let Mn denote Mn
en , let in denote the embedding from V into

Mn
en given by the cluster {Mn

j , µn
j , rn

j , an}, and let rn denote rn
en . rn is then a

position in in(T ), consistent with in(Σ), and such that in(π)(rn) is compatible
with x.

We wish to accumulate the positions rn to obtain an infinite branch through a
shift of T to some direct limit, just as we accumulated the positions an to obtain
the branch ~a in case 1 above.

Notice that the series 〈en | n < ω〉 is increasing, and grows in jumps: en is
either equal to en−1, or else it jumps to equal n.

Consider first the case that en = n. It is easy to check that en−1 is the
�x successor of n in this case, so that, referring to the notation of Diagram 5,
en−1 is equal to p. Continuing with the reference to Diagram 5 (with the upper
cluster there standing for {Mn

j , µn
j , rn

j , an} and the lower cluster standing for

{Mn−1
j , µn−1

j , rn−1
j , an−1}) we see that Mn

n is equal to Mn−1
en−1 , and (by condition

(2) in Definition 2.2) rn
n strictly extends rn−1

en−1 . In other words Mn is equal to

Mn−1 and rn strictly extends rn−1. Let hn−1,n : Mn−1 → Mn in this case be
the identity embedding.

Consider next the case that en = en−1. Let hn−1,n : Mn−1 → Mn be the
extension embedding associated to Mn−1

en−1 and the clusters {Mn
j , µn

j , rn
j , an} and

{Mn−1
j , µn−1

j , rn−1
j , an−1}. Definition 2.2 is such that rn = hn−1,n(rn−1) in this

case.
Now let M∗ be the direct limit of the models Mn under the embeddings hn−1,n.

Let hn,∗ : Mn → M∗ be the direct limit embeddings. Let ~r =
⋃

n<ω hn,∗(rn).
From the two paragraphs above it follows that:

1. ~r is an infinite branch through h0,∗(T );
2. ~r is consistent with h0,∗(Σ); and
3. h0,∗(π)(~r) = x.

(To relate ~r with h0,∗(T ), h0,∗(Σ), and h0,∗(π), we are using the observation
above that each rn is a position in in(T ), consistent with in(Σ), and such that
in(π)(rn) is compatible with x. We are using also the commutativity of Diagram
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6, to switch from the embedding in to the embedding h0,n = hn−1,n ◦ · · · ◦ h0,1,
which we then compose with hn,∗.)

For each n let un = {j ≤ n | j ≺x en}. These are the numbers corresponding
to models to the left of Mn in the format of Diagram 6. Let u =

⋃
n<ω un.

Using the commutativity of Diagram 6 one can check that M∗ is precisely equal
to the direct limit of the iteration 〈M∞

k , µ∞

k | k ∈ u〉. (Notice the restriction to
k ∈ u, that is to k which are to the left of the models leading to M∗.) This is
an iteration of V of order type �x� u. Now our definition of 〈en | n < ω〉 is such
that u is precisely equal to the wellfounded part of �x. So 〈M∞

k , µ∞

k | k ∈ u〉 is
an iteration of V of wellfounded order type. It follows that the iteration has a
wellfounded direct limit. So M∗ is wellfounded. We now continue as in case 1, to
reflect the existence of a branch ~r satisfying conditions (1)–(3) into M∗, and then
pull back to V using the elementary embedding h0,∗, to get an infinite branch
~r ∈ [T ], consistent with Σ, and such that π(~r) = x. a (Case 2, Lemma 2.3)

Lemma 2.6. Let Σ be a strategy for player I in T . Then there is a strategy σ

for player I in ω<ω, so that for every x ∈ ωω: if x is according to σ then there
is a sequence of clusters {Mn

j , µn
j , rn

j , an} satisfying the assumptions in Lemma
2.3.

Proof. We intend to define σ by describing how to play for I on ω<ω. The
description will take the form of a construction, joint with an opponent who
plays II’s part in x. We will construct x ∈ ωω, and in addition we will construct
a sequence of clusters {Mn

j , µn
j , rn

j , an} satisfying the assumptions in Lemma 2.3.
We intend to arrange things so that all the work will be done by Σ and its shifts
to the various models in our clusters. For this we will use the reversal or roles
in the two parts of T—the part where II accepts and the part where II rejects.
We will pit Σ’s actions in one part against its actions in the other part.

Let us first isolate the basic case. Recall that T is the tree of Definition 1.8,
and κ is the cardinal fixed just before that definition.

Definition 2.7. Let r be a whole position in T in which II rejects, covering
rounds 0 through j say. The position leads to the objects sj , wj , and Aj (see
the first item in Definition 1.7). We refer to the tuple 〈sj , wj , Aj〉 as the ending

of r.

Definition 2.8. Let M be an iterate of V with i : V → M the iteration
embedding. Let r be a whole position in T in which II rejects, and let 〈s̄, w̄, Ā〉
be the ending of r. Let a be a whole position in i(T ) (note the shift by i) in
which II accepts, consisting of rounds 0 through n − 1, and leading to x�n − 1
and the pairs 〈κj , Aj〉 for j < n (see the first item in Definition 1.4). We say
that r is compatible with a (over V, relative to the embedding i) just in case
that:

1. s̄ ⊂ s;
2. κp = κ and Ap = Ā where p = lh(s̄); and
3. w̄ is an initial segment of {〈κj , Aj〉 | i ≺x�n−1 p}.

The point of the definition is this: Work in the settings of Definition 2.8 and
suppose further that x(n− 1) is given and that p = lh(s̄) is the successor of n in
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�x�n. (Note in this case that x� n is a suitable extension of x� p.) Suppose that
r is compatible with a. Let s = x�n and let w = {〈κj , Aj〉 | j ≺x�n n}. Then:

(a) U is a legal move for I in i(T ) following a_〈x(n−1)〉 iff the triple consisting
of s, w, and U is legal for II in T following r; and

(b) µ and A (where µ is a measure on κ and A ⊂ Vκ+1) form a legal move for
I in T following r_〈s, w, U〉 iff the pair 〈κ,A〉 is legal for II in (i∗ ◦ i)(T )
following i∗(a_〈x(n − 1), U〉), where i∗ is the ultrapower embedding by µ.

These two conditions can be verified easily from the definitions, using the reversal
of roles in the inverted rank game (compared to the repeated rank game). Indeed,
the reversal of roles was specifically tailored to result in conditions (a) and (b).

The conditions show that moves for I following a and r respectively double as
moves for II following r and (a shift of) a. A strategy for player I is therefore
enough to generate all the moves necessary for extending both r and (a shift of)
a by one round. This is made precise in the following claim:

Claim 2.9. Work in the settings above and suppose further that r is consistent
with Σ and that a_〈x(n−1)〉 is consistent with i(Σ). (Recall that Σ is a strategy
for player I in T , see the assumptions in Lemma 2.6.) Then there is an extension
r∗ of r by one round in T , a measure µ∗ on κ, and an extension a∗ of i∗(a) by
one round in (i∗ ◦ i)(T ), where i∗ is the ultrapower embedding by µ∗, so that:

• r∗ is according to Σ and a∗ is according to (i∗ ◦ i)(Σ);
• π(r∗) = x�n and (i∗ ◦ i)(π)(a∗) = x� n; and
• r∗ is compatible with a∗ (over V, and relative to the embedding i∗ ◦ i).

Proof. Use Σ to obtain a move U for I in i(T ) following a_〈x(n−1)〉. Then
use condition (a) to transfer U to a move for II in T following r, and use Σ’s
reply to the move in condition (a) to obtain µ and A. Set r∗ = r_〈s, w, U, µ,A〉,
µ∗ = µ, and a∗ = i∗(a)_〈x(n − 1), i∗(U), κ, A〉. It is easy to check that these
objects satisfy the conditions in the conclusion of the claim. a

Equipped with the last claim we can begin the construction which describes
the strategy σ of Lemma 2.6. We work in stages. At the start of stage n we will
have x�n and the clusters {Mk

j , µk
j , rk

j , ak} for k ≤ n. We will make sure that:

(i) {Mn
j , µn

j , rn
j , an} is a cluster for x� n,

(ii) it is according to Σ, and
(iii) it extends {Mn−1

j , µn−1
j , rn−1

j , an−1}.

From these conditions it follows that every x according to our construction has
associated to it a sequence of clusters as in Lemma 2.3, and this will prove
Lemma 2.6.

For each j �x�n l let inj,l : Mn
j → Mn

l be the appropriate iteration embedding

given by the cluster {Mn
j , µn

j , rn
j , an}. Let inl : V → Mn

l be the embedding inj,l
where j is least in �x�n.

We intend to maintain two additional conditions:

(iv) The positions rn
j are whole; and

(v) For each j ≤ n, rn
j is compatible with an (over Mn

j and relative to the
embedding inj,n).
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Let A be Σ’s first move in T . A is then a subset of Vκ+1, which player II can
either accept or reject. (We intend to do both: accept in the positions an, and
reject in the positions rn

j .)

To start the construction let {M0
j , µ0

j , r
0
j , a0} be the cluster consisting of the

model M0
0 = V, the position a0 given by Σ’s first move A followed by “accept”

for II, and the position r0
0 given by Σ’s first move A followed by “reject” for II.

Conditions (i)–(v) for n = 0 hold trivially with these assignments.
Suppose that we reached stage n−1, and conditions (i)-(v) hold for n−1. We

describe how to construct x(n − 1) and the cluster {Mn
j , µn

j , rn
j , an}.

If n − 1 is even, let x(n − 1) be the move that in−1
0 (Σ) plays following the

position an−1. If n − 1 is odd let x(n − 1) be played by the opponent. We now
have x�n, and in both of the cases above an−1_〈x(n − 1)〉 is consistent with
in−1
0 (Σ).
Let p be the successor of n in �x�n. Apply Claim 2.9 over Mn−1

p and relative

to in−1
p,0 : Mn−1

p → Mn−1
0 , with the positions rn−1

p and an−1. (It’s easy to check

that the current settings fit the claim, using, among other things, condition (v)
for n−1 with j = p.) Let r∗, µ∗, and a∗ be given by the claim. Define the cluster
{Mn

j , µn
j , rn

j , an} by setting rn
n = r∗, µn

n = µ∗, and an
0 = a∗. These assignments

and condition (iii) determine the cluster completely. It is easy to check that the
new cluster satisfies conditions (i)–(v).

The inductive construction above can be formalized into a strategy σ that
plays for I in ω<ω, and makes sure that every x it produces comes equipped with
a sequence of clusters as in Lemma 2.3. This completes the proof of Lemma
2.6. a

Corollary 2.10. Let Σ be a strategy for player I in T . Then there is a
strategy σ for player I in ω<ω so that: for every play x according to σ, there
exists an infinite branch ~v ∈ [T ] according to Σ, with π(~v) = x.

Proof. This is a direct combination of Lemmas 2.6 and 2.3. a

Remark 2.11. The strategy σ in the last corollary is obtained through the
construction of Lemma 2.6. That construction is continuous in Σ, in the sense
that the restriction of σ to positions of length at most m depends only on the
restriction of Σ to positions of m + 1 rounds. This is not quite the same as the
Lipschitz continuity of Martin [3]. We could obtain that Lipschitz continuity if
we adjusted the definition of the repeated rank game, to include two moves on
ω<ω in each round (including round 0), instead of just one in each round (and
none in round 0). But this would have complicated the indexing, already in the
inverted rank game, and in all the subsequent proofs.

§3. Strategies for player II. Suppose now that Σ is a strategy for player
II. We wish to prove a parallel of Corollary 2.10. Many of the ingredient for the
proof we can simply take from the previous section: Lemma 2.3, and the scheme
of the construction in Lemma 2.6 apply just as well when Σ is a strategy for
II. But Claim 2.9 does not. Its proof rested on the fact that, by both rejecting
and accepting an offer made by player I, we can force player I to produce all the
moves that come up in the construction. This is convenient when we are dealing
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with a given strategy for player I. It becomes a burden when the strategy is for
II, and we have to ascribe moves for I.

We obtain here a substitute for Claim 2.9. It is for this substitute that we
finally use the large cardinal assumption (∗), that for every Z ⊂ Vκ+1 there
exists a measure µ on κ so that Z belongs to Ult(V, µ).

Fix a strategy Σ for player II in T . We work with this fixed strategy.

Definition 3.1. Let r be a medial position in T in which II rejects, covering
rounds 0 through the first half of round n > 0 say, and ending with the move
sn, wn, Un by II. (See Diagram 3 for the format of the game.) We say that a triple
〈s, w, U〉 is reachable from r if there exists a move µn, An for I in T following r

that would cause Σ to reply with the move consisting of s, w, and U . Otherwise
we say that 〈s, w, U〉 is unreachable from r. We use unrch(r) to denote the set

{ {〈s, w〉} × U | s ∈ ω<ω, w ∈ Vκ, U ⊂ Vκ, and 〈s, w, U〉 is un-
reachable from r. }

unrch(r) thus codes those triples 〈s, w, U〉 which have format suitable for moves
by player II in the inverted rank game, but are not played by Σ in response to
any move by I following r.

The definition of course depends on Σ, but we suppress this in the notation.
When we wish to emphasize the dependence we talk about reachable and un-
reachable relative to Σ.

Claim 3.2. Let r be a medial position in T in which II rejects. Suppose that
r is according to Σ. Then there does not exist any measure µ on κ so that the
move 〈µ,unrch(r)〉 is legal for player I in T following r.

Proof. Suppose for contradiction that µ and unrch(r) form a legal move for
I following r in T . Let 〈s, w,A〉 be Σ’s reply to r_〈µ,unrch(r)〉. The rules of
the inverted rank game (see Definition 1.7) are such that U must belong to the
(s, w)–section of unrch(r). In other words {〈s, w〉}×U must belong to unrch(r).
But this contradicts Definition 3.1, since there is a move for player I following r

that makes Σ reply with 〈s, w, U〉, namely the move 〈µ,unrch(r)〉. a

We will use Claim 3.2 later on. Let us for the moment expand our definition
to the case of the empty position r, and see what becomes of the claim in that
case.

Definition 3.3. Let r be the empty position in T . We say that 〈s, w, U〉 is
reachable from r if there exists a move A for player I in round 0 of T that would
cause Σ to reject and then play s, w, and U as a first move in round 1. Otherwise
we say that 〈s, w, U〉 is unreachable from r. Again we define unrch(r) to be
the set

{ {〈s, w〉} × U | s ∈ ω<ω, w ∈ Vκ, U ⊂ Vκ, and 〈s, w, U〉 is un-
reachble from r. }

Here too unrch(r) codes triples 〈s, w, U〉 which have the format suitable for
moves by player II in the inverted rank game, but are not played by Σ, this time
in response to any proposal by player I in round 0. Notice that unrch(r) is a
subset of Vκ+1. It therefore has the format suitable for a move by player I in T .
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Claim 3.4. If I plays unrch(∅) as her proposal in round 0 of T , then Σ replies
with “accepts” for II.

Proof. Suppose for contradiction that Σ rejects the proposal A = unrch(∅).
It must then continue to play some triple 〈s, w, U〉 in round 1 of the inverted
rank game associated to κ and A. The rules of the inverted rank game are
such that U must belong to the (s, w)–section of A = unrch(∅). In other words
{〈s, w〉} × U must belong to unrch(∅). But this contradicts Definition 3.3, since
there is a move A for player I in round 0 of T that causes Σ to reject and then
play 〈s, w, U〉, namely the move A = unrch(∅). a

Claim 3.4 provides a proposal that Σ cannot reject. We will use it later on.
Let us now define a substitute for the notion of compatibility in Section 3, and
prove the appropriate parallel of Claim 2.9 in that section.

Definition 3.5. Let M be an iterate of V with i : V → M the iteration
embedding. Let r be either a medial position in T in which II rejects, or the
empty position. Let a be a whole position in i(T ) in which II accepts, consisting
of rounds 0 through n − 1, and leading to x�n − 1 and the pairs 〈κj , Aj〉 for
j < n. We say that r is compatible with a (over V, relative to Σ and to the
embedding i) just in case that:

• κp = κ, and Ap = unrch(r) where p = lh(π(r)).

The condition here should be compared with condition (2) in Definition 2.8.
In that definition we dealt with a whole position r and condition (2) referred
to the move Ā played by I in the final round of r. Here we are dealing with a
medial (or empty) position r. I has not yet played her move in the final round
of r, and instead of referring to I’s move we refer to unrch(r). (Note that the
use of unrch(r) introduces a dependence on Σ into the definition.)

Lemma 3.6. Work in the settings of Definition 3.5 (and under the assumption
that r is compatible with a). Let x(n − 1) be given. Suppose that lh(π(r)) is the
successor of n in �x�n. Suppose that r is consistent with Σ, and a_〈x(n − 1)〉
is consistent with i(Σ).

Then there is a proper, medial extension r∗ of r in T , a measure µ∗ on κ, and
an extension a∗ of i∗(a) by one round in (i∗ ◦ i)(T ), where i∗ is the ultrapower
embedding by µ∗, so that:

• r∗ is according to Σ and a∗ is according to (i∗ ◦ i)(Σ);
• π(r∗) = x�n and (i∗ ◦ i)(π)(a∗) = x� n; and
• r∗ is compatible with a∗ (over V, and relative to Σ and to the embedding

i∗ ◦ i).

Proof. Let p denote lh(π(r)). Let s∗ denote x�n, and let w∗ denote {〈κj , Aj〉 |
i ≺x�n n}.

Claim 3.7. Let U be a subset of Vκ. Then U is a legal move for player I
following a_〈x(n − 1)〉 iff U belongs to the (s∗, w∗)–section of unrch(r).

Proof. The rules of the repeated rank game, specifically the last item in
Definition 1.4 and the first item in Definition 1.3, are such that U is legal for I
in T following a_〈x(n − 1)〉 iff U belongs to the (s∗, w∗)–section of Ap. Ap is
equal to unrch(r) by the compatibility of r and a (see Definition 3.5). a
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Let Y be the set:

{ 〈τ,B〉 | τ < κ, B ⊂ Vτ+1, and there does not exist any U

which is legal for player I following a_〈x(n − 1)〉
and so that i(Σ)’s reply to a_〈x(n − 1)〉_〈U〉 is
〈τ,B〉. }

Claim 3.8. Y does not belong to the (s∗, w∗)–section of unrch(r). (In other
words {〈s∗, w∗〉} × Y does not belong to unrch(r).)

Proof. Suppose that it does. By the previous claim then, Y is legal for I
in i(T ) following a_〈x(n − 1)〉. Play Y for I. Let 〈τ,B〉 be the reply given by
i(Σ). The rules of the basic rank game, specifically the rules in the second item
of Definition 1.3, demand that 〈τ,B〉 ∈ Y . But this contradicts the definition
of Y , since there is a legal move U for I which causes i(Σ) to reply with 〈τ,B〉,
namely U = Y . a

Corollary 3.9. There is a proper, medial extension r∗ of r so that r∗ is
according to Σ, and II’s (namely Σ’s) final move in r∗ is 〈s∗, w∗, Y 〉.

Proof. This is immediate from the last claim and the definition of unrch(r)
(Definition 3.3 if r is the empty position, and Definition 3.1 otherwise): From the
fact that {〈s∗, w∗〉}×Y does not belong to unrch(r) it follows that 〈s∗, w∗, Y 〉 is
reachable from r, so there is a move for player I following r that makes Σ reply
with 〈s∗, w∗, Y 〉. a

We have now the extension r∗ of r. It remains to define µ∗ and a∗.
Note that unrch(r∗) is a subset of Vκ+1. Using (at last!) the large cardinal

assumption (∗) in Section 1, fix a measure µ∗ on κ so that unrch(r∗) belongs to
Ult(V, µ∗). Let i∗ denote the ultrapower embedding by µ∗.

Claim 3.10. 〈κ,unrch(r∗)〉 does not belong to i∗(Y ).

Proof. Suppose that it does. The rules of the inverted rank game are such
that 〈µ∗,unrch(r∗)〉 is then a legal move for player I in T following r∗. But this
is in contradiction to Claim 3.2. a

Let A∗ denote unrch(r∗). By the choice of µ∗, we know that 〈κ,A∗〉 belongs
to Ult(V, µ∗). By the last claim though, 〈κ,A∗〉 does not belong to i∗(Y ). From
the definition of Y , or more precisely its shift by i∗, it follows that is a legal
move U∗ for player I following i∗(a)_〈x(n− 1)〉 which causes (i∗ ◦ i)(Σ) to reply
with 〈κ,A∗〉. Define a∗ to be the extension of i∗(a) by one round consisting of
the moves x(n − 1), U∗, and 〈κ,A∗〉.

Remark 3.11. Note the use of the fact that A∗ belongs to Ult(V, µ∗) in the
previous paragraph. Without this fact we wouldn’t be able to apply the con-
dition of membership in i∗(Y ) to 〈κ,A∗〉; 〈κ,A∗〉 would fail to belong to i∗(Y )
simply because it fails to belong to the ultrapower. The fact that A∗ belongs to
Ult(V, µ∗) of course traces back to our use above of the large cardinal assump-
tion (∗).

We have by now defined r∗, µ∗, and a∗. Our definitions are such that π(r∗) =
s∗ = x�n, π(a∗) = x� n, r∗ is consistent with Σ, and a∗ is consistent with
(i∗ ◦ i)(Σ).
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Let 〈κ∗

j , A
∗

j 〉, i ≤ n, denote II’s moves in a∗. Our definition of a∗ is such that
κ∗

n = κ and A∗

n is equal to A∗, namely to unrch(r∗). It follows from this that r∗

is compatible with a∗. a (Lemma 3.6)

With Lemma 3.6 as a parallel of Claim 2.9 we can now adapt the work of the
previous section to the case that Σ is a strategy for player II:

Lemma 3.12. Let Σ be a strategy for player II in T . Then there is a strategy
σ for player II in ω<ω, so that for every x ∈ ωω: if x is according to σ then there
is a sequence of clusters {Mn

j , µn
j , rn

j , an} satisfying the assumptions in Lemma
2.3.

Proof. We define σ by describing how to construct x ∈ ωω and the necessary
sequence of clusters (working with an opponent who provides I’s moves in x).
We use inj,l : Mn

j → Mn
l to denote the iteration embeddings given by the cluster

{Mn
j , µn

j , rn
j , an}. We use inl : V → Mn

l to denote the embedding inj,l where j is
least in �x�n. We will make sure that:

(i) {Mn
j , µn

j , rn
j , an} is a cluster for x� n,

(ii) it is according to Σ, and
(iii) it extends {Mn−1

j , µn−1
j , rn−1

j , an−1}.

These are the same conditions we had in the proof of Lemma 2.6. We will also
make sure that:

(iv) rn
0 is the empty position, and for 0 < j ≤ n the position rn

j is medial.
(v) For each j ≤ n, rn

j is compatible with an (over Mn
j , relative to inj (Σ) and

to the embedding inj,n).

Compatibility here is in the sense of Definition 3.5 of course.
Let A0 = unrch(∅), see Definition 3.3. By Claim 3.4, if I plays A0 as her

proposal in round 0 of T , then Σ replies with “accept.”
Let r0

0 be the empty position in T . Let a0 be the position consisting of the
moves A0 for I and “accept” for II in round 0 of T . r0

0 is clearly consistent with
Σ. By the previous paragraph so is a0. Since A0 = unrch(r0

0), r0
0 is compatible

with a0 (over V and relative to Σ and to i = id).
Let {M0

j , µ0
j , r

0
j , a0} be the cluster consisting of the model M0

0 = V and the

positions r0
0 and a0 defined above. It is clear, using the previous paragraph, that

conditions (i)–(v) hold for n = 0 with these assignments.
Now continue to construct as in the proof of Lemma 2.6, only having the

opponent provide x(n − 1) for even n − 1 now rather than odd, having in−1
0 (Σ)

provide x(n − 1) for odd n − 1 rather than even, and, most importantly, using
Lemma 3.6 instead of Claim 2.9. a (Lemma 3.12)

Corollary 3.13. Let Σ be a strategy for player II in T . Then there is a
strategy σ for player II in ω<ω so that: for every play x according to σ, there
exists an infinite branch ~v ∈ [T ] according to Σ, with π(~v) = x.

Proof. Immediate from Lemmas 3.12 and 2.3. a

Corollaries 2.10 and 3.13 provide a function Ψ, acting on strategies in T (for
either player) and producing strategies (for the same player) on ω<ω, so that for
any strategy Σ on T , if x ∈ ωω is according to Ψ(Σ), then there is a run ~v ∈ [T ],
according to Σ, with π(~v) = x. (T, π,Ψ) is therefore a cover of ω<ω.
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As indicated at the end of Section 1, covers of this kind can be made to unravel
any given Π1

1 set, and in fact any given countable collection of Π1
1 sets.

Remark 3.14. In both Section 2 and Section 3 we worked to obtain a play
according to a strategy Σ (for I in Section 2 and for II in Section 3) on T . Such
a play consists of a real x and, among other things, ordinals κn, for n in the
wellfounded part of �x, embedding the wellfounded part of �x into the ordinals.

We obtained the play by producing a wellfounded iterate M∗ of M , with
iteration embedding j : M → M∗, and producing over M∗ a play according to
j(Σ). (We then appealed to the elementarity of j to get a play in V.)

j and M∗ were obtained through iterated ultrapowers by measures on κ and
its images, and in the play that we produced over M∗, the ordinals κn were
precisely the images of κ in the iteration. (This can be verified by going through
the various constructions.) This is an indication of the careful balance in the
choice of these ordinals through rank games. The choice is not made by either
player; rather it is divided between the players in such a way that, ultimately, it
can be made by us, regardless of which player we work against.
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