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Abstract. Assuming ω supercompact cardinals we force to obtain a model where the

tree property holds both at ℵω+1, and at ℵn for all 2 ≤ n < ω. A model with the former

was obtained by Magidor–Shelah from a large cardinal assumption above a huge cardinal,

and recently by Sinapova from ω supercompact cardinals. A model with the latter was

obtained by Cummings–Foreman from ω supercompact cardinals. Our model, where the

two hold simultaneously, is another step toward the goal of obtaining the tree property on

increasingly large intervals of successor cardinals.
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§1. Introduction. The tree property is a combinatorial principle that re-
sembles large cardinal reflection properties, but may hold at successor cardinals.
It states for a cardinal κ that every κ-tree, meaning every tree of height κ with
levels of width < κ, has a branch of length κ. That it holds at κ = ℵ0 is simply
König’s lemma. On the other hand it fails at ℵ1 by a construction of Aronszajn.
(Trees witnessing failure of the tree property are called Aronszajn trees.) The
question of whether and to what extent it can hold at successor cardinals greater
than ℵ1 has been researched starting with work of Mitchell and Silver in Mitchell
[5]. They show that the tree property can hold at ℵ2, and is a remnant of a large
cardinal property, specifically weak compactness, in the sense that given a weakly
compact cardinal κ, a forcing extension defined by Mitchell turns κ into ℵ2 while
securing the tree property, and conversely, if ℵ2 has the tree property in V , then
it is weakly compact in an inner model.
One can use the same forcing techniques repeatedly to obtain the tree property

simultaneously at many successor cardinals, provided there are gaps between
them. It is substantially harder to obtain the tree property simultaneously at
consecutive successor cardinals. Partly the reason is that the tree property at κ =
τ++ has an effect on cardinal arithmetic already below τ+; it implies that 2τ ≥
τ++. (This follows from the construction in Specker [9] showing that the tree
property fails at δ+ if δ<δ = δ.) Nonetheless, it is possible for the tree property to
hold at consecutive successor cardinals. Abraham [1] produces a model where the
tree property holds at both ℵ2 and ℵ3. Again it is a remnant of large cardinals,
supercompactness and weak compactness for the cardinals that are turned into
ℵ2 and ℵ3 respectively in Abraham’s model. Since supercompactness is beyond
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the reach of current methods of inner model theory, it is not known whether it is
necessary for Abraham’s result. But some large cardinal, substantially beyond
the weakly compact that was enough for the tree property at one cardinal, is
needed by work of Magidor in [1] and later work of Foreman–Magidor. This need
for substantially stronger large cardinals is a mathematical aspect of the added
difficulty in obtaining the tree property at consecutive cardinals.
Moving further, Cummings–Foreman [2] produced a model where the tree

property holds at ℵn for all 2 ≤ n < ω, starting from ω supercompact cardinals.
For known lower bounds on the necessary large cardinals see Foreman–Magidor–
Schindler [3]. A little earlier Magidor–Shelah [4] showed that the tree property
can hold at ℵω+1. They used an assumption above a huge cardinal, specifically
the existence of elementary j : V → M with M closed under λ+-sequences where
λ is a limit of λ+-supercompact cardinals above j(crit(j)), but recent work of
Sinapova [8] reduced the large cardinal assumption to ω supercompact cardinals.
Cummings–Foreman [2] asked whether it is consistent to have both these out-

comes simultaneously, namely whether it is possible for the tree property to hold
at all successor cardinals in the interval [ℵ2,ℵω+1].
Starting from ω supercompact cardinals, we prove in this paper that the answer

is yes.
Whether one can go further is still open. It is not known whether the tree

property can hold at all successor cardinals in the interval [ℵ2,ℵω+2], or even if it
can hold simultaneously at ℵω+1 and ℵω+2. By Specker’s result above, the tree
property at ℵω+2 implies that 2ℵω ≥ ℵω+2, and it is not known if even this is
consistent with the tree property at ℵω+1. In our context, where ℵω is a strong
limit cardinal, this particular question has a long history. We refer the reader to
Neeman [6] and Sinapova [7] for positive answers at some singular strong limit
cardinal κ and at ℵω2 respectively.
Our proof that the tree property can hold at all successor cardinals in the

interval [ℵ2,ℵω+1] builds on ideas and techniques from several of the papers
mentioned above.
In Section 3 we obtain a fairly wide class of posets that, given supercompact

cardinals κn, 2 ≤ n < ω, collapse so that κn becomes ℵn and the tree property
holds at ℵω+1. One example of a poset in the class, assuming indestructibility
of the supercompact cardinals, is simply the product Col(ω, µ)×Col(µ+, <κ2)×∏

2≤n<ω Col(κn, <κn+1) for some µ < κ2, whose successor becomes ℵ1 in the
extension. Note that the proof does not give the tree property in the extension
for any particular µ; it only shows the existence of such a µ. This “retreat” to just
showing the existence of µ was first used by Sinapova [8] and was a crucial part
of her argument to obtain an extension with the tree property at ℵω+1, from
ω supercompact cardinals. (Sinapova’s argument involves a diagonal Prikry
extension and other than this “retreat” it is completely different from ours.)
More generally, we show that the tail-end of the poset above can be replaced by
any poset that leaves the cardinals κn for n > 2 “generically supercompact”, and
that Col(ω, µ)×Col(µ+, <κ2) can be replaced by any family of posets L(µ), µ <
κ2, that can, on a measure one set of substructures relative to a supercompactness
measure on κ2, be subsumed by Knaster posets. The precise formulation of this
is given in Lemma 3.10.
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In Section 4 we modify the Cummings–Foreman [2] poset for obtaining the
tree property below ℵω, so that it (almost) fits the requirements of Lemma
3.10. In broad terms the modifications are necessary to bring the poset closer
to a product, rather than an iteration, so that one can separate its tail-end
from its initial segment below κ2, and argue that the tail-end by itself preserves
generic supercompactness for the cardinals κn, n > 2. We cannot quite bring
the poset to this form, but we can get close in the sense that the poset we define
is subsumed by a poset of this form (see Section 5), and the factor poset is µ
closed. By a preservation theorem of Magidor–Shelah [4] this is enough to put
the two constructions together. This final combination is done in Section 6.

§2. Preliminaries. We present in this section a few forcing claims that are
used in later sections. Most are folklore, with the exception of Claim 2.4 which is
due to Unger [11]. Unger in a different paper [10] also proved a strengthening of
Claim 2.3, that reduces the assumption on P to just the requirement that P× P
is κ+-c.c. More precisely he showed, and this implies the claim, that if P× P is
τ -c.c. where τ is regular, then forcing with P does not add branches to trees of
height τ in V . He used this to prove a generalization of the tree property in the
model of Cummings–Foreman [2].

Definition 2.1. Let K ⊆ V be a model of a sufficiently large fragment of
ZFC. K has the <δ covering property (with respect to V ) if for every A ⊆ K in
V with |A| < δ, there is B ∈ K so that (|B| < δ)K and B ⊇ A.

Claim 2.2. Suppose δ < κ are regular cardinals, K is a model of some large
enough fragment of ZFC, K has the <κ covering property in V , and (∀γ <
κ)(γ<δ < κ)K . Let P be a forcing notion in K, whose conditions are all functions
with domain of size < δ in K. Then any family of size κ in V of conditions in
P, can be refined to a family of the same size whose domains form a ∆ system.

Proof. It is enough to show that for any A of size < κ in V , the set {x∩A |
x ∈ K and (|x| < δ)K} has size < κ. Standard arguments then yield a ∆-system
lemma for families of size κ in V , consisting of sets of size < δ in K.
Using the covering property we may assume that A ∈ K and (|A| < κ)K . Then

since K is closed under intersections (a consequence of some fragment of ZFC in
K), {x ∩A | x ∈ K and (|x| < δ)K} is equal to P<δ(A)

K . Since (|A| < κ)K , by
the claim assumptions P<δ(A)

K has size < κ in K, and therefore also in V . ⊣
Claim 2.3. Let T be a tree of height of cofinality at least κ+, and levels of

width less than λ, for some λ ≥ κ+. Let P be κ+-c.c. Suppose there is some
κ+-c.c. forcing notion Pλ which adds λ filters, all mutually generic for P. (This
holds for example if P is isomorphic to some λ product of itself.) Then forcing
with P does not add any new cofinal branches through T .

Proof. Without loss of generality, elements of T are sequences of ordinals
ordered by extension. Let ḃ be a P name for a cofinal branch through T , viewed
as a sequence of ordinals of length κ+. Let G = ⟨Gξ | ξ < λ⟩ be generic for Pλ.
Let R be a large initial segment of V and letM≺R with κ∪{T, κ, κ+,P,Pλ} ⊆ M
and |M | = κ. Let α = sup(M ∩ height(T )). Note that α < height(T ) since

height(T ) has cofinality at least κ+. For each ξ let δξ = ḃ[Gξ](α). Since Pλ is
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κ+-c.c., it does not collapse λ. Since level α of T has width less than λ in V it
follows that there are ξ ̸= ζ so that δξ = δζ . Hence ḃ[Gξ]�α = ḃ[Gζ ]�α. This

implies that M [Gξ ×Gζ ] |= ḃ[Gξ] = ḃ[Gζ ]. (We are using the fact that P× P is
κ+-c.c., and therefore M [Gξ×Gζ ]∩V = M so that M [Gξ×Gζ ]∩height(T ) ⊆ α.)

By elementarity of M [Gξ ×Gζ ] in R[Gξ ×Gζ ] it follows that ḃ[Gξ] = ḃ[Gζ ], and

since the two filters are mutually generic, ḃ[Gξ] = ḃ[Gζ ] must belong to V . ⊣

Claim 2.4 (Unger [11]). Let τ < κ. Let T be a κ+ tree, i.e., a tree of height
κ+ with levels of width κ. Let W ⊆ V and suppose that V is a κ-c.c. forcing
extension of W . Let P ∈ W be < κ closed in W . Suppose that 2τ > κ in W .
Then forcing with P (over V ) does not add cofinal branches to T .

Whenever we talk about κ+ trees, throughout the paper, we view them as
relations on κ+ × κ, with level α consisting of pairs in {α} × κ. We view cofinal
branches through the trees as functions from κ+ to κ, whose graphs form chains
in the tree order.

Proof of Claim 2.4. Let A be generic for A over W , where A is κ-c.c. in
W and V = W [A]. Let Ṫ ∈ W be an A name for T , and suppose without loss

of generality that Ṫ is forced to be a κ+ tree. In particular if a ∈ A forces that
⟨α, ξ1⟩ and ⟨α, ξ2⟩ are both predecessors of ⟨α′, ξ′⟩ in Ṫ , then ξ1 = ξ2.

Let ḃ ∈ W be an A × P name for a cofinal branch through T . Suppose for
contradiction that ḃ is forced to not belong to V = W [A]. It is then forced in

A × P × P that, letting A × G1 × G2 be generic, ḃ[A × G1] ̸= ḃ[A × G2]. Thus,
for any conditions p1, p2 ∈ P, and for any condition a ∈ A, there is α < κ+,
a′ ≤ a, p′1 ≤ p1, and p′2 ≤ p2, so that ⟨a′, p′1⟩ and ⟨a′, p′2⟩ force distinct values

for ḃ(α). By repeated applications of this inside W , using the closure of P and
the κ-chain condition for A, it follows that there are p∗1 ≤ p1, p

∗
2 ≤ p2, and a set

{⟨aξ, αξ⟩ | ξ < γ} of size < κ, so that ⟨aξ, p∗1⟩ and ⟨aξ, p∗2⟩ force distinct values

for ḃ(αξ), and {aξ | ξ < γ} is a maximal antichain in A. As Ṫ is forced to be a
tree, letting α = sup{αξ | ξ < γ} < κ+, it then follows that there is no a and

no p∗∗1 ≤ p∗1, p
∗∗
2 ≤ p∗2, so that ⟨a, p∗∗1 ⟩ and ⟨a, p∗∗2 ⟩ force the same value for ḃ(α).

We say in such a case that p∗1 and p∗2 enforce complete separation at α. Note that
if p∗1 and p∗2 enforce complete separation at α, then they also enforce complete

separation at every α′ ≥ α. This again uses the fact that Ṫ is forced to be a
tree. Note also that if p∗1 and p∗2 enforce complete separation at α, then so do all
extensions of p∗1 and p∗2.
Let δ ≤ τ be least so that 2δ > κ in W . Working inside W , using the

closure of P and the conclusion of the previous paragraph, construct an extension
preserving embedding π from 2≤δ into P with the property that for any s ∈ 2<δ,
there is an ordinal αs so that π(s⌢0) and π(s⌢1) enforce complete separation
at αs. Let α = sup{αs | s ∈ 2<δ}. By minimality of δ, α < κ+. By construction,
for every distinct s, t ∈ 2δ, there is ᾱ < α, p1 ≥ π(s), and p2 ≥ π(t), so that p1
and p2 enforce complete separation at ᾱ. Hence π(s) and π(t) enforce complete
separation at α.
Continuing to work inside W , find for each s ∈ 2δ, some as ∈ A and qs ≤ π(s)

so that ⟨as, qs⟩ forces a value for ḃ(α). Since T is forced to be a κ+ tree, the

values forced for ḃ(α) belong to κ. Since 2δ > κ in W , and since A is κ-c.c. in
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W , there must be s ̸= t both in 2δ, so that as and at are compatible, and so
that ⟨as, qs⟩ and ⟨at, qt⟩ force the same value for ḃ(α). Letting a ∈ A extend as
and at, it follows that ⟨a, qs⟩ and ⟨a, qt⟩ force the same value for ḃ(α), but this
contradicts the fact that π(s) and π(t) enforce complete separation at α. ⊣

Claim 2.5. Let P be <κ closed in W , where V is a κ-c.c. forcing extension of
W . Then forcing with P over V does not add any sequences of ordinals of length
< κ.

Proof. This is a part of Easton’s Lemma. Let A be a κ-c.c. poset in W so
that V is an extension of W by A. Let A × P be generic for A × P over W .
Then by closure of P, A remains κ-c.c. in W [P ]. Hence any A name in W [P ]
for a sequence of ordinals of length < κ, is equivalent to a name of size < κ,
which by closure of P belongs to W . So all sequences of ordinals of length < κ
in W [A][P ] = W [P ][A] belong to W [A]. ⊣

§3. The tree property at ℵω+1. Magidor–Shelah [4] were the first to obtain
the tree property at ℵω+1. They used a large cardinal assumption above a huge
cardinal. Sinapova [8] found an argument that requires only ω supercompact
cardinals. Her model is obtained by a diagonal Prikry extension that turns the
lowest of the supercompact cardinals into ℵω. One of the crucial novelties in her
argument is that the poset itself selects which cardinal is turned into ℵ1. We show
here that with a similar selection mechanism, and assuming indestructibility of
the supercompact cardinals, the product of ordinary collapse posets between and
below ω supercompact cardinals leads to a model where the tree property holds
at ℵω+1. This is Corollary 3.9. Moreover the same is true for other posets, so
long as they leave enough “generic supercompactness” at κn for n > 2, and so
long as their component below κ2 has many hulls that are subsumed by Knaster
posets. The exact formulation of this is given by Lemma 3.10. We will use
several tools from a different paper by Sinapova, [7], and from Magidor–Shelah
[4].
Let ν be a strong limit cardinal of cofinality ω.

Definition 3.1 (Magidor–Shelah [4]). A system on D × τ , where D ⊆ Ord,
is a collection of transitive, reflexive relations Ri (i ∈ I) on D × τ , so that:

1. If ⟨α, ξ⟩ Ri ⟨β, ζ⟩ and ⟨α, ξ⟩ ̸= ⟨β, ζ⟩ then α < β.
2. If ⟨α0, ξ0⟩ and ⟨α1, ξ1⟩ are both below ⟨β, ζ⟩ in Ri, then ⟨α0, ξ0⟩ and ⟨α1, ξ1⟩

are comparable in Ri. (By condition (1) this implies that ⟨α0, ξ0⟩ Ri ⟨α1, ξ1⟩
if α0 < α1, ⟨α1, ξ1⟩ Ri ⟨α0, ξ0⟩ if α1 < α0, and ξ0 = ξ1 if α0 = α1.)

3. For every α < β both in D, there is i ∈ I, and ξ, ζ ∈ τ , so that ⟨α, ξ⟩ Ri

⟨β, ζ⟩.

Systems arise naturally from names for trees. For example, if Ṫ is a P name for
a ν+ tree (viewed in the manner explained after Claim 2.4), then the relations

⟨α, ξ⟩ Rp ⟨β, ζ⟩ iff p 
 ⟨α, ξ⟩ Ṫ ⟨β, ζ⟩, for p ∈ P, form a system on ν+ × ν. For
any D ⊆ ν+ and τ < ν, the restrictions of the relations to D × τ still satisfies
conditions (1) and (2) in Definition 3.1. Condition (3) may in general fail for the
restrictions. Maintaining it is key to some of the arguments below.
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Definition 3.2 (Sinapova [7]). Let {Ri}i∈I be a system on D× τ . A system
of branches through {Ri}i∈I is a collection {bj}j∈J so that:

1. Each bj is a branch through Ri for some i = ij ∈ I. This means that bj is
a partial function from D taking values in τ , and for any β ∈ dom(bj) and
any α < β in D, α ∈ dom(bj) iff (∃ξ)⟨α, ξ⟩ Ri ⟨β, bj(β)⟩, and bj(α) is equal
to the unique ξ witnessing this. (ξ is unique by condition (2) of Definition
3.1.)

2. For every α ∈ D, there is j so that α ∈ dom(bj).

We do not require the branches bj to be cofinal (meaning that dom(bj) is cofinal
in D). But if |J | is smaller than the cofinality of D, then by condition (2), at
least one of the branches has to be cofinal.

Lemma 3.3 (Sinapova [7]). Let {Ri}i∈I be a system on D× τ , with D cofinal
in ν+, and max{|I|, τ} < ν. Suppose that there is W ⊆ V , a poset P ∈ W , and
a regular cardinal κ < ν above max{|I|, τ}+, so that:

1. The empty condition in P forces that there exists a system {bj}j∈J of
branches through {Ri}i∈I , with |J |+ < κ.

2. P is <κ closed in W , and V is a forcing extension of W by a κ-c.c. poset.

Then there exists j so that bj is cofinal and belongs to V . In particular there is
i ∈ I so that in V , Ri has a cofinal branch.

Proof. Let A be a κ-c.c. poset so that V is an extension of W by A, and let
E be generic for A over W with V = W [E].

Let ḃj ∈ V = W [E] name bj in the poset P. Suppose for contradiction that
no cofinal bj belongs to V . Without loss of generality we may assume that the

empty condition in P forces ḃj ̸∈ V if ḃj is cofinal.
Let λ = max{|I|, |J |, τ}+. By assumption, λ < κ. Let Pλ be the full support

λth power of P, defined in W . Let ⟨Gξ | ξ < λ⟩ be generic for Pλ over V = W [E].
Pλ is <κ closed in W , and V is a κ-c.c. extension of W . It follows by Claim

2.5 that forcing with Pλ over V does not add sequences of ordinals of length < κ.
In particular, ν+ has cofinality greater than λ in V [Gξ | ξ < λ], and all cardinals
of V up to λ remain cardinals in V [Gξ | ξ < λ].

Let bξj = ḃj [Gξ]. Since cof(ν+) is greater than λ in V [Gξ | ξ < λ], we can

find γ0 < ν+ so that for every ξ and j, dom(bξj) ⊆ γ0 whenever dom(bξj) is

bounded in ν+. Since by assumption the cofinal bξj do not belong to V , it follows

by mutual genericity that whenever ξ ̸= ζ and dom(bξj) and dom(bζj ) both have

points above γ0, then the branches bξj and bζj are distinct. Again using the fact

that cof(ν+) > λ in V [Gξ | ξ < λ], we can find γ1 > γ0 so that whenever bξj and

bζj both have α > γ1 in their domains, the two branches differ at a point below

γ1 (possibly because one is defined and the other is not). By Definition 3.2 and

since α > γ1 this implies in particular that bξj(α) ̸= bζj (α) (possibly because one

is defined and the other is not) if both are branches through the same relation
Ri.
Let α > γ1 belong to D. By Definition 3.2, for each ξ < λ there is some jξ

so that α ∈ dom(bξjξ). Let δξ = bξjξ(α) and let iξ be such that bξjξ is a branch
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through Riξ . λ is greater than |I| · |J | · τ , in V and hence also in V [Gξ | ξ < λ].
So there must be ξ ̸= ζ so that jξ = jζ , iξ = iζ , and δξ = δζ . But then letting

j = jξ = jζ and i = iξ = iζ we have bξj(α) = bζj (α), where bξj and bζj are
both branches through the same relation Ri, contradicting the conclusion of the
previous paragraph. ⊣

Remark 3.4. Our proof of Lemma 3.3 makes it clear that assumption (2) of
the lemma can be weakened to require only that there is a poset Pλ which adds
λ mutually generic filters for P without collapsing any cardinals ≤ λ and without
reducing the cofinality of ν+ to λ or below, where λ = max{|I|, |J |, τ}+.

Lemma 3.5 (Sinapova [7] based on Magidor–Shelah [4]). Let {Ri}i∈I be a sys-
tem on D × τ where D is cofinal in ν+ and τ < ν. Suppose that forcing with
P adds an elementary embedding π : V → V ∗, with crit(π) > max{τ, |I|} and
π(ν+) > sup(π′′ν+). Then forcing with P adds a system of branches {bj}j∈J

through {Ri}i∈I , with J = I × τ .

Proof. Let G be generic for P over V . Let π ∈ V [G] be an embedding
as in the assumption of the lemma. Note that π(τ) = τ as crit(π) > τ . Since
crit(π) > |I| we may assume, modifying I if needed, that π(I) = I. So π({Ri}i∈I)
is equal to {π(Ri)}i∈I , and is a system on π(D)× τ in V ∗.
Let γ be an ordinal in π(D) between sup(π′′ν+) and π(ν+). For each ⟨i, δ⟩ ∈

I × τ , let bi,δ be the partial map sending α ∈ D to the unique ξ < τ so that
⟨π(α), ξ⟩ π(Ri) ⟨γ, δ⟩ if such ξ exists. Uniqueness is guaranteed by condition
(2) in Definition 3.1 since {π(Ri)}i∈I is a system. It is clear from the same
definition, and elementarity, that bi,δ is a branch of Ri.
Finally, to check condition (2) of Definition 3.2, fix α ∈ D, and note that since

{π(Ri)}i∈I is a system on π(D) × τ , there is by condition (3) of Definition 3.1
some ξ, δ < τ , and some i ∈ I, so that ⟨π(α), ξ⟩ π(Ri) ⟨γ, δ⟩. Then α ∈ dom(bi,δ),
as required. ⊣

Lemma 3.6. Let κn, 2 ≤ n < ω be a strictly increasing sequence of regular
cardinals cofinal in ν. Suppose that κ2 is supercompact, and that for each m ≥ 2
there is a generic embedding π : V → V ∗ added by a poset P so that:

• sup(π′′ν+) < π(ν+).
• crit(π) > κm.
• P is <κm closed in a model W ⊆ V so that V is a κm-c.c. extension of W .

For each strong limit cardinal µ < κ2 of cofinality ω, let L(µ) be the poset
Col(ω, µ) × Col(µ+, <κ2). Then there is µ < κ2 so that the extension of V by
L(µ) satisfies the tree property at ν+.

Proof. Let κ denote κ2. Suppose for contradiction that the tree property at
ν+ fails in all extensions of V by L(µ) as µ ranges over strong limit cardinals of

cofinality ω below κ. Fix L(µ) = Col(ω, µ) × Col(µ+, <κ) names Ṫ (µ) ∈ V for
trees forced to witness this.
Let I = {⟨a, b, µ⟩ | µ < κ is a singular strong limit of cofinality ω and ⟨a, b⟩ ∈

Col(ω, µ) × Col(µ+, <κ)}. For i = ⟨a, b, µ⟩ ∈ I let Si be the relation ⟨α, ξ⟩ Si

⟨β, ζ⟩ iff ⟨a, b⟩ 
 ⟨α, ξ⟩ Ṫ (µ) ⟨β, ζ⟩. It is clear, using the fact that each Ṫ (µ) is
forced to be a ν+ tree, that {Si}i∈I is a system on ν+ × ν.
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Using the supercompactness of κ, let π : V → V ∗ be elementary, with crit(π) =
κ, π(κ) > ν, and V ∗ closed under sequences of length ν+ in V . In particular
π′′ν+ ∈ V ∗ and hence π(ν+) > sup(π′′ν+).
Let G∗

0 ×G∗
1 be generic for Col(ω, ν)V

∗ × Col(ν,<π(κ))V
∗
over V , hence also

over V ∗. Let T ∗ = π(Ṫ )(ν)[G∗
0 ×G∗

1], where Ṫ here denotes the map µ 7→ Ṫ (µ).
In V [G∗

0 ×G∗
1], ν is collapsed to ω, and ν+ is ω1.

Let γ∗ be an ordinal between sup(π′′ν+) and π(ν+). For each α < ν+ let
ξ∗ = ξ∗α be the unique ordinal so that ⟨π(α), ξ∗⟩ T ∗ ⟨γ∗, 0⟩. ξ∗α is an ordinal
below π(ν) = supn<ω π(κn). For each α, let n = nα be least so that ξ∗α < π(κn).

Let ξ̇∗α and ṅα in V be the canonical Col(ω, ν)V
∗ ×Col(ν+, <π(κ))V

∗
names for

ξ∗α and nα.
Since ν+ is equal to ω1 in V [G∗

0 ×G∗
1], there is a cofinal D∗ ⊆ ν+, and n < ω,

so that n∗
α = n for all α ∈ D∗. The fact that n∗

α = n is forced by some condition
⟨aα, bα⟩ ∈ G∗

0×G∗
1. aα is an initial segment of G∗

0 and of finite length. Shrinking
D∗ we may therefore assume that there is a specific initial segment a so that
aα = a for all α ∈ D∗. In particular then D∗ can be determined using a without
reference to the full generic G∗

0, and hence D∗ ∈ V [G∗
1].

Claim 3.7. {Si�(D∗ × κn)}i∈I is a system.

Proof. Conditions (1) and (2) of Definition 3.1 hold for {Si�(D∗ × κn)}i∈I

because they hold for the system {Si}i∈I . We have to check condition (3).
Fix α < β both in D∗. Then ξ∗α and ξ∗β are both smaller than π(κn). By the

definitions above, ⟨π(α), ξ∗α⟩ and ⟨π(β), ξ∗β⟩ are both below ⟨γ, 0⟩ in the relation

T ∗, and in particular they are compatible. Hence there is a condition ⟨a∗, b∗⟩ ∈
G∗

0 ×G∗
1 forcing that ⟨π(α), ξ∗α⟩ π(Ṫ )(ν) ⟨π(β), ξ∗β⟩.

By elementarity of π, it follows that there is µ < κ, ξα, ξβ < κn, and a condition

⟨a, b⟩, so that ⟨a, b⟩ 
 ⟨α, ξα⟩ Ṫ (µ) ⟨β, ξβ⟩. Then ⟨α, ξα⟩ and ⟨β, ξβ⟩ are related
in Sa,b,µ�(D∗ × κn), witnessing condition (3) for the system {Si�(D∗ × κn)}i∈I

at α and β. ⊣
Claim 3.8. There is, in V , a cofinal set D ⊆ ν+ so that {Si�(D × κn)}i∈I is

a system.

Proof. Let R be a large initial segment of V and let X≺R be an elementary
substructure of size ν+, with ν+ ⊆ X, closed under sequences of length < ν+,
and containing all objects relevant to the constructions above. Col(ν+, <π(κ))V

∗

is <ν+ closed in V ∗, hence also in V , so working in V we can find, without any
further forcing, Ḡ∗

1 ⊆ X which is generic for Col(ν+, <π(κ))V
∗
over X.

By Claim 3.7, applied inside X[Ḡ∗
1], there is D̄∗ ∈ X[Ḡ∗

1], cofinal in ν+, so
that X[Ḡ∗

1] satisfies that {Si�(D̄∗ × κn)}i∈I is a system.
Since being a system is absolute, {Si�(D̄∗ × κn)}i∈I is a system in V . ⊣
We so far have n < ω and D ⊆ ν+ cofinal, so that {Si�(D × κn)}i∈I is a

system.
Let m = n + 2. By assumption of the lemma, there is a poset P adding an

embedding π with crit(π) > κm, π(ν+) > sup(π′′ν+), and such that P is <κm

closed in a model W so that V is a κm-c.c. extension of W .
By Lemma 3.5, forcing with P adds a system of branches {bj}j∈J to {Si�(D×

κn)}i∈I , with J = I × κn, and in particular |J |+ < κn+2 = κm. By Lemma 3.3
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there is i ∈ I so that a cofinal branch through Si�(D × κn) exists already in V .
Fix such i, and let f ∈ V be the cofinal branch.
Let µ and ⟨a, b⟩ ∈ Col(ω, µ)V ×Col(µ+, <κ)V be such that i = ⟨a, b, µ⟩. Then

by definition of Si, ⟨a, b⟩ 
 ⟨α, f(α)⟩ Ṫ (µ) ⟨β, f(β)⟩ for all α < β both in dom(f),
which is cofinal in ν+. Letting G0×G1 be generic with ⟨a, b⟩ ∈ G0×G1, it follows

that in V [G0 ×G1], f determines a cofinal branch through Ṫ (µ)[G0 ×G1]. But

this contradicts the fact that Ṫ (µ) is forced to have no cofinal branches. This
contradiction completes the proof of Lemma 3.6. ⊣

Corollary 3.9. Let κn, 2 ≤ n < ω, be an increasing sequence of inde-
structibly supercompact cardinals. Let ν = sup{κn | n < ω}. Then there is
a strong limit cardinal µ < κ2 of cofinality ω, so that in the extension of V by
Col(ω, µ) × Col(µ+, <κ2) ×

∏
2≤n<ω Col(κn, <κn+1), the tree property holds at

ν+. ν+ is equal to ℵω+1 of the extension.

The indestructibility assumed in the corollary can be arranged by standard
arguments, with a preparatory forcing, starting from ω supercompact cardinals.

Proof of Corollary 3.9. Let H =
∏

2≤n<ω Hn be generic for the poset∏
2≤n<ω Col(κn, <κn+1). It is enough to prove that the assumptions of Lemma

3.6 hold in V [H]. Then, by the lemma, there is µ < κ2 so that in the further
extension by Col(ω, µ)× Col(µ+, <κ2), the tree property holds at ν+.
The assumptions of the lemma are easy to verify in V [H]. κ = κ2 is super-

compact in V [H], by indestructibility. For each m ≥ 2, forcing over V [H] with
Col(κm, γ)V for sufficiently large γ, adds an embedding π : V [H] → V ∗[H∗] with
critical point κm+1 and π(ν+) > sup(π′′ν+). (Use indestructibility to obtain, in
V [

∏
m+1≤n Hn], a ν+ supercompactness embedding with critical point κm+1. π

extends to act on V [
∏

m+1≤n Hn][
∏

2≤n<m Hn] since the posets Col(κn, <κn+1)

for n < m have size below crit(π). A further extension, to act on V [H] =
V [

∏
m+1≤n Hn][

∏
2≤n<m Hn][Hm], can be obtained in any model with a generic

for Col(κm, <π(κm+1))
V over V [H].) Col(κm, γ)V is<κm closed inW = V [Hm×

Hm+1 × . . . ], and V [H] is a κm-c.c. extension of V [Hm ×Hm+1 × . . . ]. ⊣
The corollary produces a model where the supremum of ω supercompact cardi-

nals is turned into ℵω, and the tree property holds at ℵω+1. For future arguments
that involve securing the tree property also below ℵω, it is useful to notice that
our assumptions in Lemma 3.6 can be weakened in a couple of ways, to pro-
duce a lemma that works in somewhat more general settings. The next lemma
formalizes this.

Lemma 3.10. Let κn, 2 ≤ n < ω, be a strictly increasing sequence of regular
cardinals cofinal in ν. Let Index ⊆ κ2 and suppose that L(µ) for each µ ∈ Index
is a poset of size ≤ κ2. Let R be a large rank initial segment of V satisfying a
large enough fragment of ZFC. Suppose that:

1. For each m ≥ 2, there is a generic embedding π : V → V ∗ added by a poset
P so that:
(a) sup(π′′ν+) < π(ν+).
(b) crit(π) > κm.
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(c) There is a κmth power of P that adds κm mutually generic filters for
P, without collapsing any cardinals ≤ κm, and without reducing the
cofinality of ν+ to or below κm.

2. For each X ≺ R with ν+ ⊆ X, let V̄ = V̄X be the transitive collapse of
X. Then, for stationarily many such X, there exists a ν+-Knaster poset
P = PX forcing the existence of π and L so that:
(a) π : V̄ → V̄ ∗ is elementary with sup(π′′ν+) < π(ν+).
(b) crit(π) = κ2, π(κ2) > ν, and ν ∈ π(Index).
(c) L is generic over V̄ ∗ for π(L)(ν).

Then there is µ < κ2 so that the extension of V by L(µ) satisfies the tree property
at ν+.

Recall that a poset P is ν+-Knaster if every sequence of ν+ conditions in the
poset can be refined to a subsequence of the same size so that any two conditions
in the subsequence are compatible. The poset Col(ω, ν) that was used in the
proof of Lemma 3.6 is of course ν+-Knaster.

Proof of Lemma 3.10. The proof is similar to that of Lemma 3.6. The
main difference is in the use of the embeddings given by condition (2) as a
replacement for the assumption that κ2 is supercompact.
Suppose for contradiction that the tree property fails at ν+ in all extensions by

L(µ), µ ∈ Index. Let Ṫ (µ) be names witnessing this, meaning that Ṫ (µ) is forced
in L(µ) to be a ν+ tree with no cofinal branches. Let I = {⟨r, µ⟩ | µ ∈ Index
and r ∈ L(µ)}. For i = ⟨r, µ⟩ ∈ I let Si be the relation ⟨α, ξ⟩ Si ⟨β, ζ⟩ iff

r 
L(µ) ⟨α, ξ⟩ Ṫ (µ) ⟨β, ζ⟩. As in the proof of Lemma 3.6, {Si}i∈I is a system on

ν+ × ν, and our first goal is to show that its restriction to D × κn is a system,
for some cofinal D ⊆ ν+ and n < ω.
Let X, V̄ , and P be as in condition (2), with the function µ 7→ Ṫ (µ) in X.

Let G be generic for P over V , and let π, L ∈ V [G] be as in condition (2). Let

T ∗ = π(Ṫ )(ν)[L] ∈ V [G].
Let γ∗ be an ordinal between sup(π′′ν+) and π(ν+). For each α < ν+ let

ξ∗α be the unique ordinal so that ⟨π(α), ξ∗α⟩ T ∗ ⟨γ∗, 0⟩. ξ∗α is an ordinal below
π(ν) = supn<ω π(κn). For each α, let n = nα be least so that ξ∗α < π(κn). Let
ṅα name nα in the forcing P.
For each α < ν+, fix a condition pα ∈ P forcing a value for ṅα. Note that this

is done in V , with no reference to the generic G. (Our use of G above was just
for notational convenience.)
Since P is ν+-Knaster, there is a cofinal D ⊆ ν+ so that for any α, β ∈ D, pα

and pβ are compatible in P. Thinning the set D, but maintaining the fact that
it is cofinal, we may assume that there is a fixed n < ω so that for each α ∈ D,
the value pα forces for ṅα is n.

Claim 3.11. {Si�(D × κn)}i∈I is a system.

Proof. Conditions (1) and (2) of Definition 3.1 are inherited from {Si}i∈I .
We have to check condition (3). Fix α < β both in D. Then pα and pβ are
compatible. Let p extend both. Revising G, we may assume p ∈ G. Then by
definitions, ⟨π(α), ξ∗α⟩ and ⟨π(β), ξ∗β⟩ are both below ⟨γ∗, 0⟩ in T ∗, and hence
they are compatible. It follows, again by definitions and since nα = nβ = n,
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that V̄ ∗ satisfies “there exists µ ∈ π(Index), r ∈ π(L)(µ), and ξ, ζ < π(κn), so

that r 
π(L)(µ) ⟨π(α), ξ⟩ π(Ṫ )(µ) ⟨π(β), ζ⟩”. By elementarity of π, there exists

µ ∈ Index, r ∈ L(µ), and ξ, ζ < κn, so that r 
L(µ) ⟨α, ξ⟩ Ṫ (µ) ⟨β, ζ⟩. Then
⟨α, ξ⟩ and ⟨β, ζ⟩ are related in S⟨r,µ⟩�(D × κn), as required. ⊣

As in the proof of Lemma 3.6, an application of Lemma 3.5 now shows that
forcing with the poset P given by condition (1) of the current lemma for m =
n + 1, adds a system of branches {bj}j∈J through {Si}i∈I , with J = I × κn.
An application of Lemma 3.3, in conjunction with Remark 3.4, then shows that
there must be a cofinal branch through one of the relations S⟨r,µ⟩, already in V .

This gives a cofinal branch through an interpretation of one of the names Ṫ (µ),
completing the proof of Lemma 3.10. ⊣

§4. The tree property below ℵω. Let κn, 2 ≤ n < ω be an increasing
sequence of supercompact cardinals. Let ν = sup{κn | n < ω}. We describe a
forcing extension in which κn becomes ℵn and the tree property holds at ℵn for
all n ≥ 2.
Our construction is a modification of the poset defined in Cummings–Foreman

[2]. There are several differences between the two constructions. One difference
is that we do not preserve ℵ1. Instead we allow the poset to select a cardinal
µ, from a specific index set that we define, whose successor is then turned by
the forcing into ℵ1. Other differences, throughout the poset’s definition, make
the poset more amenable to “reverse analysis”, meaning analysis by splitting the
poset into a product of an initial segment and a tail-end. These modifications
are intended to bring the poset to a form that fits with Lemma 3.10 (although
parts of the “reverse analysis” will be useful already before we get to that). We
cannot literally reach a poset that splits into a product of an initial segment and
a tail-end; some elements of the tail-end poset cannot be brought into V and so
the split cannot be viewed as a product. But we take products where we can,
and in cases where composition is necessary, we identify variants of the tail-end
posets that exist in V .
Suppose that each κn is indestructibly supercompact, and suppose moreover

that there is a partial function ϕ so that for each n, ϕ�κn is an indestructible
Laver function for κn. By this we mean that for each A ∈ V , ordinal γ, and
<κn directed closed forcing extension V [E] of V , there is a γ supercompact-
ness embedding π in V [E] with critical point κn, so that π�Ord belongs to V ,
π(ϕ)(κn) = A, and the next point in dom(π(ϕ)) above κn is greater than γ. This
situation can easily be arranged with V obtained by the standard construction
of indestructibility. (Suppose κn is supercompact in V̄ ⊆ V , and fix a Laver
function F ∈ V̄ for κn. Define functions F1 and F2 by setting F1(α) = x and
F2(α) = y if F (α) = ⟨x, y⟩, and otherwise leaving F1 and F2 undefined at α.
Note that F1 is a Laver function for κn in V̄ . Suppose V = V̄ [Ḡ] where Ḡ is
generic over V̄ for the standard poset to make κn indestructibly supercompact,
using the Laver function F1. Now define ϕ in V on ordinals between κn−1 and
κn by setting ϕ(α) = F2(α)[Ḡ�α] if this makes sense and F ′′

1 α ⊆ Vα, and leaving
ϕ(α) undefined otherwise.) Thinning the domain of ϕ we may also assume that
for every α ∈ dom(ϕ), γ ∈ dom(ϕ) ∩ α → ϕ(γ) ∈ Vα.
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For n ≥ 2, let An be the forcing Add(κn, κn+2). Let κ0 denote ω, and let
A0 = Add(ω, κ2). Let A1 = Σµ∈Index Add(µ+, κ3), where the sum is defined to
be the disjoint union of the posets, with conditions in distinct posets of the union
taken to be incompatible, so that a generic for A1 is simply a generic for one
of the posets Add(µ+, κ3). In contexts where we work with such a generic, µ is
determined by the generic, and we use κ1 to denote µ+. We will define the set
Index over which the sum is taken shortly. For now we just say that all elements
of Index are limit cardinals of cofinality ω, below κ2.
Let A be the full support product of the posets An, n < ω. We use A[n,m] to

denote the poset
∏

n≤i≤m Ai, and similarly with open and half open intervals.
We use An�γ, for γ ≤ κn+2, to denote the obvious restriction of An, and use
similar notation for generic objects and conditions, so that, for example, if G is
generic for Add(κn, κn+2), then G�γ consists of the first γ subsets of κn added
by G, and is generic for Add(κn, γ) = Add(κn, κn+2)�γ.
By A�α we mean the poset A[0,n) × An�α where n is least so that α ≤ κn+2.

Definition 4.1. Define a poset B in V and a poset U in the extension of V
by A, simultaneously as follows. (For notational convenience, fix A generic for
A over V . U is described in V [A], and this translates naturally to a definition of

a name U̇ ∈ V for this poset.)

1. All conditions p in B are functions so that dom(p) ⊆ ν, and for every
inaccessible cardinal α, | dom(p)∩α| < α. (This parallels Easton support.)
In particular, | dom(p) ∩ κn+2| < κn+2 for each n.

2. If α ∈ dom(p) then α is an inaccessible cardinal, α is not equal to any κn,

α ∈ dom(ϕ), and ϕ(α) is an (A�α) ∗ (U̇�α) name for a poset forced to be
<α directed closed.

3. p(α) is an (A�α) ∗ (U̇�α) name for a condition in ϕ(α).
4. p∗ ≤ p in B iff dom(p∗) ⊇ dom(p) and for each α ∈ dom(p), ⟨∅, p∗�α⟩ forces

in (A�α) ∗ (U̇�α) that p∗(α) ≤ p(α).

5. U = U̇[A] has the same conditions as B, but the richer order given by p∗ ≤ p
iff dom(p∗) ⊇ dom(p) and there exists a condition a∗ ∈ A so that for every
α ∈ dom(p), ⟨a∗�α, p∗�α⟩ 
(A�α)∗(U̇�α) p

∗(α) ≤ p(α).

Remark 4.2. The condition defining the order in (5) is equivalent to the
seemingly weaker condition that dom(p∗) ⊇ dom(p) and for every α ∈ dom(p)
there exists a ∈ A�α so that ⟨a, p∗�α⟩ 
(A�α)∗(U̇�α) p

∗(α) ≤ p(α). To see that the

two are equivalent, suppose the seemingly weaker condition holds, and let a∗ ∈ A
force this fact about p∗ and p over V . Then a∗ witnesses that the condition in
(5) holds.

Definition 4.1 is such that (A�α)∗(U̇�α+1) makes sense, and for α that satisfies

the requirements in condition (2), it can be viewed as an iteration (A�α)∗(U̇�α)∗
ϕ(α). One can think of U̇ as an iteration of posets given by the indestructible
Laver function ϕ, with initial segments of A folded in.
When taking a filter in A ∗ U̇, we always assume that it is strong enough on

the A coordinate, to be generated by a set of pairs ⟨a, b̌⟩ where a ∈ A and b ∈ B.
(Any generic filter has this property, since any condition ⟨a, ḃ⟩ in the filter can

be strengthened on the A coordinate to force a value for ḃ.)
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Definition 4.3. Let β < ν, and let F ⊆ A∗U̇�β be a filter. Define B+F �[β, ν)
to consist of conditions p ∈ B with dom(p) ⊆ [β, ν) ordered as follows: p∗ ≤ p
iff dom(p∗) ⊇ dom(p) and there exists ⟨a, b⟩ ∈ F so that for every α ∈ dom(p),
⟨a�α, b ∪ p∗�α⟩ forces p∗(α) ≤ p(α).

Our main initial uses of Definition 4.3 are in cases where F is generic for
A�β ∗ U̇�β. Other uses will include situations where F = {⟨∅, b⟩ | b ∈ Bβ} with
Bβ generic for B�β. We will also have hybrids of these two forms, where a part
of F is of the first form above, and another part is of the second.
U itself can be viewed as a use of Definition 4.3. Let A be generic for A over

V . Then F = {⟨a, ∅⟩ | a ∈ A} is a filter contained in A ∗ U̇�0. It is easy to check
that the poset B+F �[0, ν) in this case is simply the poset U.
Similarly, if Uβ is generic for U�β over V [A], then F = {⟨a, u⟩ | a ∈ A, u ∈ Uβ}

is a filter contained in A ∗ U̇�β. B+F �[β, ν) is a poset in V [A][Uβ ]. We denote
it by U�[β, ν). More generally, U�[β, γ) denotes the poset B+A∗Uβ �[β, γ). The
poset belongs to the extension of V by A ∗ U�β. The generic A ∗ Uβ is omitted
in the notation U�[β, γ), and is understood from the context.
Let U0 = U�κ2, and for n > 0 let Un = U�[κn+1, κn+2). Define U[0,n] =

U�κn+2, and define other interval posets similarly. U[0,n] is a poset in V [A[0,n]].
For n > 0, Un is a poset in V [A[0,n] ∗ U[0,n)].

We sometimes use the notation B+F
[β,ν) for B

+F �[β, ν), and similarly with U.
Recall that we left the exact definition of the set Index used in the definition of

A1 unspecified. We now discharge our obligation to specify the set. Its definition
refers to A0 and U̇0, but these are both known before any use of A1.

Definition 4.4. Define Index to consist of all µ < κ2 so that:

1. µ is a strong limit cardinal of cofinality ω and dom(ϕ) has a largest point
λ below µ.

2. Over any extension V [E] of V by a µ closed poset, the further extension

by A0�λ ∗ U̇0�λ+ 1 does not collapse (µ+)V .

3. A0�λ ∗ U̇0�λ+ 1 has size at most µ+.

There are many µ satisfying the requirements of the definition. For example
any strong limit cardinal µ < κ2 of cofinality ω, with largest point λ below
µ in dom(ϕ) and so that |ϕ(λ)| < µ, satisfies the requirements, as the poset

A�λ∗U̇�λ+1 in this case has size less than µ, and in particular cannot collapse µ+

over any model. Our forcing constructions will use a slightly different situation,
where |ϕ(λ)| = µ+, but forcing with A�λ ∗ U̇�λ+ 1 still preserves µ+.

Claim 4.5. Let F̄ ⊆ F both be filters for A ∗ U̇�β. Let Ḡ be generic for
B+F̄ �[β, ν) over some model containing F̄ and F . Then the upward closure of Ḡ
in B+F �[β, ν) is generic for B+F �[β, ν) over the same model.

Proof. Note to begin with that B+F̄ �[β, ν) and B+F �[β, ν) have the same
conditions, and that the latter has a richer order, immediately by their defini-
tions. So the upward closure of Ḡ in B+F �[β, ν) makes sense, and is a filter.
It is easy to check that if q ≤B+F �[β,ν) p, then there is r ≤B+F �[β,ν) q so that

r ≤B p. (Let ⟨a, u⟩ ∈ F witness that q ≤B+F �[β,ν) p. Define r with the same
domain as q as follows. If α ̸∈ dom(p), set r(α) = q(α). For α ∈ dom(p), set
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r(α) to be a name forced equal to q(α) by ⟨a�α, u ∪ r�α⟩, and forced equal to

p(α) by all conditions of A�α ∗ U̇�α that are incompatible with ⟨a�α, u ∪ r�α⟩.)
So every dense open set in B+F �[β, ν) is dense in B+∅�[β, ν), hence also in

B+F̄ �[β, ν). The claim follows. ⊣

Remark 4.6. The converse of Claim 4.5 may fail in general. A generic G
for B+F �[β, ν) may contain conditions which are incompatible in B+F̄ �[β, ν),
and in particular it is not a filter in the latter poset, let alone a generic filter.
However, by standard forcing arguments using Claim 4.5, one can force to add
a refinement Ḡ ⊆ G which is a generic filter for B+F̄ �[β, ν), and so that G is the
upward closure of Ḡ.

We refer to the forcing refining a generic G for B+F �[β, ν) to a generic Ḡ ⊆ G

for B+F̄ �[β, ν) as the factor forcing. The forcing is simply the restriction of

B+F̄ �[β, ν) to conditions in G.

Claim 4.7. Let β̄ ≤ β. Suppose that F̄ is generic for A�β̄ ∗ U̇�β̄ over V . Then
B+F̄ �[β, ν) is <β directed closed in V [F̄ ].

Proof. Let τ ∈ V name a sequence in V [F̄ ], of length δ < β, of conditions

in B+F̄ �[β, ν) that form a directed set. Without loss of generality suppose that

the fact that the set is directed is forced by the empty condition in A�β̄ ∗ U̇�β̄.
Let D be the union of all possible values forced for dom(τξ), ξ < δ. β is

the smallest possible element of D, and for every α > β, D ∩ α is the union of
fewer than α sets which each satisfy the support requirements of condition (1)
of Definition 4.1 at α. It follows that D ∩ α too satisfies these requirements.
We now define a condition p, with domain D, that is forced to be a lower

bound for all conditions τξ. The definition is by induction on α ∈ D. Working

in V , let p(α) be an A�α ∗ U̇�α name forced by ⟨∅, p�α⟩ to be a lower bound
in ϕ(α)[Fα] for the conditions τξ[Fα�β̄](α)[Fα]. (Fα here indicates a generic for

A�α ∗ U̇�α.) Such a name exists since by condition (2) of Definition 4.1, ϕ(α)

is forced in A�α ∗ U̇�α to be <α directed closed, and, using induction and the
initial assumption about τ , ⟨∅, p�α⟩ forces τξ[Fα�β̄](α)[Fα] to be directed.

Then p is a lower bound in B+F̄ �[β, ν) for the conditions τξ[F̄ ]. ⊣

Remark 4.8. Let α < κn+1 be a successor point of dom(B), above κn. (If n ≥
1, the set of such α is cofinal in κn+1.) The poset (A[0,n] ∗ U̇�α)×B+∅�[α, κn+2)
is a product of an α-c.c. poset with a <α closed poset. (The first factor is α-c.c.
since A[0,n] is κ+

n -c.c. in V and U�α has size less than α. The second factor is
<α closed by Claim 4.7.) By Claim 2.5, it does not collapse α. Forcing with

(A[0,n] ∗ U̇�α) × B+∅�[α, κn+2) subsumes forcing with A[0,n] ∗ U̇[0,n], since, by

Claim 4.5, the upward closure of a generic for B+∅�[α, κn+2) provides a generic

for U�[α, κn+2). Hence forcing with A[0,n] ∗ U̇[0,n] does not collapse α. If n ≥ 1,

this is true for cofinally many α < κn+1, so forcing with A[0,n] ∗ U̇[0,n] does not
collapse κn+1.

Claim 4.9. Let A ∗ U be generic for A ∗ U̇ over V . Let β < ν and let F =
A�β ∗ U�β. Then, in the factor poset to add a generic G for B+F �[β, ν) that
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refines U�[β, ν), every decreasing sequence of length < β that belongs to V [F ]
has a lower bound.

Proof. Let p⃗ = ⟨pξ | ξ < δ⟩ in V [F ] be a descending sequence of length δ < β
in the factor poset, meaning that the sequence is descending in B+F �[β, ν), and
the conditions pξ all belong to U�[β, ν).
Let ⟨a, u⟩ ∈ A[β,ν) ∗ U[β,ν) force, over V [F ], that (∀ξ < δ)pξ ∈ U�[β, ν). Then

u ≤ pξ in U�[β, ν) for all ξ, and this is forced by a. Extending ⟨a, u⟩ if needed we
may assume it also forces that p⃗ has no lower bound in the factor poset. In other
words it forces that no lower bound for p⃗ in B+F �[β, ν) belongs to U�[β, ν).
By Claim 4.7 and since the sequence p⃗ belongs to V [F ], there is p which is a

lower bound for p⃗ in B+F �[β, ν).
An argument similar to that in the proof of Claim 4.5 now produces a condition

r ≤U�[β,ν) u so that r ≤B+F �[β,ν) pξ for all ξ. (Define r so that for each α ∈
dom(r), ⟨a�α, u�α⟩ forces r(α) = u(α), and all conditions incompatible with
⟨a�α, u�α⟩ force r(α) = p(α).)
But then r is a lower bound for p⃗ in B+F �[β, ν), and since r ≤U�[β,ν) u, ⟨a, u⟩

does not force r outside U�[β, ν), contradicting the choice of ⟨a, u⟩. ⊣

Definition 4.10. Let V [E] be an extension of V by a poset E, and let P =

Ṗ[E] be a poset in V [E]. Define the poset P̂ in V to consist of canonical names ṗ

forced to be elements of Ṗ, with ṗ∗ ≤P̂ ṗ iff 
V
E ṗ∗ ≤ ṗ. P̂ is called the termspace

forcing, and its definition is due to Laver.

Claim 4.11. Let Ṗ and P̂ be as in Definition 4.10.

1. If Ṗ is forced to be <α directed closed, then P̂ is <α directed closed in V .
2. Let Ĝ be generic for P̂ over a model that contains V [E]. Then the upward

closure of {ṗ[E] | ṗ ∈ Ĝ} in Ṗ[E] is generic for P over the same model.

Proof. Similar to the proofs of Claims 4.7 and 4.5. ⊣

Lemma 4.12. Let n < ω. Let A∗U[0,n] be generic for A∗U̇[0,n] over V . Then in
V [A][U[0,n]], κn+2 is generically supercompact, and this supercompactness is in-
destructible under forcing with posets in V [A[0,n]][U[0,n]] that are <κn+2 directed
closed in V [A[0,n]][U[0,n]].
The forcing notion producing the generic supercompactness embedding is iso-

morphic to Add(κn, π(κn+2))
V ×Add(κn+1, π(κn+3))

V , where π is the embedding
produced.

Precisely the statement of the lemma means the following. Let P be <κn+2

directed closed in V [A[0,n]][U[0,n]]. Let G be generic for P over V [A][U[0,n]]. Then
for each γ there is, in an extension of V [A][U[0,n]][G], an elementary embedding
π : V [A][U[0,n]][G] → V ∗[A∗][U∗

[0,n]][G
∗] so that crit(π) = κn+2, π(κn+2) > γ,

π�Ord belongs to V , and V ∗[A∗][U∗
[0,n]][G

∗] is γ closed in the generic extension

producing the embedding. The generic extension producing the embedding is an
extension of V [A][U[0,n]][G] by Add(κn, π(κn+2))

V ×Add(κn+1, π(κn+3))
V .

Proof of Lemma 4.12. Fix γ. Let Ṗ ∈ V name P. Using the fact that
ϕ is an indestructible Laver function, find a γ supercompactness embedding
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π : V [A[n+2,ω)] → V ∗[A∗
[n+2,ω)], in V [A[n+2,ω)], with π�Ord in V , crit(π) = κn+2,

and π(ϕ)(κn+2) = Ṗ.
Increasing γ if needed, we may pick π so that γ++ is a fixed point of the

embedding. In particular then the set {dense subsets of π(B)+∅�(κn+2, π(κn+2))
that belong to V ∗} has cardinality γ+ in V . Using this, the fact that the first
point in dom(π(ϕ)) above κn+2 is greater than γ, and the closure given by

Claim 4.7, one can construct, in V [A[n+2,ω)], a filter B̂ which is generic for

π(B)+∅�(κn+2, π(κn+2)) over V
∗[A∗

[n+2,ω)]. (Claim 4.7 is applied in V ∗ with β̄ =

0. It shows that the poset π(B)+∅�(κn+2, π(ν)) is γ closed in V ∗, and therefore
so is π(B)+∅�(κn+2, π(κn+2)). This closure transfers to V [A[n+2,ω)], since V ∗ is
itself γ closed in this model. In V [A[n+2,ω)] one can then enumerate the dense
sets that belong to V ∗[A∗

[n+2,ω)] and meet all of them through a construction of

length γ+.)

Let P̂ be the forcing notion associated to Ṗ by Definition 4.10. By Claim
4.11, P̂ is <κn+2 directed closed in V . By elementarity of π it follows that

π(P̂) is <π(κn+2) directed closed in V ∗, and this implies that it is γ closed in

V [A[n+2,ω)]. Working in V [A[n+2,ω)] we can therefore find Ĝ∗ which is generic

for π(P̂) over V ∗[A∗
[n+2,ω)][B̂]. We build Ĝ∗ below a specific condition ṗ∗0 in P̂.

We will say what this condition is later on.
Let Ân be generic for π(An)�[κn+2, π(κn+2)) over V [A][U[0,n]][G]. Similarly

let Ân+1 be generic for π(An+1)�(π(κn+3) − π′′κn+3)) over V [A][U[0,n]][G][Ân].

(These posets are isomorphic to Add(κn, π(κn+2))
V and Add(κn+1, π(κn+3))

V

respectively.)

Then An and Ân can be joined to form a generic A∗
n for π(An), and simi-

larly An+1 and Ân+1 can be joined to form a generic A∗
n+1 for π(An+1). Let

A∗
[0,n+1] be the resulting sequence ⟨A0, . . . , An−1, A

∗
n, A

∗
n+1⟩. It is clear that

π : V [A[n+2,ω)] → V ∗[A∗
[n+2,ω)] now extends to an embedding, which we also

denote π, from V [A] to V ∗[A∗].

U[0,n], G, and the upward closure of B̂ in π(U)�(κn+2, π(κn+2)) can be joined
to form a generic U∗

[0,n] for π(U�κn+2). It is clear that π extends further, to an

embedding of V [A][U[0,n]] to V ∗[A∗][U∗
[0,n]].

Since π′′�V belongs to V [A[n+2,ω)], V
∗ is γ closed in V [A[n+2,ω)], and G is

part of the generic U∗
[0,n], π

′′G belongs to V ∗[A∗
[0,n]][U

∗
[0,n]]. It follows from this

and the directed closure of π(P) in V ∗[A∗
[0,n]][U

∗
[0,n]] that π

′′G has a lower bound

in π(P). Let ṗ∗0 ∈ V ∗ name such a lower bound. Note that ṗ∗0 can be defined

without reference to A∗
[0,n] and U∗

[0,n], and in particular with no reference to Ân

and Ân+1, so it could have defined earlier in the proof, before fixing Ĝ∗. We

may therefore assume that ṗ∗0 belongs to Ĝ∗.

So far we extended π to an embedding of V [A][U[0,n]] into V ∗[A∗][U∗
[0,n]]. Ĝ

∗ is

generic for π(P̂) over V ∗[A∗
[n+2,ω)][B̂]. From this and the genericity of A∗

[0,n+1],

U[0,n], and G over V ∗[A∗
[n+2,ω)][B̂][Ĝ∗] (indeed these objects are generic over

V [A[n+2,ω)], which contains V ∗[A∗
[n+2,ω)][B̂][Ĝ∗]), it follows that Ĝ∗ is generic
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over V ∗[A∗
[n+2,ω)][B̂][A∗

[0,n+1]][U[0,n]][G]. Hence Ĝ∗ is generic also over (the

smaller model) V ∗[A∗][U∗
[0,n]].

By Claim 4.11 it follows that the upward closure of {ṗ[A∗
[0,n]][U

∗
[0,n]] | ṗ ∈ Ĝ∗}

is generic for π(P) over V ∗[A∗][U∗
[0,n]]. Let G

∗ denote this upward closure. Since

ṗ∗0[A
∗
[0,n]][U

∗
[0,n]] is a lower bound for π′′G, G∗ contains π′′G. So π extends, finally,

to an embedding of V [A][U[0,n]][G] into V ∗[A∗][U∗
[0,n]][G

∗]. ⊣
The definition of B and U was designed specifically to lead to Lemma 4.12.

We continue now with definitions of posets that collapse all cardinals between
κn+1 and κn+2 to κn+1, and secure the tree property at κn+2. One can view
this as being done (for κn+2) over the model V [A�κn+1 ∗ U�κn+1]. Viewed this
way our poset is similar to the one in Mitchell [5] (termed “Mitchell forcing” in
Abraham [1]), but using An = Add(κn, κn+2)

V rather than the version computed
in V [A�κn+1 ∗ U�κn+1]. This modification helps us with reverse analysis of the
end poset later on.

Definition 4.13. For each n < ω define a poset Cn in V as follows. Condi-
tions in Cn are functions p so that:

1. dom(p) is contained in the interval (κn+1, κn+2), and | dom(p)| < κn+1.

2. For each α ∈ dom(p), p(α) is an (A�α) ∗ U̇�κn+1 name for a condition in

the poset Add(κn+1, 1) of the extension by (A�α) ∗ U̇�κn+1.

Conditions are ordered as follows: p∗ ≤ p iff dom(p∗) ⊇ dom(p), and for each

α ∈ dom(p), it is forced (by the empty condition) in (A�α)∗U̇�κn+1 that p
∗(α) ≤

p(α).

If n ≥ 1, then U�κn+1 is simply U[0,n). In this case the poset (A�α) ∗ U̇�κn+1

used in the definition can also be written as (A[0,n) ∗ U̇[0,n)) × An�α. (If n = 0
this is not quite a precise match, since U�κ1 is part of U0.)
Let C be the full support product of the posets Cn. We use interval notation

in the usual way, so that for example, C�[κn+1, κn+2) is Cn, and C�[κn+1, ν) is
C[n,ω).

Definition 4.14. For a filter F ⊆ A ∗ U̇ define the enrichment of C to F ,
denoted C+F , to be the poset with the same conditions as C, but the richer
order given by p∗ ≤ p iff there exists a condition ⟨a, u⟩ ∈ F so that for each
α ∈ dom(p), ⟨a�α, u�κi⟩ 
A�α∗U̇�κi

p∗(α) ≤ p(α), where i is largest so that
κi ≤ α.

The poset we intend to use is the enrichment C+A∗U where A ∗ U is generic
for A ∗ U̇ over V . We will refer to intervals of this poset, for example C+A∗U

n =
C+A∗U �[κn+1, κn+2). In such references only A�κn+2 ∗U�κn+1 is relevant to the
enrichment, but to reduce notational clutter we still use the superscript +A ∗U .
The definition of C and C+A∗U is similar to the corresponding definition of B

and U, except that the underlying posets used at each coordinate α are different,
the support is different, and there is no self-reference, meaning that the ordering
at coordinate α does not rely on the restriction of the conditions ordered to
α. The definition of C is simpler than the simultaneous definition of B and U,
because there is no need to deal with self-reference here.
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Note that the definition of C0 makes a reference to κ1. In contexts where we
have a generic A1 for A1, κ1 is determined by this generic. In other contexts,
κ1 is a parameter in the definition of C0. We sometimes refer to the poset as
C0(κ1), when κ1 is not understood from the context.

Claim 4.15. 1. Let F be generic for A�β ∗ U̇�β for β ≤ κn+1. Then the
poset C+F �[κn+1, ν) is <κn+1 directed closed in V [F ].

2. Let β ∈ (κn+1, κn+2) and let F be generic for A�β∗U̇�κn+1. Then the poset
C+F �[β, κn+2) is <κn+1 directed closed in V [F ].

Proof. Similar to Claim 4.7, except that (a) the amount of closure here in
condition (2) is lower, because the underlying poset at each coordinate α is only
forced to be <κn+1 directed closed; and (b) the domain D of the lower bound
must be defined more carefully, since it is required here to have size < κn+1, a
stricter demand than the support restrictions in the case of Claim 4.7.
We indicate how to obtain the domain D, in the harder of the two cases of

the claim, case (2), and leave the remaining details to the reader.
Let τ ∈ V name a sequence in V [F ] of conditions in C+F �[β, κn+2), of length

δ < κn+1, that form a directed set.
Suppose to begin with that n ≥ 1. By Remark 4.8, κn+1 is not collapsed in

V [F ]. Since τ is forced to be a sequence of length < κn+1 it follows that there

is η < κn+1 so that the restriction of F to A�β ∗ U̇�η is sufficient to interpret τ .
Let ⟨a, u⟩ in F force this.
Increasing η we may assume it is a successor point in dom(ϕ) and greater than

κn, so that A�β ∗ U̇�η is η-c.c. in V . Below ⟨a, u⟩, there are then fewer than η
possible values for the domain of τξ for each ξ < δ. The set D equal to the union
of these possible values over all ξ < δ then has size less than κn+1.
Suppose next that n = 0. By Definition 4.4 and since κ1 = µ+ for some

µ ∈ Index, A�λ ∗ U̇�λ + 1 has size at most κ1, and does not collapse κ1, where
λ is the largest point of dom(ϕ) below µ. U�κ1 is equal to U�λ + 1, so the full

poset A�β∗U̇�κ1 is equal to (A�λ∗U̇�λ+1)×Add(ω, [λ, β)). Since Add(ω, [λ, β))
is κ1-c.c. over any model that preserves κ1, the full poset does not collapse κ1.
As in the case of n > 0 it now follows that τ [F ] can be determined from the

restriction of F to Add(ω, [λ, β)) and some part of A�λ ∗ U̇�λ+1 of size µ < κ1.
Again as in the case of n > 0, this allows bounding the union of possible domains
for τξ by a set of size < κ1. ⊣

Claim 4.16. Let A ∗ U be generic for A ∗ U̇ over V , and let S be generic for
C+A∗U over V [A ∗ U ]. Let n < ω and let F = A�κn+2 ∗ U�κn+2. Then, in the
factor poset to add a generic G for C+F �[κn+2, ν) that refines S�[κn+2, ν), every
decreasing sequence of length < κn+2 that belongs to V [F ] has a lower bound.

Proof. Similar to Claim 4.9 (with β = κn+2). ⊣

Claim 4.17. Let A�κn+2 ∗ U�κn+1 be generic for A�κn+2 ∗ U�κn+1 over V .
Then forcing with C+A�κn+2∗U�κn+1�[κn+1, κn+2) over V [A�κn+2 ∗ U�κn+1] col-
lapses all cardinals between κn+1 and κn+2 to κn+1.

Proof. Let Sn be generic for C+A�κn+2∗U�κn+1�[κn+1, κn+2). For each α ∈
(κn+1, κn+2), let xα =

∪
p∈Sn

p(α)[A�α ∗ U�κn+1]. Then by the definition of
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C+A�κn+2∗U�κn+1 and genericity, xα is a subset of κn+1, added generically using
bounded initial segments that belong to V [A�α ∗ U�κn+1]. In V [A�α] there are
at least α subsets of κn. (This is because An�α = Add(κn, α).) By genericity,
each of these occurs as a segment of xα. Since xα is a subset of κn+1, it follows
that α is collapsed to κn+1. ⊣
Let A be generic for A over V , let U be generic for U over V [A], and let S be

generic for C+A∗U over V [A][U ]. Let e be generic over V [A][U ][S] for the poset
Col(ω, µ)V . (Recall that the generic A1 selects µ. A1 is generic for Add(κ1, κ3)
where κ1 = µ+.) We intend to show that in the extension V [A][U ][S][e], κn is
ℵn for each n, and the tree property holds at κn+2.
We begin by determining the cardinals of the model. For this we use a reverse

analysis of the forcing. Let C refine S to a generic for C over V [A][U ][e]. Let B
refine U to a generic for the product B�κ1×

∏
B+∅�[κn+1, κn+2) over V [A][C][e].

(This product is not the same as B, since B is not a product of its coordinates.)
Then V [A][U ][S][e] ⊆ V [A][B][C][e]. (Indeed, U is the upward closure of B in
U, and S is the upward closure of C in C+A∗U .) V [A][B][C][e] is a product of
its segments between successive κns, rather than a composition, and therefore
easier to analyze.

Claim 4.18. Let n < ω. Then Vn+2 = V [A[n+2,ω)×B�[κn+2, ν)×C�[κn+2, ν)]
is a <κn+2 closed extension of V .

Proof. Closure is clear for A[n+2,ω), holds by Claim 4.7 (with β̄ = 0) for

B+∅�[κn+2, ν), and by part (1) of Claim 4.15 (with β = 0) for C�[κn+2, ν). ⊣
Let Bn denote B+∅�[κn+1, κn+2), and let Bn = B�[κn+1, κn+2), so that Bn is

generic for Bn, and B = B�κ1 ×
∏

Bn. (With this indexing, U0 is an upward
closure of B�κ1 ×B0, and for n ≥ 1, Un is an upward closure of Bn.)

Claim 4.19. κn+2 is an inaccessible cardinal in Vn+2[Bn]. Moreover Vn+2 has
the <τ covering property in Vn+2[Bn], for every cardinal τ ≥ κn+2 of Vn+2. In
particular the extension does not collapse any cardinals above κn+2.

Proof. For any successor point α ∈ dom(Bn), B+∅�[κn+1, α)×B+∅�[α, κn+2)
subsumes Bn by Claim 4.5. (Given a generic B[κn+1,α) × Ḡ for the product, the

claim is used to convert Ḡ to a generic for B+B[κn+1,α)�[α, κn+2) that can then
be appended to B[κn+1,α).) This is a product of a poset which has size less than
α (because α is a successor point in dom(Bn)), with a poset which is <α closed
(by Claim 4.7). It follows that α remains a cardinal in the extension by this
product, that the cofinality of κn+2 is not changed to be smaller than α, and
that there are at most α bounded subsets of α in the extension. It also follows
that every subset of Vn+2 of size < α in the extension is contained in a set of size
less than α in Vn+2. Since the product subsumes Bn, all these claims hold also
for the extension by Bn. Taken together for all successor points α ∈ dom(Bn)
they imply that κn+2 is inaccessible in Vn+2[Bn], and that Vn+2 has the <κn+2

covering property in Vn+2[Bn]. Finally, since the forcing notion adding Bn has
size κn+2, every subset of Vn+2 of size λ ≥ κn+2 in Vn+2[Bn] is contained in a
set of the same size in Vn+2 ⊣
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Claim 4.20. Cn is κn+2-c.c. in Vn+2[Bn]. In particular, no cardinals ≥ κn+2

are collapsed in the extension of Vn+2[Bn] by Cn, and Vn+2[Bn] has the <τ
covering property in the extension, for every cardinal τ ≥ κn+2 of Vn+2[Bn].

Proof. By Claims 4.18 and 4.19, V has the <κn+2 covering property in
Vn+2[Bn]. Since all conditions in Cn are functions in V with domain of size
< κn+1 in V , it follows by Claim 2.2 that any antichain of Cn of size κn+2 in
Vn+2[Bn] can be refined to an antichain of the same size, with conditions whose
domains form a ∆ system. Letting r be the root of the system this implies that
there are κn+2 pairwise incompatible conditions in Cn with domain r. But as
sup(r) < κn+2, this contradicts the definition of Cn and the fact that κn+2 is
inaccessible in Vn+2[Bn]. ⊣

Claim 4.21. An+1 is κn+2-c.c. in Vn+2[Bn][Cn]. In particular no cardinals
≥ κn+2 are collapsed in the extension of Vn+2[Bn][Cn] by An+1, and the model
has the <τ covering property in the extension, for every cardinal τ ≥ κn+2 of
the model.

Proof. Similar to the proof of Claim 4.20, using the fact that, by Claims
4.18, 4.19, and 4.20, V has the <κn+2 covering property in Vn+2[Bn][Cn]. ⊣

Corollary 4.22. For n ≥ 2, κn is a cardinal in V1 = V [A[1,ω)][B�[κ1, ν)][C],
and V has the <κn covering property in V1.

Proof. Immediate working through the extensions in reverse, using Claims
4.18, 4.19, 4.20, and 4.21. ⊣

Claim 4.23. V1 = V [A[1,ω)][B�[κ1, ν)][C] is a <κ1 closed extension of V , and
in particular κ1 is a cardinal in this extension.

Proof. V2 = V [A[2,ω)][B[1,ω)][C[1,ω)] is a <κ2 closed extension of V by Claim
4.18. The posets A1, B0, and C0 are <κ1 closed in V , hence also in V2, so
V [A[1,ω)][B[κ1,ν)][C[0,ω)] is a <κ1 closed extension of V . ⊣

Lemma 4.24. In the extension V [A][U ][S][e], κn = ℵn for each n, and V has
the <κn covering property for all n ≥ 2. The same is true in the larger extension
V [A][U�κ1][B�[κ1, ν)][C][e].

Proof. By Corollary 4.22, κn remains a cardinal in V [A[1,ω)][B�[κ1, ν)][C]
for each n ≥ 2, and V has the <κn covering property in this model. Since
A0 = Add(ω, κn+2)

V is ω1-c.c. in this model, the poset Col(ω, µ) leading to e has
size µ < κ1, and the poset U�κ1 has size at most κ1 by the requirements in Def-
inition 4.4, the same is true of the model V [A[1,ω)][B�[κ1, ν)][C][A0][e][U�κ1] =
V [A][B�[κ1, ν)][C][e][U�κ1].
By Claim 4.23, V [A[1,ω)][B�[κ1, ν)][C] is a <κ1 closed extension of V , and in

particular κ1 is a cardinal in this extension. Recall that κ1 = µ+ for some µ
which belongs to the set Index given in Definition 4.4. By definition of Index,
this implies that there is a largest point λ in dom(ϕ) below µ (equivalently largest
below κ1, as dom(ϕ) includes only inaccessible cardinals), so that forcing with

A�λ ∗ U̇�λ + 1 over any <κ1 closed extension of V , does not collapse κ1. So κ1

remains a cardinal in V [A[1,ω)][B�[κ1, ν)][C][A�λ][U�λ + 1]. Since there are no
points in the domains of conditions of B between λ and µ, U�λ+1 is the same as
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U�κ1. Since A0 and Col(ω, µ) are κ1-c.c. in any model where κ1 is a cardinal, the
addition of A0�[λ, κ2) and e does not collapse κ1. It follows that κ1 is a cardinal
in V [A[1,ω)][B�[κ1, ν)][C][e][A�κ2][U�κ1] = V [A][B�[κ1, ν)][C][e][U�κ1]. κ0 = ω
is of course a cardinal in the model too. The addition of e, A�κ2, and U�κ1 does
not destroy the <τ covering property for any τ ≥ κ2, since these objects are
added by posets which are κ1-c.c. or of size κ1.
We showed so far that κn is a cardinal in V [A][B�[κ1, ν)][C][e][U�κ1] for all n,

and that V has the <κn covering property in this model for n ≥ 2. These prop-
erties transfer to the smaller model V [A][U�κ1][U�[κ1, ν)][S][e] = V [A][U ][S][e].
To complete the proof of the lemma, it is enough to show that for every n < ω,
all cardinals between κn and κn+1 are collapsed to κn in this model. For n ≥ 1
this is true by Claim 4.17, and for n = 0 it is true because e collapses µ, the
predecessor of κ1, to ω = κ0. ⊣

Remark 4.25. Recall that ν = supκn. It follows from Lemma 4.24 that ν+

is not collapsed in the extensions V [A][U ][S][e] and V [A][U�κ1][B�[κ1, ν)][C][e].
Since the posets leading to these extensions have size ν+, no greater cardinals
are collapsed either. Note that the proof of Lemma 4.24 and the claims leading
to it could be repeated over any ν closed extension V [E] of V , with no change. It
follows that for any such E, ν+ is not collapsed by the forcing to add A∗U ∗S ∗e
over V [E], and similarly it is not collapsed by the forcing to add A ∗ U�κ1 ∗
B�[κ1, ν) ∗ C ∗ e over V [E].

Lemma 4.26. For each n < ω, all sequences of ordinals of length < κn+1 in
V [A][U ][S][e] belong to V [A�κn+2][U�κn+1][S�κn+1][e].

Proof. Let f be a sequence of ordinals of length < κn+1 in V [A][U ][S][e].
Then f belongs to V [A][U�κn+1][B�[κn+1, ν)][S�κn+1][C�[κn+1, ν)][e], in other

words to Vn+1[A[0,n]][U�κn+1][S�κn+1][e]. Let ḟ ∈ Vn+1 be a name so that

f = ḟ [A[0,n]][U�κn+1][S�κn+1][e].
Since κn+1 is a cardinal in Vn+1[A[0,n]][U�κn+1][S�κn+1][e], and since the

length of f is smaller than κn+1, there is δ < κn+1 so that the parts of U�κn+1

and S�κn+1 needed to interpret ḟ are just U�δ and S�δ. (In case n = 0, where

δ < κ1, U�δ means the restriction of U to a subset of U̇ of size µ. We can find
such a restriction, which still suffices to interpret ḟ , because of the properties
of κ1 = µ+ given by the definition of the set Index, specifically condition (3) in
Definition 4.4.)
Since A[0,n] is κn+1-c.c. in Vn+1, and the poset giving rise to e, Col(ω, µ), has

size µ < κn+1, it follows using these restrictions that ḟ can be replaced by a
name of size < κn+1 in Vn+1. By Claim 4.18, or Claim 4.23 if n = 0, it follows

that ḟ belongs to V . Hence f belongs to V [A[0,n]][U�κn+1)][S�κn+1][e]. ⊣

Remark 4.27. It follows from the proof of Lemma 4.26 that if Q ∈ V is <κn+1

closed in V , then forcing with Q over V [A][U ][S][e] does not add sequences of
ordinals of length < κn+1. To see this, let Q be generic for Q over V [A][U ][S][e],
and repeat the proof of Lemma 4.26 using Vn+1[Q] instead of Vn+1 throughout.
(Vn+1[Q] is a <κn+1 closed extension of V , by the closure of Q, and this is
all that the proof required.) The proof shows that any sequence of ordinals
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of length < κn+1 in V [A][U ][S][e][Q] belongs to V [A�κn+2][U�κn+1][S�κn+1][e],
and in particular it belongs to V [A][U ][S][e].

Claim 4.28. In V [A][U ][S][e], 2κn = κn+2 for each n.

Proof. It is clear that 2κn ≥ κn+2, since An adds κn+2 subsets of κn. For
the reverse direction, it is enough by Lemma 4.26 to show that 2κn ≤ κn+2 in
the extension V [A�κn+2][U�κn+1][S�κn+1][e].
The extension V [A�κn+1][U�κn+1][S�κn+1][e] is obtained through a poset of

size κn+1, leaving κn+2 an inaccessible cardinal. A standard counting of names
shows that in the further extension by A�[κn+1, κn+2), 2

κn ≤ κn+2. ⊣

Lemma 4.29. In V [A][U ][S][e], the tree property holds at κn+2 for each n.

Proof. Fix n. Let T be a κn+2 tree, in other words an ℵn+2 tree, in
V [A][U ][S][e]. We intend to produce, in a generic extension of V [A][U ][S][e]
by some poset P, an elementary embedding π : V [A][U ][S][e] → V [A∗][U∗][S∗][e]
with critical point κn+2. Then since T is a κn+2 tree, π(T )�κn+2 is simply T
itself. Any node on level κn+2 of π(T ) determines a cofinal branch through
π(T )�κn+2, hence through T . So T has cofinal branches in the extension pro-
ducing π, namely the extension by P. We will end the proof by showing that P is
a forcing notion that does not add new cofinal branches to T , so T must already
have cofinal branches in V [A][U ][S][e].
We begin by producing π, while keeping track of the forcing notions needed

to obtain it.
Let F = A�κn+2∗U�κn+2. Let P1 be the forcing notion refining U�[κn+2, ν) to

a generic G1 for B+F �[κn+2, ν). Let P2 be the forcing notion refining S�[κn+2, ν)
to a generic G2 for C+F �[κn+2, ν).

Claim 4.30. P1 and P2 are <κn+1 closed in V [A][U ][S�[κn+1, ν)].

Proof. By Claim 4.9, every decreasing sequence of P1 that has length < κn+2

and belongs to V [F ], has a lower bound in P1. By Lemma 4.26, every decreasing
sequence of length < κn+1 in P1 that belongs to V [A][U ][S�[κn+1, ν)], belongs
already to V [A�κn+2][U�κn+1] ⊆ V [F ]. (A direct application of the lemma
gives that the sequence belongs to V [A�κn+2][U�κn+1][S�κn+1]. The sequence
is assumed to belong to V [A][U ][S�[κn+1, ν)]. These two models are mutually
generic extensions of V [A�κn+2][U�κn+1]. Since the sequence belongs to both,
it must belong to V [A�κn+2][U�κn+1].)
It follows that all decreasing sequence of length < κn+1 in P1 that belongs to

V [A][U ][S�[κn+1, ν)] have lower bounds in P1. A Similar argument using Claim
4.16 applies to P2. ⊣
The posets B+F �[κn+2, ν) and C+F �[κn+2, ν) belong to V [F ] and are <κn+2

directed closed in this model, by Claims 4.7 and 4.15. We can therefore apply
Lemma 4.12, using specifically the indestructibility of the generic supercom-
pactness of κn+2 under forcing with the product of these two posets. Apply-
ing the lemma we obtain an elementary embedding π : V [A][U[0,n]][G1][G2] →
V ∗[A∗][U∗

[0,n]][G
∗
1][G

∗
2].
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By Lemma 4.12, π is obtained in the extension of V [A][U[0,n]][G1][G2] by the

posets Add(κn, π(κn+2))
V × Add(κn+1, π(κn+3))

V . Let Ân and Ân+1 be the
corresponding generics.
Let U∗

[n+1,ω) be the upward closure of G∗
1 in π(U[n+1,ω)). Then U∗

[n+1,ω) is

generic for π(U[n+1,ω)) over V ∗[A∗][U∗
[0,n]][G

∗
2]. Letting U∗ be the sequence

obtained by joining U∗
[0,n] and U∗

[n+1,ω), it follows that U∗ is generic for π(U)
over V ∗[A∗], and that G∗

2 is generic over V ∗[A∗][U∗]. Moreover, π restricts
to an elementary embedding, which we also denote π, from V [A][U ][G2] to
V ∗[A∗][U∗][G∗

2].

Let S∗
[n+1,ω) be the upward closure of G∗

2 in π(C)+A∗∗U∗

[n+1,ω) . As in the previous

paragraph, π restricts further, to an elementary embedding of V [A][U ][S[n+1,ω)]
into V ∗[A∗][U∗][S∗

[n+1,ω)]. Since e and S[0,n−1] are generic for posets of size less

than κn+2 = crit(π), this embedding in turn extends to an elementary embedding
of V [A][U ][S[n+1,ω)][S[0,n−1]][e] into V ∗[A∗][U∗][S∗

[n+1,ω)][S[0,n−1]][e].

Finally, let G3 be generic for P3 = π(C)+A�κn+2∗U�κn+1�[κn+2, π(κn+2)). Let
G+

3 be the upward closure of G3 in π(Cn)
+A∗∗U∗�[κn+2, π(κn+2)). (Note A∗ ∗

U∗ extends A�κn+2 ∗ U�κn+1.) Let S∗
n = Sn × G+

3 . Then S∗
n is generic for

π(C+A∗U
n ) = π(Cn)

+A∗∗U∗
, and π extends to an embedding of V [A][U ][S][e] =

V [A][U ][S[n+1,ω)][S[0,n−1]][e][Sn] into V ∗[A∗][U∗][S∗
[n+1,ω)][S[0,n−1]][e][S

∗
n] which

is equal to V ∗[A∗][U∗][S∗][e].

Claim 4.31. The poset P3 = π(C)+A�κn+2∗U�κn+1�[κn+2, π(κn+2)) used to add
G3 is <κn+1 closed in V [A][U ][S�[κn+1, ν)].

Proof. By part (2) of Claim 4.15, applied in V ∗[A∗][U∗], the poset is <κn+1

closed in V ∗[A∗�κn+2][U
∗�κn+1] = V ∗[A�κn+2][U�κn+1].

V ∗ is κn+2 closed in V [A[n+2,ω)], and hence V ∗[A�κn+2][U�κn+1] is <κn+2

closed in V [A[n+2,ω)][A�κn+2][U�κn+1]. By the previous paragraph then, the
poset is <κn+1 closed in V [A[n+2,ω)][A�κn+2][U�κn+1].
By Lemma 4.26, any sequence of ordinals of length < κn+1 that belongs to

V [A][U ][S�[κn+1, ν)], belongs already to V [A�κn+2][U�κn+1], and hence belongs
to V [A[n+2,ω)][A�κn+2][U�κn+1]. It follows that any descending chain of length
< κn+1 in the poset, that belongs to V [A][U ][S�[κn+1, ν)], belongs already to
V [A[n+2,ω)][A�κn+2][U�κn+1], and has a lower bound using the closure in the
previous paragraph. ⊣
We have so far produced an elementary embedding π on V [A][U ][S][e], with

critical point κn+2. Since π(T ) determines cofinal branches through π(T )�κn+2 =
T , the model containing the embedding has such branches. This model is a
generic extension of V [A][U ][S][e] by the product of P1, P2, Add(κn, π(κn+2))

V ,
Add(κn+1, π(κn+3))

V , and P3. The generics added by these posets are G1, G2,

Ân, Ân+1, and G3. It remains to see that the extension by these objects does not
add new cofinal branches to T . Since there are cofinal branches in the extension,
this implies that there are cofinal branches through T already in V [A][U ][S][e].
Note that all the posets involved in the extension belong to V [A][U ][S][e].

We may therefore consider them in any order we wish. We will add Ân+1 first,

followed by G1 ×G2 ×G3, followed finally by Ân.
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By Lemma 4.24, V has the <κn+2 covering property in V [A][U ][S][e]. It

follows using Claim 2.2 that the poset Add(κn+1, π(κn+3))
V adding Ân+1 is

κn+2-c.c. in V [A][U ][S][e]. Hence by Claim 2.3, the extension by Ân+1 does not
add new cofinal branches to T .
The extension by Ân+1, being κn+2-c.c., does not collapse any cardinals at

or above κn+2. By Remark 4.27 it does not add any sequences of ordinals
of length < κn+1 (hence it does not collapse cardinals below κn+2 either).
By Claims 4.30 and 4.31 it follows that P1, P2, and P3 are <κn+1 closed in

V [A][U ][S�[κn+1, ν)][Ân+1]. Let W denote this model. Note that 2κn = κn+2 in

W , and V [A][U ][S][e][Ân+1] is an extension ofW by the poset C+A∗U
[0,n) ×Col(ω, µ).

Claim 4.32. The poset C+A∗U
[0,n) × Col(ω, µ) is κn+1-c.c. in W .

Proof. Since µ < κn+1, and the posets C+A∗U
i for i < n−1 have size < κn+1,

it is enough to check that (if n ≥ 1) C+A∗U
n−1 is κn+1-c.c. in W .

Recall that Ân+1 does not add sequences of ordinals of length < κn+1. From
this, the fact that n ≥ 1, and Lemma 4.24, it follows that V has the <κn+1 cov-

ering property in V [A][U ][S][e][Ân+1], and therefore also in W . By an argument

similar to that of Claim 4.20, this implies that C+A∗U
n−1 is κn+1-c.c. in W . ⊣

Since P1×P2×P3 belongs to W and is <κn+1 closed in W , 2κn = κn+2 in W ,

and V [A][U ][S][e][Ân+1] is a κn+1-c.c. extension of W , it follows using Claim 2.4

that forcing with P1 × P2 × P3 over V [A][U ][S][e][Ân+1], to add G1 ×G2 ×G3,
does not add any new cofinal branches to T .
It remains to show that forcing to add Ân over V [A][U ][S][e][Ân+1][G1×G2×

G3] does not add new cofinal branches to T .
By Claim 2.5, the extension by G1 ×G2 ×G3 does not add any sequences of

ordinals of length < κn+1. If n ≥ 1 it follows from this and Lemma 4.24 that V

has the <κn+1 covering property in V [A][U ][S][e][Ân+1][G1 ×G2 ×G3]. This in

turn implies that Add(κn, π(κn+2))
V , the poset adding Ân, is κn+1-c.c. in this

model, and indeed so is Add(κn, π(κn+2) · λ)V for any cardinal λ. The same
conclusion is true for n = 0, because the poset is Add(ω, π(κn2) · λ)V in this
case, and this poset is κ1-c.c. in any model where κ1 is a cardinal.
κn+2 is collapsed in the extension by G1 ×G2 ×G3. But since the extension

does not add sequences of ordinals of length < κn+1, the cofinality of κn+2 in
the extension is at least κn+1. The poset Add(κn, π(κn+2) · λ)V is a λth power

of the poset Add(κn, π(κn+2))
V adding Ân, meaning that it adds λ mutually

generic filters for Add(κn, π(κn+2))
V . Using the fact that this poset is κn+1-

c.c. it now follows by Claim 2.3 that the final extension, by Ân over the model
V [A][U ][S][e][Ân+1][G×G2 ×G3], does not add new cofinal branches to T . This
completes the proof of Lemma 4.29. ⊣
We showed as part of the proof of Lemma 4.29 that for any m ≥ 2, there are

generic elementary supercompactness embeddings on V [A][U ][S][e], with critical
point κm. The next claim summarizes some properties of these embeddings and
the posets used to obtain them.

Claim 4.33. Let λ < ν, and let n ≥ 2 be large enough that κn > λ. Then
there is a poset P in V [A][U ][S][e], and a λth power of this poset, Pλ, so that:
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1. Forcing with P over V [A][U ][S][e] adds an elementary π : V [A][U ][S][e] →
V ∗[A∗][U∗][S∗][e], with crit(π) = κn+2 and sup(π′′ν+) < π(ν+).

2. Forcing with Pλ over V [A][U ][S][e] does not add any sequences of ordinals
of length < κn. In particular no cardinals ≤ κn are collapsed, and the
cofinality of ν+ is not reduced below κn.

By a λth power of P here we mean a poset adding λ mutually generic filters for
P.

Proof. P is the product of Add(κn, π(κn+2))
V , Add(κn+1, π(κn+3))

V , P1, P2,
and P3, used in the proof of Lemma 4.29 to extend the embedding π. Starting
with an embedding which is at least ν+ supercompact we then immediately get
condition (1). It remains to define Pλ and prove condition (2).
Let Pλ be the product of the posets Add(κn, π(κn+2))

V , Add(κn+1, π(κn+3))
V ,

Pλ
1 , Pλ

2 , and Pλ
3 , where the powers of P1, P2, and P3 are taken with full support

in the model V [A][U ][S�[κn+1, ν)]. By Claims 4.30 and 4.31, P1, P2, and P3 are
<κn+1 closed in this model, and therefore so are their full support λth powers.
Since each of Add(κn, π(κn+2))

V and Add(κn+1, π(κn+3))
V is isomorphic to

a λth power of itself, Pλ adds λ mutually generic filters for P.
By Remark 4.27, forcing with Add(κn, π(κn+2))

V × Add(κn+1, π(κn+3))
V to

add Ân and Ân+1 does not add sequences of ordinals of length < κn. As in the

proof of Lemma 4.29, Pλ
1×Pλ

2×Pλ
3 is <κn+1 closed in V [A][U ][S�[κn+1, ν)][Ân+1],

and using Claim 2.5 this implies that forcing with this poset over the model
V [A][U ][S][Ân+1][Ân] does not add sequences of ordinals of length < κn+1. ⊣

§5. Further analysis. We showed in the last section that in V [A][U ][S][e],
κn = ℵn for each n < ω, and the tree property holds at κn for n ≥ 2. In this
section we explore the model obtained by “removing” A1, e, and S0. We use this
model later on. For now we just collect results on generic elementary embeddings
acting on the model.
Since U[1,ω) and C+A∗U

[1,ω) rely on A1 in their definitions, we have to pass to

coarser generics, in posets that do not rely on A1, before we can remove A1. We
begin by defining the relevant posets.
Recall that whenever we work with a filter F on A�β∗U̇�β, we assume without

saying that the filter is rich enough that every condition in F can be strengthened
inside F to a condition of the form ⟨a, ǔ⟩ (which abusing notation we refer to as
⟨a, u⟩). This assumption holds for generic filters.

Definition 5.1. Let F be a filter on A�β ∗ U̇�β. Let γ ≤ ν and let B be a
filter on B+F �[β, γ). Define F +B to be {⟨a, u⟩ | ⟨a, u�β⟩ ∈ F and u�[β, γ) ∈ B}.
For a condition b ∈ B+F �[β, γ), define F + b to be {⟨a, u⟩ | ⟨a, u�β⟩ ∈ F and
b ≤B+F �[β,γ) u�[β, γ)}.

It is easy to check that F +B is a filter on A�γ ∗ U̇�γ, and similarly with F +b.

Claim 5.2. Suppose that F is generic for A�β ∗ U̇�β over V , and B is generic
for B+F �[β, γ) over V [F ]. Then:

1. B+F+B�[γ, ν) is <γ directed closed in V [F ][B].
2. If γ ≤ κn+2 then C+F+B�[κn+2, ν) is <κn+2 directed closed in V [F ][B].
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3. If β ≤ κn+2 then C+F+B�[κn+2, ν) is <κn+2 directed closed in V [F ][B].

Proof. Conditions (1) and (2) are similar to Claims 4.7 and 4.15 respec-
tively. For condition (3), note that any set of size < κn+2 in V [F ][B] belongs
to V [F ][B�κn+2] since by condition (1), B�[κn+2, γ) is added by a <κn+2 closed
forcing over V [F ][B�κn+2]. Thus it is enough to show that directed sets of size
< κn+2 in C+F+B�[κn+2, ν) that belong to V [F ][B�κn+2] have lower bounds.
This again can be done by arguments similar to those in the proofs of Claims
4.7 and 4.15. ⊣
Definition 5.3. Let F be a filter on A�β ∗ U̇�β. Define Q(β, F ) to be the

poset consisting of pairs ⟨b, c⟩ ∈ B�[β, ν) × C�[β, ν), ordered by ⟨b∗, c∗⟩ ≤ ⟨b, c⟩
iff b∗ extends b in B+F �[β, ν), and c∗ extends c in C+F+b∗�[β, ν).
The poset Q(β, F ) is forcing isomorphic to the composition of B+F �[β, ν)

followed by C+F+B�[β, ν), where B is the generic added by the first stage of
the composition. Indeed, the restriction of the composition to conditions of the
form ⟨b, č⟩ (as opposed to the more general ⟨b, ċ⟩) is isomorphic to Q(β, F ).

Claim 5.4. Let β = κn+2, and let F be generic for A�β ∗ U̇�β over V . Then
Q(β, F ) is <κn+2 directed closed in V [F ].

Proof. Immediate from Claim 5.2, viewing Q(β, F ) as a composition. Condi-
tion (1) of the claim implies that the first stage B+F �[κn+2, ν) is <κn+2 directed
closed in V [F ], and condition (3) implies that the second stage C+F+B�[κn+2, ν)
is <κn+2 directed closed in V [F ][B]. ⊣
Let Q̇(β) ∈ V name the poset Q(β, F ) in the extension by A�β ∗ U̇�β to add

F . Let Q̂(β) be the forcing associated to Q̇(β) by Remark 4.10. Conditions in

Q̂(β) are A�β ∗ U̇�β names for elements of Q̇(β), with the ordering p∗ ≤ p iff

this is forced by the empty condition in A�β ∗ U̇�β. For a filter F̄ ⊆ A�β ∗ U̇�β,
Q̂(β)+F̄ is the enriched poset with the same conditions but richer order given by
p∗ ≤ p iff this is forced by some condition in F̄ .

Claim 5.5. Let A0 ∗ U0 be generic for A0 ∗ U̇0 over V , and let B̄ be generic
for B+A0∗U0�[κ2, κn+2) over V [A0 ∗ U0]. Let F̄ = A0 ∗ U0 + B̄. Then a dense

subset of Q̂(κn+2)
+F̄ is isomorphic to Q(κn+2, F̄ ).

Proof. Q(κn+2, F̄ ) is, immediately from the definitions, isomorphic to the

restriction of Q̂(κn+2)
+F̄ to “check names”, that is, conditions of the form ⟨b̌, č⟩

rather than the more general form ⟨ḃ, ċ⟩. The isomorphism witnessing this is the
map ⟨b, c⟩ 7→ ⟨b̌, č⟩.
Thus, it is enough to prove that densely many conditions in Q̂(κn+2)

+F̄ are
equivalent to check names.
Let ⟨ḃ, ċ⟩ be a condition in Q̂(κn+2). Then ḃ is an A�κn+2 ∗ U̇�κn+2 name for

an element of B[κn+2,ν). Similarly ċ is an A�κn+2 ∗ U̇�κn+2 name for an element
of C[κn+2,ν).
Let Dḃ be the set of α ∈ [κn+2, ν) which can be forced into the domain of

ḃ. Since these points are all inaccessible cardinals greater than κn+2, and since

A�κn+2∗U̇�κn+2 has size κn+2, Dḃ satisfies the support requirements in condition
(1) of Definition 4.1.
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Define b ∈ B[κn+2,ν), with dom(b) = Dḃ, as follows. For each α ∈ Dḃ, let b(α)

be the canonical A�α ∗ U̇�α name for ḃ[A�κn+2 ∗ U�κn+2](α)[A�α ∗ U�α], where
this is understood to be the empty condition if α ̸∈ dom(ḃ[A�κn+2 ∗ U�κn+2]).
Define c ∈ C[κn+2,ν) similarly, using the name ċ, except that Dċ must be

defined more carefully, since the support restrictions in Definition 4.13 are more
stringent: Dċ ∩ [κn+2, κn+3) must have size < κn+2. Dċ satisfying this can be
obtained as in the proof of Claim 4.15.
Extending ⟨ḃ, ċ⟩ trivially we may assume that the domain of ḃ is forced equal

to Ďḃ, and the domain of ċ is forced equal to Ďċ. One can now check that

⟨ḃ, ċ⟩ ≤ ⟨b̌, č⟩ in Q̂(κn+2)
+F̄ , and vice versa. ⊣

LetA0∗U0 be generic for A0∗U̇0 over V , letB[1,ω) be generic for B+A0∗U0�[κ2, ν)

over V [A0 ∗ U0], and let C[1,ω) be generic for C+A0∗U0+B�[κ2, ν) over V [A0 ∗
U0][B[1,ω)]. (Equivalently for the last two extensions, B[1,ω) ∗C[1,ω) is generic for
Q(κ2, A0 ∗ U0).) Let A[2,ω) be generic for A[2,ω) over V [A0 ∗ U0][B[1,ω)][C[1,ω)].
Let M denote the model V [A[2,ω)][A0 ∗ U0][B[1,ω)][C[1,ω)]. We work with this

model for the rest of the section. Let F = A0 ∗ U0 +B[1,ω).

Lemma 5.6. Let n ≥ 3. Let λ < κn. Then there is a poset P in M , and a λth
power Pλ of P, so that, over M :

1. Forcing with P adds an elementary embedding π : M → M∗ with crit(π) =
κn+2, and sup(π′′ν+) < π(ν+).

2. Forcing with Pλ does not add sequences of ordinals of length < κn.

Proof. This is similar to a combination of Lemma 4.12 and the construction
of π in the proof of Lemma 4.29, but various changes have to be made to account
for the fact that we are working with the filter F �κn+2 rather than a full generic

filter on A�κn+2 ∗ U̇�κn+2.
Let π : V [A[n+2,ω)] → V ∗[A∗

[n+2,ω)] be a γ supercompactness embedding for

some γ > ν+, in V [A[n+2,ω)], with crit(π) = κn+2, π�Ord in V , and such that

π(ϕ)(κn+2) = Q̇(κn+2) and the next element of dom(π(ϕ)) above κn+2 is greater
than γ. Such an embedding can be found using the indestructibility properties
of κn+2 and ϕ. We can also arrange that γ++ is a fixed point of the embedding,
so that the various posets that come up in the construction below have at most
γ+ dense subsets that belong to the appropriate extensions of V ∗.
Since A0 ∗ U0 is added by a small forcing relative to κn+2, π extends to an

embedding of V [A[n+2,ω)][A0 ∗ U0] to V ∗[A∗
[n+2,ω)][A0 ∗ U0].

Let G = B[1,ω)�[κn+2, ν) ∗ C[1,ω)�[κn+2, ν). Let F̄ = F �κn+2 = A0 ∗ U0 +

B[1,ω)�κn+2. Then by definitions, G is generic for Q(κn+2, F̄ ) over V [A[2,ω)][F̄ ].

By Claim 5.5, G (more precisely its isomorphic image) is generic for Q̂(κn+2)
+F̄ .

It follows from this and the choice of π that B[1,ω)�κn+2 and G join to form a

generic filter for π(B)+A0∗U0�[κ2, κn+2+1). Denote this generic by B∗
[1,ω)�κn+2+

1. (It consists of conditions u so that u�κn+2 ∈ B[1,ω), and i(u(κn+2)) ∈ G where
i is the isomorphism given by Claim 5.5.)

Let B∗
top denote the poset π(B)+A0∗U0+B∗

[1,ω)�κn+2+1�[κn+2 + 1, π(ν)). By
Claim 5.2, this poset is <α closed in V ∗[A0 ∗ U0][B[1,ω)�κn+2][G] where α is
the first point in dom(π(ϕ)) above κn+2. By choice of π, α is greater than γ and
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V ∗[A0 ∗ U0][B[1,ω)�κn+2][G] is γ closed in V [A[n+2,ω)][A0 ∗ U0][B[1,ω)�κn+2][G],
which is equal to V [A[n+2,ω)][A0 ∗ U0][B[1,ω)][C[1,ω)�[κn+2, ν)]. Working inside
this model we can therefore find a filter H∗

top on B∗
top which meets all dense sets

that belong to V ∗[A0 ∗ U0][B[1,ω)�κn+2][G]. Since π′′B[1,ω)�[κn+2, ν) belongs to
V ∗[A0 ∗ U0][B[1,ω)�κn+2][G] (it can be computed from G using π), and by di-
rected closure has a lower bound in B∗

top, we can build H∗
top so that it contains

a lower bound for π′′B[1,ω)�[κn+2, ν). Then B∗
[1,ω)�κn+2 + 1 and H∗

top join to

form a generic B∗
[1,ω) for π(B)

+A0∗U0�[κ2, π(ν)), and π extends to an embedding

of V [A[n+2,ω)][A0 ∗ U0][B[1,ω)] to V ∗[A∗
[n+2,ω)][A0 ∗ U0][B

∗
[1,ω)].

A similar argument, using the fact that C[1,ω)�[κn+2, ν) is also part of G, allows
finding, still inside the model V [A[n+2,ω)][A0 ∗ U0][B[1,ω)][C[1,ω)�[κn+2, ν)], a fil-
ter C∗

[1,ω)�[π(κn+2), π(ν)), so that π extends to an embedding of V [A[n+2,ω)][A0∗
U0][B[1,ω)][C[1,ω)�[κn+2, ν)] to V

∗[A∗
[n+2,ω)][A0∗U0][B

∗
[1,ω)][C

∗
[1,ω)�[π(κn+2), π(ν))].

Since A[2,n) and C[1,ω)�κn+1 are added by small forcing, the embedding triv-
ially extends to absorb these generics too.
Finally, standard arguments allow extending π further, to absorb also An,

An+1, and C[1,ω)�[κn+1, κn+2). These extensions require further forcing, with the

posets Add(κn, π(κn+2))
V , Add(κn+1, π(κn+3))

V , and π(C)+F̄ �[κn+2, π(κn+2)).
This completes the proof of part (1) of the lemma. The poset P needed to

produce the final extension of π is the product of the three posets in the previous
paragraph. The proof of part (2) for this poset is similar to the corresponding
proof in Claim 4.33. Let us only note that Pλ is taken to be the product of
Add(κn, π(κn+2))

V , Add(κn+1, π(κn+3))
V , and the full support λth power of

π(C)+F̄ �[κn+2, π(κn+2)) in V ∗[A0 ∗ U0][B[1,ω)�κn+2], where this poset is <κn+1

closed. ⊣

Lemma 5.7. In V [A[2,ω)] there is a ν+ supercompactness embedding π from
V [A[2,ω)] into V ∗[A∗

[2,ω)], so that:

1. crit(π) = κ2, π(κ2) > ν, |π(κ2)| = ν++, and π�Ord belongs to V . (ν+

supercompactness implies that also sup(π′′ν+) < π(ν+).)

2. In any extension M [Â0] of M by the poset Add(ω, [κ2, π(κ2)))
V ∗

, π extends
to an elementary embedding π : M → M∗, with ν ∈ π(Index).

Since |π(κ2)| = ν++, the poset in condition (2) is isomorphic, in V and hence
also in M , to Add(ω, ν++).

Proof. This is an application of Lemma 4.12, or more precisely its proof, but
without A1. Generic supercompactness is used in the extension of V [A[2,ω)][A0 ∗
U0] by Q(κ2, A0 ∗ U0).
The properties of π in condition (1) follow directly from the construction of

π, as does the fact that π extends to act on M given the additional generic Â0.
We leave the details of the construction of the embedding to the reader, noting
only that because M omits A1, there is no need to force to add the filter Â1

appearing in the proof of Lemma 4.12.
It remains to verify that, with the extended π, ν ∈ π(Index), meaning that

ν satisfies the requirements of Definition 4.4 over V ∗. Condition (1) of the
definition is immediate, as ν is a strong limit in V ∗, and the largest point below
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ν in dom(π(ϕ)) is κ2. Condition (3) holds because A∗�κ2 ∗ U̇∗�κ2 + 1 is the

poset A�κ2 ∗ U̇�κ2 composed with π(ϕ)(κ2)[A0 ∗ U0], which in this case is equal
to Q(κ2, A0 ∗ U0), and has size ν+. Finally, condition (2) of the definition holds

because forcing with A�κ2 ∗U̇�κ2 composed with Q(κ2, A0 ∗U0) does not collapse
ν+, over any ν closed extension V ∗[E∗] of V ∗. This follows from Remark 4.25,
as V ∗[E∗] can be subsumed by V [E][A[2,ω)] where V [E] is a ν closed extension

of V , and the further extension by A�κ2 ∗ U̇�κ2 composed with Q(κ2, A0 ∗U0) is
then subsumed by the forcing in the remark to add A ∗ U�κ1 ∗B�[κ1, ν) ∗ C ∗ e
over V [E]. ⊣
For each µ < κ2 that belongs to the set Index of Definition 4.4 (defined over

V ), let L(µ) be the poset Add(µ+, κ3)
V × C0(µ

+)+A0∗U0 × Col(ω, µ). (Recall
that κ1 is a parameter in the definition of C0, and C0(µ

+) denotes the poset
defined relative to the parameter κ1 = µ+.)

Lemma 5.8. Let R be a rank initial segment of the universe, large enough to
contain all relevant objects. Let M̄ = V̄ [A[2,ω)][A0 ∗ U0][B[1,ω)][C[1,ω)] where V̄

is the transitive collapse of X≺R with X ∈ V , Vν ⊆ X, |X| = ν+, and X closed

under sequences of length ν in V . Let Â0 be generic for Add(ω, (ν++)M̄ ) over
M , hence also over M̄ . Let π̄ : M̄ → M̄∗ be the embedding given by Lemma 5.7,
applied in M̄ [Â0]. Finally, let e be generic for Col(ω, ν) over M [Â0].

Then there are, in M [Â0][e], filters A∗
1 and S∗

0 so that A∗
1 × S∗

0 × e is generic
for π(L)(ν) over M̄∗.

Proof. Let V̄ ∗, Ā∗
[2,ω), A

∗
0 ∗ U∗

0 , B̄
∗
[1,ω), and C̄∗

[1,ω) be such that M̄∗ is the

model V̄ ∗[Ā∗
[2,ω)][A

∗
0∗U∗

0 ][B̄
∗
[1,ω)][C̄

∗
[1,ω)]. By Lemma 5.7, V̄ ∗ belongs to V̄ [A[2,ω)],

and hence also to V [A[2,ω)]. Using the closure properties given by the lemma, the

closure of V̄ itself, and the fact that any A[2,ω) name for a sequence of ordinals
of length ν can be thinned below some condition in A[2,ω) to a name of size ν,

V̄ ∗ is closed under sequences of length ν in V [A[2,ω)].

It is enough to produce a generic A∗
1 ×C∗

0 for Add(ν+, π(κ3))
V̄ ∗ × π(C0)(ν

+)

over M̄∗[e], in M [Â0]. The upward closure of C∗
0 in π(C0)(ν

+)+A∗
0∗U

∗
0 then yields

the necessary S∗
0 .

Since M̄∗ is contained in M̄ [Â0], it is enough to ensure that A∗
1×C∗

0 is generic

over M̄ [Â0][e] = V̄ [A[2,ω)][A0 ∗ U0][B[1,ω)][C[1,ω)][Â0][e]. Since the poset adding

A∗
1 ×C∗

0 belongs to V̄ ∗ ⊆ V̄ [A[2,ω)], it is enough to construct A∗
1 ×C∗

0 so that it

is generic over V̄ [A[2,ω)], and so that A0 ∗ U0 ∗B[1,ω) ∗C[1,ω) × Â0 × e is generic

over V̄ [A[2,ω)][A
∗
1 ×C∗

0 ]. This in turn holds automatically if A∗
1 ×C∗

0 belongs to

V [A[2,ω)], as A0 ∗ U0 ∗B[1,ω) ∗ C[1,ω) × Â0 × e is generic over V [A[2,ω)].

So, it is enough to construct A∗
1×C∗

0 , generic for Add(ν+, π(κ3))
V̄ ∗×π(C0)(ν

+)
over V̄ [A[2,ω)], inside V [A[2,ω)].

The poset Add(ν+, π(κ3))
V̄ ∗ × π(C0)(ν

+) is ν closed in V̄ ∗, and hence also ν
closed in V [A[2,ω)]. Since V̄ [A[2,ω)] has size ν+, a generic over this model can be

constructed in V [A[2,ω)] by enumerating all dense sets in V̄ [A[2,ω)] in order type

ν+, and meeting them one by one. ⊣
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Lemma 5.9. Let µ ∈ Index and let A1 × S0 × e be generic for L(µ) over M .
Let A = A0 ×A1 ×A[2,ω), let U = U0 ∗U[1,ω) where U[1,ω) is the upward closure
of B[1,ω) in U[1,ω), and let S = S0 × S[1,ω) where S[1,ω) is the upward closure of

C[1,ω) in C+A∗U
[1,ω) . Let N denote V [A][U ][S].

Then B[1,ω) and C[1,ω) belong to a forcing extension N [G] of N by a poset

which is µ closed in N . Moreover G is generic also over N [e], and ν and ν+ are
not collapsed in N [e][G]. (In fact none of the κns is collapsed.)

Proof. B[1,ω) and C[1,ω) belong to the extension of V [A][U ][S][e] by the prod-

uct of the factor poset refining U[1,ω) to a filter for B+A0∗U0�[κ2, ν), and the factor

poset refining S[1,ω) to a filter for C+A0∗U0�[κ2, ν). (B[1,ω) is itself generic for

the former; C[1,ω) is the upward closure in C+A0∗U0+B[1,ω)�[κ2, ν) of a generic for
the latter.) The factor posets belong to V [A][U ][S]. By Claims 4.9 and 4.16,
descending sequences of length < κ2 in these posets, that belong to V [A0 ∗ U0],
have lower bounds. By Lemma 4.26, all descending sequences of length < κ1 in
these posets that belong to V [A][U ][S], belong to V [A�κ2][U�κ1], and in partic-
ular they belong to V [A0 ∗ U0]. So the factor posets are <κ1 closed, in other
words µ closed, in N = V [A][U ][S]. The model resulting from the extension of
N [e] by the factor posets is contained in the model V [A][U�κ1][B�[κ1, ν)][C][e]
of Lemma 4.24 and Remark 4.25, and it follows from the lemma and remark
that ν+ remains a cardinal in the extension, as does each κn, and hence so does
ν. ⊣

§6. The tree property up to ℵω+1. In this section we combine the ingredi-
ents given by the previous sections into a construction of a model where the tree
property holds both at all ℵn for 2 ≤ n < ω, and at ℵω+1. A direct combination
of these ingredients will yield the tree property at ℵω+1 not in the model we
construct, but in a forcing extension of this model. The following preservation
lemma from Magidor–Shelah [4] will allow us to then pull the necessary branches
back to the original model. (The posets we refer to as µ closed, in the lemma
and throughout the paper, are called µ+ closed in Magidor–Shelah [4].)

Lemma 6.1 (Magidor–Shelah [4, Theorem 5.2]). Suppose ν is a strong limit
cardinal of cofinality ω. Let N ⊆ N [G] where N [G] is a µ closed forcing extension
of N , for some µ < ν. Let e be generic over N [G] for a poset E ∈ N of size
µ. Let T be a ν+ tree in N [e]. Then any cofinal branch of T in N [e][G] belongs
already to N [e].

Theorem 6.2. Suppose there are ω supercompact cardinals, and let κn, 2 ≤
n < ω, enumerate them in increasing order. Let ν = sup{κn | 2 ≤ n < ω}.
Then there is a forcing extension in which κn = ℵn, ℵω is a strong limit,
(ν+)V = ℵω+1, and the tree property holds at each successor cardinal in the
interval [ℵ2,ℵω+1].

Proof. Using a preparatory forcing for indestructibility, we may assume that
each κn, 2 ≤ n < ω, is indestructibly supercompact. We may also assume that
each κn carries an indestructible Laver function in the sense of Section 4. We
begin the construction of the model witnessing Theorem 6.2 as in Section 5. Let
A0∗U0 be generic for A0∗U̇0 over V . LetB[1,ω) be generic for B+A0∗U0�[κ2, ν) over
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V [A0 ∗ U0]. Let C[1,ω) be generic for C+A0∗U0+B�[κ2, ν) over V [A0 ∗ U0][B[1,ω)].
Let A[2,ω) be generic for A[2,ω) over V [A0 ∗ U0][B[1,ω)][C[1,ω)].
Let M denote the model V [A[2,ω)][A0 ∗ U0][B[1,ω)][C[1,ω)]. Let Index ⊆ κ2 be

the set given by Definition 4.4. (The definition refers to A0 and U0.)
For each µ ∈ Index, let L(µ) be the poset Add(µ+, κ3)

V × C0(µ
+)+A0∗U0 ×

Col(ω, µ).

Claim 6.3. There is µ ∈ Index, so that in the extension of M by L(µ), the
tree property holds at ν+.

Proof. It is enough to check that the assumptions of Lemma 3.10 hold in
M . The claim then follows by an application of the lemma.
Assumption (1) of the lemma holds overM by Lemma 5.6, used with n = m+1

and λ = κm.
Assumption (2) of the lemma holds over M by Lemma 5.8, and the properties

of the embedding π given by Lemma 5.7. The poset P = PX needed to introduce
the embedding π (acting on M̄) and the generic L is the poset Add(ω, ν+) ×
Col(ω, ν). (This poset is isomorphic to the one used in Lemma 5.8, as (ν++)M̄

has cardinality ν+ in M .) It is ν+-Knaster by standard arguments using a ∆-
system for the component Add(ω, ν+) and the fact that Col(ω, ν) has size less
than ν+. ⊣
Let µ be given by Claim 6.3, and let A1 × S0 × e be generic for L(µ) over M .

Let κ1 = µ+.
Let A = A0×A1×A[2,ω). Let U[1,ω) be the upward closure of B[1,ω) in U[1,ω),

and let U = U0 ∗ U[1,ω). Similarly, let S[1,ω) be the upward closure of C[1,ω) in

C+A∗U
[1,ω) , and let S = S0 ∗ S[1,ω). Let N be the model V [A][U ][S].

Claim 6.4. In N [e], κn = ℵn, ℵω is a strong limit, and the tree property holds
at ℵn for n ≥ 2. N [e] and V have the same cardinals from ν upward.

Proof. These are simply the results of Section 4, including, in particular,
Claim 4.28, Lemmas 4.29 and 4.24, and Remark 4.25 ⊣
Claim 6.5. In N [e], the tree property holds at ν+.

Proof. Let T ∈ N [e] be a ν+ tree. Then T belongs to M [A1 ×S0 × e] (as N
was defined in M [A1 × S0]). By Claim 6.3 and the subsequent choice of µ, this
model satisfies the tree property at ν+, and therefore T has a cofinal branch in
the model.
By Lemma 5.9, there is a µ closed forcing extension N [G] of N , so that B[1,ω)

and C[1,ω) belong to N [G], G is generic also over N [e], and ν and ν+ remain
cardinals in N [e][G].
Since B[1,ω) and C[1,ω) belong to N [G], and since A0 ∗ U0, A1, A[2,ω), and S0

belong to N , the entire model M [A1 × S0 × e] is contained in N [e][G]. Since T
has a cofinal branch in M [A1 × S0 × e], it has a cofinal branch in N [e][G].
An application of Lemma 6.1 now shows that T has a cofinal branch already

in N [e]. ⊣
Claims 6.4 and 6.5 establish that in N [e], the tree property holds at ℵn (which

is equal to κn) for 2 ≤ n < ω, and at ℵω+1 (which is equal to ν+). This completes
the proof of Theorem 6.2. ⊣
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