THE TREE PROPERTY UP TO XN,

ITAY NEEMAN

Abstract. Assuming w supercompact cardinals we force to obtain a model where the
tree property holds both at R4, and at X,, for all 2 < n < w. A model with the former
was obtained by Magidor—Shelah from a large cardinal assumption above a huge cardinal,
and recently by Sinapova from w supercompact cardinals. A model with the latter was
obtained by Cummings—Foreman from w supercompact cardinals. Our model, where the
two hold simultaneously, is another step toward the goal of obtaining the tree property on
increasingly large intervals of successor cardinals.
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81. Introduction. The tree property is a combinatorial principle that re-
sembles large cardinal reflection properties, but may hold at successor cardinals.
It states for a cardinal x that every k-tree, meaning every tree of height x with
levels of width < k, has a branch of length x. That it holds at k = ¥ is simply
Konig’s lemma. On the other hand it fails at X; by a construction of Aronszajn.
(Trees witnessing failure of the tree property are called Aronszajn trees.) The
question of whether and to what extent it can hold at successor cardinals greater
than N; has been researched starting with work of Mitchell and Silver in Mitchell
[5]. They show that the tree property can hold at Ry, and is a remnant of a large
cardinal property, specifically weak compactness, in the sense that given a weakly
compact cardinal k, a forcing extension defined by Mitchell turns x into Ro while
securing the tree property, and conversely, if Ny has the tree property in V', then
it is weakly compact in an inner model.

One can use the same forcing techniques repeatedly to obtain the tree property
simultaneously at many successor cardinals, provided there are gaps between
them. It is substantially harder to obtain the tree property simultaneously at
consecutive successor cardinals. Partly the reason is that the tree property at k =
7+ has an effect on cardinal arithmetic already below 77; it implies that 27 >
7T+, (This follows from the construction in Specker [9] showing that the tree
property fails at 67 if 5<% = §.) Nonetheless, it is possible for the tree property to
hold at consecutive successor cardinals. Abraham [1] produces a model where the
tree property holds at both Ny and N3. Again it is a remnant of large cardinals,
supercompactness and weak compactness for the cardinals that are turned into
N, and N3 respectively in Abraham’s model. Since supercompactness is beyond
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the reach of current methods of inner model theory, it is not known whether it is
necessary for Abraham’s result. But some large cardinal, substantially beyond
the weakly compact that was enough for the tree property at one cardinal, is
needed by work of Magidor in [1] and later work of Foreman—Magidor. This need
for substantially stronger large cardinals is a mathematical aspect of the added
difficulty in obtaining the tree property at consecutive cardinals.

Moving further, Cummings—Foreman [2] produced a model where the tree
property holds at N, for all 2 < n < w, starting from w supercompact cardinals.
For known lower bounds on the necessary large cardinals see Foreman—Magidor—
Schindler [3]. A little earlier Magidor—Shelah [4] showed that the tree property
can hold at N, ;1. They used an assumption above a huge cardinal, specifically
the existence of elementary j: V — M with M closed under A™-sequences where
A is a limit of AT-supercompact cardinals above j(crit(j)), but recent work of
Sinapova [8] reduced the large cardinal assumption to w supercompact cardinals.

Cummings-Foreman [2] asked whether it is consistent to have both these out-
comes simultaneously, namely whether it is possible for the tree property to hold
at all successor cardinals in the interval [No, N, ;1]

Starting from w supercompact cardinals, we prove in this paper that the answer
is yes.

Whether one can go further is still open. It is not known whether the tree
property can hold at all successor cardinals in the interval [Ng, X1 2], or even if it
can hold simultaneously at N, ; and ¥,5. By Specker’s result above, the tree
property at N, o implies that 2% > R, and it is not known if even this is
consistent with the tree property at N,11. In our context, where X, is a strong
limit cardinal, this particular question has a long history. We refer the reader to
Neeman [6] and Sinapova [7] for positive answers at some singular strong limit
cardinal k and at N2 respectively.

Our proof that the tree property can hold at all successor cardinals in the
interval [N, N, ;1] builds on ideas and techniques from several of the papers
mentioned above.

In Section 3 we obtain a fairly wide class of posets that, given supercompact
cardinals x,, 2 < n < w, collapse so that k, becomes X,, and the tree property
holds at R,1;. One example of a poset in the class, assuming indestructibility
of the supercompact cardinals, is simply the product Col(w, p1) X Col(u™, <rg) X
H2<n<w Col(kp, <kn41) for some p < kg, whose successor becomes N; in the
extension. Note that the proof does not give the tree property in the extension
for any particular yu; it only shows the existence of such a p. This “retreat” to just
showing the existence of u was first used by Sinapova [8] and was a crucial part
of her argument to obtain an extension with the tree property at N,i1, from
w supercompact cardinals. (Sinapova’s argument involves a diagonal Prikry
extension and other than this “retreat” it is completely different from ours.)
More generally, we show that the tail-end of the poset above can be replaced by
any poset that leaves the cardinals x,, for n > 2 “generically supercompact”, and
that Col(w, 1) x Col(ut, <ks2) can be replaced by any family of posets L(u), p <
K2, that can, on a measure one set of substructures relative to a supercompactness
measure on Ko, be subsumed by Knaster posets. The precise formulation of this
is given in Lemma 3.10.
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In Section 4 we modify the Cummings—Foreman [2] poset for obtaining the
tree property below Y,, so that it (almost) fits the requirements of Lemma
3.10. In broad terms the modifications are necessary to bring the poset closer
to a product, rather than an iteration, so that one can separate its tail-end
from its initial segment below ko, and argue that the tail-end by itself preserves
generic supercompactness for the cardinals x,, n > 2. We cannot quite bring
the poset to this form, but we can get close in the sense that the poset we define
is subsumed by a poset of this form (see Section 5), and the factor poset is u
closed. By a preservation theorem of Magidor—Shelah [4] this is enough to put
the two constructions together. This final combination is done in Section 6.

§2. Preliminaries. We present in this section a few forcing claims that are
used in later sections. Most are folklore, with the exception of Claim 2.4 which is
due to Unger [11]. Unger in a different paper [10] also proved a strengthening of
Claim 2.3, that reduces the assumption on P to just the requirement that P x P
is kT-c.c. More precisely he showed, and this implies the claim, that if P x P is
T-c.c. where 7 is regular, then forcing with P does not add branches to trees of
height 7 in V. He used this to prove a generalization of the tree property in the
model of Cummings—Foreman [2].

DEFINITION 2.1. Let K C V be a model of a sufficiently large fragment of
ZFC. K has the <0 covering property (with respect to V) if for every A C K in
V with |A| < 6, there is B € K so that (|B| < §)%X and B D A.

CLAIM 2.2. Suppose § < k are reqular cardinals, K is a model of some large
enough fragment of ZFC, K has the <k covering property in V, and (Vv <
k) (7<% < k)E. Let P be a forcing notion in K, whose conditions are all functions
with domain of size < § in K. Then any family of size k in V of conditions in
P, can be refined to a family of the same size whose domains form a A system.

PRrROOF. It is enough to show that for any A of size < k in V, the set {x N A |
z € K and (|z| < §)%} has size < k. Standard arguments then yield a A-system
lemma for families of size x in V, consisting of sets of size < § in K.

Using the covering property we may assume that A € K and (|A| < x)¥. Then
since K is closed under intersections (a consequence of some fragment of ZFC in
K),{zxNnA|z € K and (|z| < §)K} is equal to Ps(A)¥K. Since (|A| < x)E, by
the claim assumptions Ps(A)% has size < x in K, and therefore also in V. -

CLAIM 2.3. Let T be a tree of height of cofinality at least k¥, and levels of
width less than X\, for some X\ > k+. Let P be k¥ -c.c. Suppose there is some
kT-c.c. forcing notion P* which adds X filters, all mutually generic for P. (This
holds for example if P is isomorphic to some A product of itself.) Then forcing
with P does not add any new cofinal branches through T.

ProoOF. Without loss of generality, elements of T are sequences of ordinals
ordered by extension. Let b be a P name for a cofinal branch through T, viewed
as a sequence of ordinals of length xk*. Let G = (G¢ | € < ) be generic for P*.
Let R be a large initial segment of V and let M < R with kU{T, k, s+, P,P*} C M
and |M| = k. Let a = sup(M N height(T)). Note that o < height(T") since
height(T") has cofinality at least x*. For each £ let ¢ = b[G¢](a). Since P is
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kT-c.c., it does not collapse A. Since level a of T' has width less than A in V it
follows that there are £ # ( so that §¢ = d¢. Hence l.)[Gg] la = B[Gd[a. This
implies that M[Ge x G¢] = b[Ge] = b[G¢]. (We are using the fact that P x P is
kT-c.c., and therefore M[G¢ x G¢]|NV = M so that M[G¢ x G¢]Nheight(T) C a.)
By elementarity of M[Ge x G¢] in R[Ge x G¢] it follows that b[Ge] = b[G¢], and
since the two filters are mutually generic, b[G¢] = b[G¢] must belong to V.

Cram 2.4 (Unger [11]). Let 7 < k. Let T be a k% tree, i.c., a tree of height
k1 with levels of width k. Let W C V and suppose that V is a k-c.c. forcing
extension of W. Let P € W be < k closed in W. Suppose that 27 > k in W.
Then forcing with P (over V') does not add cofinal branches to T.

Whenever we talk about xT trees, throughout the paper, we view them as
relations on k1 X r, with level « consisting of pairs in {a} x k. We view cofinal
branches through the trees as functions from s to x, whose graphs form chains
in the tree order.

PrROOF OF CLAIM 2.4. Let A be generic for A over W, where A is k-c.c. in
W and V = W[A]. Let T € W be an A name for T, and suppose without loss
of generality that T is forced to be a x* tree. In particular if a € A forces that
(o, &) and (v, &) are both predecessors of (o/,&’) in T, then & = &.

Let b € W be an A x P name for a cofinal branch through T'. Suppose for
contradiction that b is forced to not belong to V = WIA]. Tt is then forced in
A x P x P that, letting A x G1 x G be generic, b[A x G1] # b[A x Gs]. Thus,
for any conditions p1,ps € P, and for any condition a € A, there is o < kT,
a' < a, py < p1, and p)y < po, so that (a’,p}) and (d’,p}) force distinct values
for 6(04). By repeated applications of this inside W, using the closure of P and
the k-chain condition for A, it follows that there are p7 < p1, p5 < p2, and a set
{{ag, ae) | € <} of size < &, so that (ag,p]) and (ag, p3) force distinct values
for b(ag), and {ae | € <~} is a maxnnal antichain in A. As T is forced to be a
tree, letting o = sup{ag | £ < v} < ™, it then follows that there is no a and
no pi* < pt, pi* < pi, so that (a, pt™) and (a, p3*) force the same value for b(a).
We say in such a case that p} and p3 enforce complete separation at a.. Note that
if p7 and p3 enforce complete separation at «, then they also enforce complete
separation at every o/ > a. This again uses the fact that T is forced to be a
tree. Note also that if p] and p3 enforce complete separation at o, then so do all
extensions of p; and p3.

Let 0 < 7 be least so that 2° > k in W. Working inside W, using the
closure of P and the conclusion of the previous paragraph, construct an extension
preserving embedding 7 from 2% into P with the property that for any s € 2<%,
there is an ordinal o, so that w(s70) and w(s™1) enforce complete separation
at . Let a = sup{a, | s € 2<9}. By minimality of §, a < xT. By construction,
for every distinct s,t € 29, there is @ < a, p; > 7(s), and py > 7(t), so that p;
and po enforce complete separation at &. Hence 7(s) and m(t) enforce complete
separation at «.

Continuing to work inside W, find for each s € 2%, some a, € A and ¢, < 7(s)
so that (as,qs) forces a value for b(cr). Since T is forced to be a xT tree, the
values forced for b(ar) belong to k. Since 2° > k in W, and since A is k-c.c. in
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W, there must be s # t both in 2°, so that a, and a; are compatible, and so
that (a,, gs) and (ay, q;) force the same value for b(a). Letting a € A extend a,
and ay, it follows that (a,¢s) and (a,q) force the same value for b(c), but this
contradicts the fact that 7(s) and 7(t) enforce complete separation at «. !

CLAIM 2.5. Let P be <k closed in W, where V is a k-c.c. forcing extension of
W. Then forcing with P over V' does not add any sequences of ordinals of length
< K.

ProoOF. This is a part of Easton’s Lemma. Let A be a x-c.c. poset in W so
that V is an extension of W by A. Let A x P be generic for A x P over W.
Then by closure of P, A remains x-c.c. in W[P]. Hence any A name in W[P]
for a sequence of ordinals of length < k, is equivalent to a name of size < k,
which by closure of P belongs to W. So all sequences of ordinals of length < k
in W[A][P] = W[P][A] belong to W[A]. 4

§3. The tree property at R, 1. Magidor—Shelah [4] were the first to obtain
the tree property at N,11. They used a large cardinal assumption above a huge
cardinal. Sinapova [8] found an argument that requires only w supercompact
cardinals. Her model is obtained by a diagonal Prikry extension that turns the
lowest of the supercompact cardinals into X,,. One of the crucial novelties in her
argument is that the poset itself selects which cardinal is turned into X;. We show
here that with a similar selection mechanism, and assuming indestructibility of
the supercompact cardinals, the product of ordinary collapse posets between and
below w supercompact cardinals leads to a model where the tree property holds
at N,11. This is Corollary 3.9. Moreover the same is true for other posets, so
long as they leave enough “generic supercompactness” at k,, for n > 2, and so
long as their component below ko has many hulls that are subsumed by Knaster
posets. The exact formulation of this is given by Lemma 3.10. We will use
several tools from a different paper by Sinapova, [7], and from Magidor—Shelah
[4].

Let v be a strong limit cardinal of cofinality w.

DEFINITION 3.1 (Magidor-Shelah [4]). A system on D x 7, where D C Ord,
is a collection of transitive, reflexive relations R; (i € I) on D X 7, so that:

1. If (o, &) R; (B,¢) and (o, &) # (B,¢) then o < S.

2. If (g, &) and (ay,&;1) are both below (8, () in R;, then («ag, &o) and (o, &)
are comparable in R;. (By condition (1) this implies that («g, o) R; (oa,&1)
if ap < ay, (a1,81) Ri {(@0,&) if a1 < ag, and & = & if ag = 1)

3. For every a < 8 both in D, there is i € I, and &, € 7, so that (a,&) R;
(8,€)-

Systems arise naturally from names for trees. For example, if 7" is a P name for
a vt tree (viewed in the manner explained after Claim 2.4), then the relations
(0, ) R, (B,¢) iff plF (o, &) T (B,¢), for p € P, form a system on v+ x v. For
any D C vT and 7 < v, the restrictions of the relations to D x 7 still satisfies
conditions (1) and (2) in Definition 3.1. Condition (3) may in general fail for the
restrictions. Maintaining it is key to some of the arguments below.
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DEFINITION 3.2 (Sinapova [7]). Let {R;}icr be a system on D X 7. A system
of branches through {R;};cr is a collection {b;};cs so that:
1. Each b; is a branch through R; for some ¢ = 4; € I. This means that b; is
a partial function from D taking values in 7, and for any 8 € dom(b;) and
any o < fin D, a € dom(b;) iff (3€)(w, &) R; (B,b;(8)), and b, () is equal
to the unique & witnessing this. (£ is unique by condition (2) of Definition
3.1)
2. For every a € D, there is j so that a € dom(b;).
We do not require the branches b; to be cofinal (meaning that dom(b;) is cofinal
in D). But if |J| is smaller than the cofinality of D, then by condition (2), at
least one of the branches has to be cofinal.

LEMMA 3.3 (Sinapova [7]). Let {R;}icr be a system on D x T, with D cofinal
in vt, and max{|I|,7} < v. Suppose that there is W C V, a poset P € W, and
a reqular cardinal k < v above max{|I|,7}T, so that:

1. The empty condition in P forces that there exists a system {b;};jcs of

branches through {R;}icr, with |J|T < k.

2. P is <k closed in W, and V is a forcing extension of W by a k-c.c. poset.
Then there exists j so that b; is cofinal and belongs to V. In particular there is
1 €1 so that in V, R; has a cofinal branch.

PROOF. Let A be a k-c.c. poset so that V is an extension of W by A, and let
E be generic for A over W with V = W[E].

Let b; € V = W[E] name b; in the poset P. Suppose for contradiction that
no cofinal b; belongs to V. Without loss of generality we may assume that the
empty condition in IP forces b; & V' if b; is cofinal.

Let A = max{|I|,|J|,7}*. By assumption, A < k. Let P* be the full support
Ath power of P, defined in W. Let (G¢ | € < A) be generic for PA over V = WE].

P is <k closed in W, and V is a k-c.c. extension of W. It follows by Claim
2.5 that forcing with P* over V does not add sequences of ordinals of length < k.
In particular, v has cofinality greater than X in V|G | £ < A], and all cardinals
of V up to A remain cardinals in V[G¢ | £ < A].

Let b§ = b;[Ge]. Since cof(vT) is greater than A in V[Ge | € < A, we can
find 79 < vT so that for every ¢ and j, dom(bﬁ) C 49 whenever dom(bg) is
bounded in vT. Since by assumption the cofinal b§ do not belong to V| it follows
by mutual genericity that whenever £ # ¢ and dom(bﬁ) and dom(bg) both have
points above g, then the branches b§ and b]g are distinct. Again using the fact
that cof(v*) > X in V[Ge | € < A], we can find 71 > 79 so that whenever b§ and
b§ both have o > 71 in their domains, the two branches differ at a point below
v1 (possibly because one is defined and the other is not). By Definition 3.2 and
since av > «y; this implies in particular that b§ (o) # b§ («) (possibly because one
is defined and the other is not) if both are branches through the same relation
R;.

Let o > 1 belong to D. By Definition 3.2, for each { < A there is some j¢
so that a € dom(bgg). Let é¢ = bi () and let i¢ be such that bi is a branch
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through R; . A is greater than [I|-|J| -7, in V and hence also in V[G¢ [ £ < A].
So there must be £ # ¢ so that j¢ = j¢, i = i¢, and d¢ = d¢c. But then letting
Jj = Jje = jc and ¢ = ig = i¢ we have b?(a) = b§(a), where b§- and b§ are
both branches through the same relation R;, contradicting the conclusion of the
previous paragraph. B

REMARK 3.4. Our proof of Lemma 3.3 makes it clear that assumption (2) of
the lemma can be weakened to require only that there is a poset P* which adds
A mutually generic filters for P without collapsing any cardinals < A and without
reducing the cofinality of v to A or below, where A\ = max{|I|,|J|, 7}T.

LEMMA 3.5 (Sinapova [7] based on Magidor—Shelah [4]). Let {R;};cr be a sys-
tem on D x T where D is cofinal in vt and 7 < v. Suppose that forcing with
P adds an elementary embedding w: V. — V*, with crit(w) > max{r, |I|} and
w(vt) > sup(n”’vt). Then forcing with P adds a system of branches {b;};jc
through {R;}icr, with J =1 X T.

PRrROOF. Let G be generic for P over V. Let m € V[G] be an embedding
as in the assumption of the lemma. Note that 7(7) = 7 as crit(7) > 7. Since
crit(m) > |I| we may assume, modifying I if needed, that w(I) = I. So w({R;}icr)
is equal to {7(R;)}ier, and is a system on 7(D) x 7 in V*.

Let v be an ordinal in 7(D) between sup(n”’v") and 7(v"). For each (i,d) €
I x 7, let b; 5 be the partial map sending o € D to the unique { < 7 so that
(m(e),&) w(R;) (7,0) if such £ exists. Uniqueness is guaranteed by condition
(2) in Definition 3.1 since {m(R;)}icr is a system. It is clear from the same
definition, and elementarity, that b; s is a branch of R;.

Finally, to check condition (2) of Definition 3.2, fix & € D, and note that since
{m(R;)}ier is a system on m(D) x 7, there is by condition (3) of Definition 3.1
some §,d < 7, and some i € I, so that (m(«),&) m(R;) (y,6). Then o € dom(b; s),
as required. B

LEMMA 3.6. Let Ky, 2 < n < w be a strictly increasing sequence of regular
cardinals cofinal in v. Suppose that ko is supercompact, and that for each m > 2
there is a generic embedding w: V — V* added by a poset P so that:

e sup(7’vt) < w(vT).

o crit(m) > K.

o P is <k, closed in a model W CV so that V is a kn,-c.c. extension of W.
For each strong limit cardinal p < ko of cofinality w, let L(u) be the poset
Col(w, u) x Col(u™, <k2). Then there is pu < ko so that the extension of V' by
L(p) satisfies the tree property at v™.

PROOF. Let k denote ko. Suppose for contradiction that the tree property at
vt fails in all extensions of V by LL(u) as p ranges over strong limit cardinals of
cofinality w below . Fix L(u) = Col(w, 1) x Col(uT, <x) names T'(u) € V for
trees forced to witness this.

Let I = {{a,b,u) | p < k is a singular strong limit of cofinality w and (a,b) €
Col(w, u) x Col(u*, <k)}. For i = (a,b,u) € I let S; be the relation («,&) S;
(B,C) iff (a,b) IF (a, &) T(1) (8,¢). Tt is clear, using the fact that each T'(u) is
forced to be a vt tree, that {S;}ics is a system on v x v.
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Using the supercompactness of , let m: V' — V* be elementary, with crit(7) =
k, m(k) > v, and V* closed under sequences of length vt in V. In particular
7"vT € V* and hence 7(v+) > sup(7”vT).

Let G x G be generic for Col(w,v)"” x Col(v, <m(k))¥" over V, hence also
over V*. Let T* = n(T)(v)[G§ x G7], where T here denotes the map u — T'(u).
In V[G§ x G7], v is collapsed to w, and v is w;.

Let v* be an ordinal between sup(n”v") and 7(v*). For each a < v+ let
&* = & be the unique ordinal so that (w(«),&*) T* (y*,0). & is an ordinal
below m(v) = sup,,.,, (ky). For each «, let n = n, be least so that £ < 7(k,).
Let £ and 7, in V be the canonical Col(w, )V x Col(vt, <m(x))¥" names for
&r and ng.

Since v is equal to wy in V[G§ x G7], there is a cofinal D* C vt and n < w,
so that n?, = n for all @ € D*. The fact that n}, = n is forced by some condition
(a0, ba) € G§ x GF. a, is an initial segment of G§ and of finite length. Shrinking
D* we may therefore assume that there is a specific initial segment a so that
aq = a for all « € D*. In particular then D* can be determined using a without
reference to the full generic G§j, and hence D* € V[G7].

CLAM 3.7. {S;](D* X kn)}ier s a system.

ProOF. Conditions (1) and (2) of Definition 3.1 hold for {S;[(D* X ky)}icr
because they hold for the system {S;};c;. We have to check condition (3).

Fix o < 8 both in D*. Then £, and &} are both smaller than 7(x,). By the
definitions above, (7(a), &) and (7(53),€5) are both below (v,0) in the relation
T*, and in particular they are compatible. Hence there is a condition (a*,b*) €
G x G forcing that (m(a),&3) m(T)(v) (7(B),&5)-

By elementarity of 7, it follows that there is p1 < &, &4,&8 < Ky, and a condition
(a,b), so that (a,b) IF (o, &) T'(1) (8,€5). Then (, &) and (3,€5) are related
in Sqp,u[(D* X ky), witnessing condition (3) for the system {S;[(D* x kp)}icr
at o and £3. -

CrAM 3.8. There is, in V, a cofinal set D C vt so that {S;[(D X k,) }icr is
a system.

PROOF. Let R be a large initial segment of V' and let X < R be an elementary
substructure of size vT, with v™ C X, closed under sequences of length < v+,
and containing all objects relevant to the constructions above. Col(vt, <m(k))V"
is <v* closed in V*, hence also in V, so working in V we can find, without any
further forcing, G5 C X which is generic for Col(vT, <7 (k)" over X.

By Claim 3.7, applied inside X[G}], there is D* € X[G}], cofinal in v+, so
that X [G%] satisfies that {S;[(D* x k,)}ies is a system.

Since being a system is absolute, {S;[(D* x k,)}icr is a system in V. o

We so far have n < w and D C vt cofinal, so that {S;[(D X kp)}ier is a
system.

Let m = n + 2. By assumption of the lemma, there is a poset P adding an
embedding 7 with crit(7) > kK, m(vT) > sup(n”/v"), and such that P is <r,
closed in a model W so that V' is a k,,-c.c. extension of W.

By Lemma 3.5, forcing with P adds a system of branches {b;};cs to {S;[(D x
kn)}ier, with J = I X k,, and in particular |J|* < Kk, 12 = . By Lemma 3.3
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there is @ € I so that a cofinal branch through S;[(D x k,,) exists already in V.
Fix such ¢, and let f € V be the cofinal branch.

Let p and {(a,b) € Col(w, 1) x Col(u*, <k)" be such that i = {a,b, ). Then
by definition of S;, (a,b) I (a, f()) T(1) (B, f(B)) for all &« < B both in dom(f),
which is cofinal in v*. Letting G x G1 be generic with (a, b) € Gy x Gy, it follows
that in V[Go x G1], f determines a cofinal branch through 7'(11)[Go x G;]. But
this contradicts the fact that T'(x) is forced to have no cofinal branches. This
contradiction completes the proof of Lemma 3.6. -

COROLLARY 3.9. Let Ky, 2 < n < w, be an increasing sequence of inde-
structibly supercompact cardinals. Let v = sup{k, | n < w}. Then there is
a strong limit cardinal p < ko of cofinality w, so that in the extension of V' by
Col(w, p1) x Col(ut, <k2) X [Tr<pcw, COl(kin, <knt1), the tree property holds at
vt. vt s equal to R, 1 of the extension.

The indestructibility assumed in the corollary can be arranged by standard
arguments, with a preparatory forcing, starting from w supercompact cardinals.

PROOF OF COROLLARY 3.9. Let H = [[,.,, ., Hy be generic for the poset
[lo<ncw Col(kin, <kini1). It is enough to prove that the assumptions of Lemma
3.6 hold in V[H]. Then, by the lemma, there is 4 < k2 so that in the further
extension by Col(w, 1) x Col(u™, <kz), the tree property holds at v7.

The assumptions of the lemma are easy to verify in V[H]. k = kg is super-
compact in V[H], by indestructibility. For each m > 2, forcing over V[H| with
Col(km, )V for sufficiently large 7, adds an embedding 7: V[H] — V*[H*] with
critical point K41 and w(v1) > sup(7”/v"). (Use indestructibility to obtain, in
VI 1ni1<n Hnl, a v supercompactness embedding with critical point i, 11. 7
extends to act on V([T 1<n Hnl[[o<nem Hn] since the posets Col(kn, <fin41)
for n < m have size below crit(r). A further extension, to act on V[H] =
VI Lns1<n Hollllo<pem Hnl[Hm], can be obtained in any model with a generic
for Col(km, <m(km+1))Y over V[H].) Col(km,7)" is <k, closed in W = V[H,, x
Hppy1 % ... ], and V[H] is a Kp,-c.c. extension of V[H,, X Hyqq X ... ]. =

The corollary produces a model where the supremum of w supercompact cardi-
nals is turned into N, and the tree property holds at V.. For future arguments
that involve securing the tree property also below R, it is useful to notice that
our assumptions in Lemma 3.6 can be weakened in a couple of ways, to pro-
duce a lemma that works in somewhat more general settings. The next lemma
formalizes this.

LEMMA 3.10. Let ky, 2 < n < w, be a strictly increasing sequence of regular
cardinals cofinal in v. Let Index C ko and suppose that L(u) for each p € Index
is a poset of size < ko. Let R be a large rank initial segment of V' satisfying a
large enough fragment of ZFC. Suppose that:

1. For each m > 2, there is a generic embedding 7: V — V* added by a poset
P so that:
(a) sup(7’vt) < w(vt).
(b) crit(m) > K.
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(¢) There is a Kmth power of P that adds k., mutually generic filters for
P, without collapsing any cardinals < Ky, and without reducing the
cofinality of v+ to or below Ky, .
2. For each X < R with vt C X, let V. = Vx be the transitive collapse of
X. Then, for stationarily many such X, there ewists a v -Knaster poset
P =Px forcing the existence of m and L so that:
(a) m: V — V* is elementary with sup(r"v™) < w(vT).
(b) crit(m) = kg, m(k2) > v, and v € w(Index).
(c) L is generic over V* for m(IL)(v).
Then there is 1 < k2 so that the extension of V by L(u) satisfies the tree property
at v,

Recall that a poset P is vt -Knaster if every sequence of v+ conditions in the
poset can be refined to a subsequence of the same size so that any two conditions
in the subsequence are compatible. The poset Col(w,r) that was used in the
proof of Lemma 3.6 is of course vt-Knaster.

PrOOF OF LEMMA 3.10. The proof is similar to that of Lemma 3.6. The
main difference is in the use of the embeddings given by condition (2) as a
replacement for the assumption that ko is supercompact.

Suppose for contradiction that the tree property fails at v™ in all extensions by
(), i € Index. Let T'() be names witnessing this, meaning that 7'(u) is forced
in L(u) to be a v™ tree with no cofinal branches. Let I = {(r,u) | p € Index
and r € L(p)}. For i = (r,u) € I let S; be the relation (a,&) S; (B,¢) iff
kL (o, 6) T(1) (8,¢). As in the proof of Lemma 3.6, {S;};cs is a system on
vt x v, and our first goal is to show that its restriction to D X &, is a system,
for some cofinal D C vt and n < w.

Let X, V, and P be as in condition (2), with the function p — T'(u) in X.
Let G be generic for P over V, and let 7, L € V[G] be as in condition (2). Let
T = n(T)(v)[L] € V[G].

Let v* be an ordinal between sup(n”v") and 7(v+). For each a < v+ let
&’ be the unique ordinal so that (mw(a),&%) T* (v*,0). &% is an ordinal below
(V) = sup, ., T(kn). For each a, let n = n, be least so that £ < m(k,). Let
N Name n, in the forcing P.

For each a < v, fix a condition p,, € PP forcing a value for 1. Note that this
is done in V', with no reference to the generic G. (Our use of G above was just
for notational convenience.)

Since PP is vT-Knaster, there is a cofinal D C v so that for any o, 8 € D, p,
and pg are compatible in P. Thinning the set D, but maintaining the fact that
it is cofinal, we may assume that there is a fixed n < w so that for each a € D,
the value p, forces for n, is n.

CLAM 3.11. {S;[(D X kn)}icr is a system.

Proor. Conditions (1) and (2) of Definition 3.1 are inherited from {S;};e;.
We have to check condition (3). Fix o < 8 both in D. Then p, and pg are
compatible. Let p extend both. Revising G, we may assume p € G. Then by
definitions, (m(),&;) and (7(8),&j) are both below (v*,0) in 7™, and hence
they are compatible. It follows, again by definitions and since n, = ng = n,
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that V* satisfies “there exists u € m(Index), r € 7(IL)(1), and &, ¢ < 7(ky), so
that v Ik (7(a),§) 7(T)(n) (7(B8),¢)”. By elementarity of 7, there exists

p € Index, r € L(u), and &, < kp, so that r Ip,) (o, §) T(1) (8,¢). Then
(a,&) and (B, () are related in S, ) [(D X Ky,), as required. !

As in the proof of Lemma 3.6, an application of Lemma 3.5 now shows that
forcing with the poset P given by condition (1) of the current lemma for m =
n+ 1, adds a system of branches {b;};cs through {S;}icr, with J = I X k.
An application of Lemma 3.3, in conjunction with Remark 3.4, then shows that
there must be a cofinal branch through one of the relations S, ), already in V.

This gives a cofinal branch through an interpretation of one of the names T(u),
completing the proof of Lemma 3.10. B

§4. The tree property below R,. Let x,, 2 < n < w be an increasing
sequence of supercompact cardinals. Let v = sup{x, | n < w}. We describe a
forcing extension in which k, becomes X,, and the tree property holds at N,, for
all n > 2.

Our construction is a modification of the poset defined in Cummings—Foreman
[2]. There are several differences between the two constructions. One difference
is that we do not preserve X;. Instead we allow the poset to select a cardinal
1, from a specific index set that we define, whose successor is then turned by
the forcing into N;. Other differences, throughout the poset’s definition, make
the poset more amenable to “reverse analysis”, meaning analysis by splitting the
poset into a product of an initial segment and a tail-end. These modifications
are intended to bring the poset to a form that fits with Lemma 3.10 (although
parts of the “reverse analysis” will be useful already before we get to that). We
cannot literally reach a poset that splits into a product of an initial segment and
a tail-end; some elements of the tail-end poset cannot be brought into V' and so
the split cannot be viewed as a product. But we take products where we can,
and in cases where composition is necessary, we identify variants of the tail-end
posets that exist in V.

Suppose that each k,, is indestructibly supercompact, and suppose moreover
that there is a partial function ¢ so that for each n, ¢[k, is an indestructible
Laver function for k,. By this we mean that for each A € V, ordinal v, and
<t directed closed forcing extension V[E] of V, there is a 7 supercompact-
ness embedding 7 in V[E] with critical point &,, so that 7[Ord belongs to V,
m(¢)(kn) = A, and the next point in dom(w(¢)) above &, is greater than ~. This
situation can easily be arranged with V obtained by the standard construction
of indestructibility. (Suppose &, is supercompact in V C V, and fix a Laver
function F' € V for k,. Define functions Fy and F, by setting Fj(a) = = and
Fy(a) =y if F(a) = (z,y), and otherwise leaving F; and F» undefined at .
Note that F; is a Laver function for , in V. Suppose V = V[G] where G is
generic over V for the standard poset to make x, indestructibly supercompact,
using the Laver function F}. Now define ¢ in V' on ordinals between x,_; and
kn by setting ¢(a) = Fa(a)[Ga] if this makes sense and F}'a C V,,, and leaving
¢(a)) undefined otherwise.) Thinning the domain of ¢ we may also assume that
for every a € dom(¢), v € dom(¢) N — ¢(7) € Vy.
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For n > 2, let A, be the forcing Add(kn, knt2). Let ko denote w, and let
Ay = Add(w, k2). Let Ay = X, cmndex Add(u™, k3), where the sum is defined to
be the disjoint union of the posets, with conditions in distinct posets of the union
taken to be incompatible, so that a generic for A; is simply a generic for one
of the posets Add(u™, k3). In contexts where we work with such a generic, u is
determined by the generic, and we use k; to denote ™. We will define the set
Index over which the sum is taken shortly. For now we just say that all elements
of Index are limit cardinals of cofinality w, below k.

Let A be the full support product of the posets A, n < w. We use A, ,,) to
denote the poset [], ., .,, Ai, and similarly with open and half open intervals.
We use A, |y, for ¥ < kni2, to denote the obvious restriction of A, and use
similar notation for generic objects and conditions, so that, for example, if G is
generic for Add(ky,, kn+2), then G|y consists of the first v subsets of x,, added
by G, and is generic for Add(ky,vy) = Add(kn, Kni2) Y-

By Ala we mean the poset Ay, x A, [a where n is least so that a < Ky 0.

DEFINITION 4.1. Define a poset B in V and a poset U in the extension of V'
by A, simultaneously as follows. (For notational convenience, fix A generic for
A over V. U is described in V[A], and this translates naturally to a definition of
aname U € V for this poset.)

1. All conditions p in B are functions so that dom(p) C v, and for every

inaccessible cardinal «, |dom(p) Na| < c. (This parallels Easton support.)
In particular, |dom(p) N Kpt2| < Knyo for each n.

2. If @ € dom(p) then « is an inaccessible cardinal, « is not equal to any ,,
o € dom(¢), and ¢(a) is an (Ala) * (Ula) name for a poset forced to be
<a directed closed.

p(a) is an (Ala) * (Ula) name for a condition in ¢(cv).
4. p* < pin B iff dom(p*) D dom(p) and for each a € dom(p), (), p* o) forces

in (Al) * (Ule) that p*(a) < p(c).

5 U= U[A] has the same conditions as B, but the richer order given by p* < p
iff dom(p*) O dom(p) and there exists a condition a* € A so that for every

a € dom(p), (a*la, p*[a) IF (4 10).@010) P (@) < Pa).

REMARK 4.2. The condition defining the order in (5) is equivalent to the
seemingly weaker condition that dom(p*) D dom(p) and for every a € dom(p)
there exists a € A« so that (a, p*a) IF (Ata)« (@) p*(a) < p(a). To see that the
two are equivalent, suppose the seemingly weaker condition holds, and let a* € A
force this fact about p* and p over V. Then a* witnesses that the condition in
(5) holds.

Definition 4.1 is such that (A[a)*(Ula+1) makes sense, and for « that satisfies
the requirements in condition (2), it can be viewed as an iteration (A]a) (Ula)*
¢(a). One can think of U as an iteration of posets given by the indestructible
Laver function ¢, with initial segments of A folded in.

When taking a filter in A % U, we always assume that it is strong enough on
the A coordinate, to be generated by a set of pairs (a, 13> where a € A and b € B.
(Any generic filter has this property, since any condition (a,b) in the filter can

©w

be strengthened on the A coordinate to force a value for b.)
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DEFINITION 4.3. Let 8 < v, and let F C AxU|S3 be a filter. Define BtF B, v)
to consist of conditions p € B with dom(p) C [3,v) ordered as follows: p* < p
iff dom(p*) 2 dom(p) and there exists {(a,b) € F so that for every a € dom(p),
(ala,bUp*la) forces p*(a) < p(a).

Our main initial uses of Definition 4.3 are in cases where F' is generic for
AlB +UIB. Other uses will include situations where F = {(0),b) | b € Bg} with
B3 generic for BI3. We will also have hybrids of these two forms, where a part
of I is of the first form above, and another part is of the second.

U itself can be viewed as a use of Definition 4.3. Let A be generic for A over
V. Then F = {{a,0) | a € A} is a filter contained in A x U[0. Tt is easy to check
that the poset BT'[[0,v) in this case is simply the poset U.

Similarly, if Ug is generic for UJS over V[A], then F = {(a,u) | a € A,u € Ug}
is a filter contained in A * U]3. BTF[[8,v) is a poset in V[A][Us]. We denote
it by UJ[8,v). More generally, U[[3,v) denotes the poset Bt4*Us[[3,~). The
poset belongs to the extension of V' by A x U[5. The generic A x Ug is omitted
in the notation UJ[8,v), and is understood from the context.

Let Up = Ulkz, and for n > 0 let U, = Ul[kn41,knt2). Define Uy, =
Ulkny2, and define other interval posets similarly. Uy, is a poset in V[A[g ]
For n > 0, Uy is a poset in V[Ag n) * Ujo,n)]-

We sometimes use the notation B[TBI;/) for BYF'[[3,v), and similarly with U.

Recall that we left the exact definition of the set Index used in the definition of
A; unspecified. We now discharge our obligation to specify the set. Its definition
refers to Ay and Uy, but these are both known before any use of A;.

DEFINITION 4.4. Define Index to consist of all ;1 < k2 so that:

1. p is a strong limit cardinal of cofinality w and dom(¢) has a largest point
A below p.

2. Over any extension V[E] of V by a u closed poset, the further extension
by AglA * Ug A + 1 does not collapse (u+)V.

3. AgIA * U\ + 1 has size at most .

There are many p satisfying the requirements of the definition. For example
any strong limit cardinal g < ko of cofinality w, with largest point A below
p in dom(¢) and so that |¢(N)| < p, satisfies the requirements, as the poset
AAxUIA+1 in this case has size less than 1, and in particular cannot collapse pu™
over any model. Our forcing constructions will use a slightly different situation,
where |¢(\)| = pT, but forcing with A\ * U[A + 1 still preserves .

CrAM 4.5. Let F C F both be filters for A x UlB8. Let G be generic for
BB, ) over some model containing F' and F. Then the upward closure of G
in BYE[[B,v) is generic for BTE[[B,v) over the same model.

PROOF. Note to begin with that BT [[3,v) and B*¥'|[3,v) have the same
conditions, and that the latter has a richer order, immediately by their defini-
tions. So the upward closure of G' in B*¥'[[3, ) makes sense, and is a filter.

It is easy to check that if ¢ <g+r(5,,) p, then there is r <gir|(5,) ¢ so that
r <g p. (Let (a,u) € F witness that ¢ <g+rg,,) p. Define r with the same
domain as ¢ as follows. If & ¢ dom(p), set r(«) = g(«). For @ € dom(p), set
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r(a) to be a name forced equal to g(a) by (ala,u U rla), and forced equal to
p(a) by all conditions of Af« * Ula that are incompatible with (ala,uUr|a).)

So every dense open set in BTF[[3,v) is dense in B?|[3, ), hence also in
B+F (3, v). The claim follows. —|

REMARK 4.6. The converse of Claim 4.5 may fail in general. A generic G
for B*¥[3,v) may contain conditions which are incompatible in B+ [[3,v),
and in particular it is not a filter in the latter poset, let alone a generic filter.
However, by standard forcing arguments using Claim 4.5, one can force to add
a refinement G C G which is a generic filter for BT'[[3,v), and so that G is the
upward closure of G.

We refer to the forcing refining a generic G for B[, v) to a generic G C G
for 7]B%+F [[8,v) as the factor forcing. The forcing is simply the restriction of
B+ 3, v) to conditions in G.

CLAIM 4.7. Let B < B. Suppose that_F is generic for A|B*U[B over V. Then
BB, v) is <B directed closed in V[F).

PROOF. Let 7 € V name a sequence in V[F], of length § < 3, of conditions
in BT [[3,v) that form a directed set. Without loss of generality suppose that
the fact that the set is directed is forced by the empty condition in A|S * U|[S3.

Let D be the union of all possible values forced for dom(re), &€ < 4. B is
the smallest possible element of D, and for every a > 8, D N « is the union of
fewer than « sets which each satisfy the support requirements of condition (1)
of Definition 4.1 at «. It follows that D N « too satisfies these requirements.

We now define a condition p, with domain D, that is forced to be a lower
bound for all conditions 7¢. The definition is by induction on o € D. Working
in V, let p(a) be an Afa * Ula name forced by (B, pla) to be a lower bound
in ¢(a)[F,] for the conditions 7¢[F, [3](a)[Fa). (F, here indicates a generic for
Alax Ula.) Such a name exists since by condition (2) of Definition 4.1, ¢(c)
is forced in Afa % IU[a to be <a directed closed, and, using induction and the
initial assumption about 7, (i), pla) forces 7¢[F,, [B8]()[Fa] to be directed.

Then p is a lower bound in B¥¥'[[3,v) for the conditions 7¢[F]. o

REMARK 4.8. Let a < ky41 be a successor point of dom(B), above k,,. (If n >
1, the set of such a is cofinal in k,,41.) The poset (Ajg ) * Ula) x B [a, kpta)
is a product of an a-c.c. poset with a <a closed poset. (The first factor is a-c.c.
since Ajg ] is kF-c.c. in V and Ula has size less than a. The second factor is
<« closed by Claim 4.7.) By Claim 2.5, it does not collapse «. Forcing with
(Afo,n) * U[a) x BH?[[a, fpp2) subsumes forcing with Ajg,n) * I['J[Om], since, by
Claim 4.5, the upward closure of a generic for B+? Ity Knt2) provides a generic
for Ul[a, n12). Hence forcing with Apg ;) * U[O,n] does not collapse a. If n > 1,
this is true for cofinally many o < kp11, so forcing with Ajg ) * U[O,n] does not
collapse Kyp41-

CLAIM 4.9. Let A= U be generic for AU over V. Let 8 < v and let F =
AlB % U|B. Then, in the factor poset to add a generic G for BYE[[3,v) that
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refines U[B,v), every decreasing sequence of length < [ that belongs to V[F]
has a lower bound.

PROOF. Let p'= (p¢ | £ < 9) in V[F] be a descending sequence of length § < 8
in the factor poset, meaning that the sequence is descending in B*¥'[[3,v), and
the conditions p¢ all belong to U[[3,v).

Let (a,u) € Agg,,y * Ujg,) force, over V[F], that (V§ < 0)pe € U[[3,v). Then
u < pe in UJ[B, v) for all £, and this is forced by a. Extending (a,u) if needed we
may assume it also forces that p has no lower bound in the factor poset. In other
words it forces that no lower bound for ' in B*'[[3, ) belongs to U[[3,v).

By Claim 4.7 and since the sequence p' belongs to V[F], there is p which is a
lower bound for 7 in BT [, v).

An argument similar to that in the proof of Claim 4.5 now produces a condition
r <ujg,w) U so that r <gi+rg,) pe for all &. (Define 7 so that for each « €
dom(r), (ala,ula) forces r(a) = u(a), and all conditions incompatible with
(ala, ula) force r(a) = p(a).)

But then r is a lower bound for p"in B*¥'[[3,v), and since r <uigw) Us (a,u)
does not force r outside U[[3, v), contradicting the choice of (a, u). a

DEFINITION 4.10. Let V[E] be an extension of V' by a poset E, and let P =
P[E] be a poset in V[E]. Define the poset P in V to consist of canonical names p
forced to be elements of IP’, with p* <p p iff Ih}{ p* < p. P is called the termspace
forcing, and its definition is due to Laver.

CLAIM 4.11. Let P and P be as in Definition 4.10.

1. IfP is forced to be <a directed closed, then P is <o directed closed in V.
2. Let G be generic for P over a model that contains V[E]. Then the upward
closure of {p|E] | p € G} in P[E] is generic for P over the same model.

PROOF. Similar to the proofs of Claims 4.7 and 4.5. —

LEMMA 4.12. Letn < w. Let A*Ug,) be generic for A*IU[OW] over V. Then in
VI[A][Ujo,n)], kn+2 is generically supercompact, and this supercompactness is in-
destructible under forcing with posets in V[Ajg n)][Ujo,n)] that are <k 1o directed
closed in VA n)][Ujo,n]-

The forcing notion producing the generic supercompactness embedding is iso-
morphic to Add(kp, T(kni2))Y xAdd(kni1, 7(kna3))Y, where T is the embedding
produced.

Precisely the statement of the lemma means the following. Let P be <k, 42
directed closed in V[A 1][Ujo,n)]- Let G be generic for PP over V[A][Ujg ,,]. Then
for each v there is, in an extension of V[A][Uy ][G], an elementary embedding
7 VIA[Uppn)][G] = V*[A"|[Uf ,)][G"] so that crit(m) = knia, T(kn+2) > 7,
7[Ord belongs to V, and V*[A*][Uf ,][G*] is v closed in the generic extension

producing the embedding. The generic extension producing the embedding is an
extension of V[A][Ujo,n)][G] by Add(kn, T (knt2))” X Add(knt1, T(kny3))Y

ProoOF oF LEMMA 4.12. Fix . Let P € V name P. Using the fact that
¢ is an indestructible Laver function, find a ~ supercompactness embedding
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T: V[Apt2.m] = V{4 0.0
and 7(@)(kp12) = P.

Increasing v if needed, we may pick 7 so that v™ is a fixed point of the
embedding. In particular then the set {dense subsets of 7(B)™?[ (k10,7 (kni2))
that belong to V*} has cardinality v in V. Using this, the fact that the first
point in dom(7(¢$)) above k,y2 is greater than +, and the closure given by
Claim 4.7, one can construct, in V[Ap42.)], a filter B which is generic for
T(B) Y (Kpy2, T(Fny2)) over VAL, 1 2.0))- (Claim 4.7 is applied in V* with B =
0. It shows that the poset 7(B)™?|(k,42,7(1)) is v closed in V*, and therefore
50 is 7(B)*? [ (kpio, m(kny2)). This closure transfers to V[Afn42,0)); since V= is
itself v closed in this model. In V[A[, 2] one can then enumerate the dense
sets that belong to V* [A?‘n +2’w)] and meet all of them through a construction of
length y.)

Let P be the forcing notion associated to P by Definition 4.10. By Claim
4.11, P is <knto directed closed in V. By elementarity of 7 it follows that
7(P) is <m(kiny2) directed closed in V*, and this implies that it is v closed in
VI[Ant2.)). Working in V[A[,42..)] we can therefore find G* which is generic
for (P) over V* [Arn+2’w)][é]. We build G* below a specific condition pj in P.
We will say what this condition is later on.

Let A, be generic for m(Ap)|[Fnt2, T(kni2)) over V[A][Ujo,][G]. Similarly
let A, be generic for m(A, 1) [(7(knis) — T knys)) over V[A] [Uio.m] 1G] [A,].
(These posets are isomorphic to Add(k,, 7 (kni2))Y and Add(kni1, 7(Knis))
respectively.)

Then A, and A, can be joined to form a generic A* for m(A,), and simi-
larly A,+1 and A, 1, can be joined to form a generic Ay o for m(A,41). Let

|, in V[Ap42.0)), with 7[Ord in V, crit(7) = #pq2,

AFO,TH-l] be the resulting sequence (Ao,...,An_1, A5, A}, ). It is clear that
T VI[Apy2w)] = VIAL, 5] now extends to an embedding, which we also

denote , from V[A] to V*[A*].

Ujo,n), G, and the upward closure of B in 7(U)|(Kns2, T(kni2)) can be joined
to form a generic Up , for T(Ulkn42). It is clear that m extends further, to an
embedding of V[A][Uo,nj] to V*[A*][U} ,]-

Since 7" [V belongs to V[Ap,42..], V* is v closed in V[Ap,42.)], and G is
part of the generic U 1, 7"G belongs to V*[A}y ][Uf ] It follows from this
and the directed closure of 7(PP) in V*[A, ][Uf )] that 7"G has a lower bound
in m(P). Let p§ € V* name such a lower bound. Note that pfy can be defined

*

without reference to A[o n] and U, [f) n]’ and in particular with no reference to A,

and An+1, so it could have defined earlier in the proof, before fixing G*. We
may therefore assume that pf; belongs to G*.
So far we extended 7 to an embedding of V'[A][Ujg,,] into V*[A*][Uf ,1]. G* is

generic for 7(P) over V*[A} ][B]. From this and the genericity of A

[n+2,w) [0,n+1]°
Upp,n); and G over V*[AFHH [B]G"] (indeed these objects are generic over

V[A[n42.)], which contains V*[AE‘HHM)][B] [G*]), it follows that G* is generic
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over V* [Arn+2,w)“B] (A% 1117 U,n][G]. Hence G* is generic also over (the
smaller model) V*[A*][Uf |-

By Claim 4.11 it follows that the upward closure of {p[Ay, . I[UG ] | P € G}
is generic for m(P) over V*[A*][Uf; ,]. Let G* denote this upward closure. Since
P5[Afy ) [Up ] is a lower bound for G, G* contains 7G. So m extends, finally,
to an embedding of V[A][Uj,n)][G] into V*[A*][U ]G] =

The definition of B and U was designed specifically to lead to Lemma 4.12.
We continue now with definitions of posets that collapse all cardinals between
Kn+1 and Kpy2 t0 Kpy1, and secure the tree property at k,42. One can view
this as being done (for k,4+2) over the model V[Alkp41 * Ulkn41]. Viewed this
way our poset is similar to the one in Mitchell [5] (termed “Mitchell forcing” in
Abraham [1]), but using A,, = Add(k, k,42)" rather than the version computed
in V[Alkn+1 * Ulkn41]. This modification helps us with reverse analysis of the
end poset later on.

DEFINITION 4.13. For each n < w define a poset C,, in V' as follows. Condi-
tions in C,, are functions p so that:

1. dom(p) is contained in the interval (Kn41, Knt2), and |dom(p)| < Kpi1.
2. For each a € dom(p), p(a) is an (A]a) * Ulk,,1 name for a condition in
the poset Add(k,,1,1) of the extension by (Ala) % Ulkpy1.
Conditions are ordered as follows: p* < p iff dom(p*) O dom(p), and for each
o € dom(p), it is forced (by the empty condition) in (Aa)*Ulk,,q that p*(a) <
pla).

If n > 1, then Ulkp1 is simply Uy ). In this case the poset (Aa) * Ulkni1
used in the definition can also be written as (Ajg ) * U[o,n)) x Apla. (Iftn =20
this is not quite a precise match, since Ulk; is part of Uy.)

Let C be the full support product of the posets C,,. We use interval notation
in the usual way, so that for example, C|[kn+1, knt2) is Cp, and Cl[kp41,v) is
Cinyw)-

DEFINITION 4.14. For a filter I C A % U define the enrichment of C to F,
denoted C*T¥, to be the poset with the same conditions as C, but the richer
order given by p* < p iff there exists a condition (a,u) € F so that for each
a € dom(p), (ala,ulk;) - gt s p*(a) < p(a), where i is largest so that
ki < a.

The poset we intend to use is the enrichment C*4*U where A x U is generic
for A U over V. We will refer to intervals of this poset, for example CF4*U =
CHAxU Kn+1, Knt2). In such references only Alky, 1o % Ulkp41 is relevant to the
enrichment, but to reduce notational clutter we still use the superscript +A4 *« U.

The definition of C and C*4*V is similar to the corresponding definition of B
and U, except that the underlying posets used at each coordinate « are different,
the support is different, and there is no self-reference, meaning that the ordering
at coordinate o does not rely on the restriction of the conditions ordered to
«. The definition of C is simpler than the simultaneous definition of B and U,
because there is no need to deal with self-reference here.
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Note that the definition of Cy makes a reference to k1. In contexts where we
have a generic A; for Ay, ki is determined by this generic. In other contexts,
K1 is a parameter in the definition of Cy. We sometimes refer to the poset as
Co(k1), when k1 is not understood from the context.

Cram 4.15. 1. Let F be generic for A3 * Uls for B < Kpy1. Then the
poset CT' [ky11,v) is <kni1 directed closed in V[F).

2. Let B € (Knt1, knt2) and let F' be generic forA[ﬂ*[U[nnH. Then the poset
CHN[B, kny2) is <kni1 directed closed in V[F).

PROOF. Similar to Claim 4.7, except that (a) the amount of closure here in
condition (2) is lower, because the underlying poset at each coordinate « is only
forced to be <k,41 directed closed; and (b) the domain D of the lower bound
must be defined more carefully, since it is required here to have size < k,41, a
stricter demand than the support restrictions in the case of Claim 4.7.

We indicate how to obtain the domain D, in the harder of the two cases of
the claim, case (2), and leave the remaining details to the reader.

Let 7 € V name a sequence in V[F] of conditions in C*¥[[3, k,12), of length
0 < Kpt1, that form a directed set.

Suppose to begin with that n > 1. By Remark 4.8, k,41 is not collapsed in
V[F]. Since 7 is forced to be a sequence of length < k,41 it follows that there
is 7 < Kp41 so that the restriction of F' to A[S [U[n is sufficient to interpret 7.
Let (a,u) in F force this.

Increasing 7 we may assume it is a successor point in dom(¢) and greater than
Fin, 50 that AB x Uln is n-c.c. in V. Below (a,u), there are then fewer than 7
possible values for the domain of 7¢ for each £ < §. The set D equal to the union
of these possible values over all ¢ < § then has size less than k1.

Suppose next that n = 0. By Definition 4.4 and since k; = u* for some
€ Index, A UIA + 1 has size at most x1, and does not collapse k1, where
A is the largest point of dom(¢) below p. Ulk; is equal to UJA + 1, so the full
poset A[B*Ulky is equal to (A[AxUA+1) x Add(w, [\, B)). Since Add(w, [\, 3))
is k1-c.c. over any model that preserves k1, the full poset does not collapse k1.
As in the case of n > 0 it now follows that 7[F] can be determined from the
restriction of F' to Add(w, [X, 8)) and some part of A\ x UIA+ 1 of size u < k1.
Again as in the case of n > 0, this allows bounding the union of possible domains
for 7¢ by a set of size < k. =

CLAIM 4.16. Let A= U be generic for A+ U over V., and let S be generic for
CHU over V[AxU]. Letn < w and let F = Alkpyo * Ulknyo. Then, in the
factor poset to add a generic G for CT¥ [[k,12,v) that refines S|[knia,v), every
decreasing sequence of length < ko that belongs to V[F] has a lower bound.

PROOF. Similar to Claim 4.9 (with 5 = Kp42). !

CLAIM 4.17. Let Alkpyo *x Ulkny1 be generic for Alkn o *x Ulkpy1 over V.
Then forcing with CtAMn+2xUlknti g )k 1o) over V[Alkpyo * Ulknyi] col-
lapses all cardinals between kpi1 and Kpiyo 0 Kpy1.

ProOOF. Let S, be generic for CtAn+2xUlrnir [ ) k. 15). For each a €
(Kn+1, fnt2), let 2o = U es, P(@)[Ala % Ulkpy1]. Then by the definition of
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CHAlRn+2xUlkni1 and genericity, x, is a subset of #,41, added generically using
bounded initial segments that belong to V[Ala * Ulkp1]. In V[A]a] there are
at least « subsets of k,. (This is because A, [a = Add(k,,a).) By genericity,
each of these occurs as a segment of x,. Since z, is a subset of k1, it follows
that « is collapsed to Ky 41. -

Let A be generic for A over V, let U be generic for U over V[A], and let S be
generic for CT4*U over V[A][U]. Let e be generic over V[A][U][S] for the poset
Col(w, u)V. (Recall that the generic A; selects p. A; is generic for Add(ky, k3)
where 1 = p.) We intend to show that in the extension V[A][U][S][e], kn is
N,, for each n, and the tree property holds at K, 42.

We begin by determining the cardinals of the model. For this we use a reverse
analysis of the forcing. Let C refine S to a generic for C over V[A][U]le]. Let B
refine U to a generic for the product Blx1 X [[B? [[kni1, fnio) over V[A][C][e].
(This product is not the same as B, since B is not a product of its coordinates.)
Then V[A][U][S][e] € V[A][B][C]le]. (Indeed, U is the upward closure of B in
U, and S is the upward closure of C' in C*4*U.) V[A][B][C][e] is a product of
its segments between successive ks, rather than a composition, and therefore
easier to analyze.

CramM 4.18. Letn < w. Then Vyyo = V[Ap49.0) X Bl[kng2, V) X Cllknt2, V)]
is @ <Kn42 closed extension of V.

ProoF. Closure is clear for Ap, 15, holds by Claim 4.7 (with B = 0) for
Bt [[kn12,v), and by part (1) of Claim 4.15 (with 8 = 0) for C|[kpy2,v).

Let B,, denote B¢ Kn+1, Knt2), and let B, = Bl[kn11, Knt2), so that B, is
generic for B,,, and B = Bk X [[ Bn. (With this indexing, Uy is an upward
closure of Blk; X By, and for n > 1, U,, is an upward closure of B,.)

CLAIM 4.19. Kyy2 is an inaccessible cardinal in Vy,42[By]. Moreover V,, 1o has
the <7 covering property in V,,12[B,], for every cardinal 7 > fni2 of Viia. In
particular the extension does not collapse any cardinals above Ky 4o.

PROOF. For any successor point o € dom(B,,), BY[[r,, 11, ) x B [[a, kpy2)
subsumes B,, by Claim 4.5. (Given a generic B, o) X G for the product, the
claim is used to convert G to a generic for Bt Btenir Mo, int2) that can then
be appended to Bj, ., 4)-) This is a product of a poset which has size less than
a (because « is a successor point in dom(B,,)), with a poset which is <a closed
(by Claim 4.7). It follows that « remains a cardinal in the extension by this
product, that the cofinality of x,y2 is not changed to be smaller than «a, and
that there are at most o bounded subsets of « in the extension. It also follows
that every subset of V,, 2 of size < a in the extension is contained in a set of size
less than « in V,, 5. Since the product subsumes B,,, all these claims hold also
for the extension by B,. Taken together for all successor points o € dom(B,,)
they imply that k2 is inaccessible in V,,12[By,], and that V;,;2 has the <x,42
covering property in Vj,42[B,]. Finally, since the forcing notion adding B,, has
size Kny2, every subset of V419 of size A > Kp42 in V,,42[By] is contained in a
set of the same size in V4o -
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Cramm 4.20. C,, is kpqa-c.c. in Vyyo[By]. In particular, no cardinals > Kpqo
are collapsed in the extension of Vyi2[Bn] by Cn, and V,12[By] has the <t
covering property in the extension, for every cardinal T > fint2 of Viy2[By).

ProoOF. By Claims 4.18 and 4.19, V' has the <k,yo covering property in
Vit2[Br]. Since all conditions in C,, are functions in V' with domain of size
< kp+1 in V, it follows by Claim 2.2 that any antichain of C,, of size k,42 in
Vit2[Br] can be refined to an antichain of the same size, with conditions whose
domains form a A system. Letting r be the root of the system this implies that
there are k, 1o pairwise incompatible conditions in C,, with domain r. But as
sup(r) < Kny2, this contradicts the definition of C,, and the fact that ko is
inaccessible in V,,12[By]. -

CLAM 4.21. A, 41 18 Kpga-c.c. in Viyo[B][Cr]. In particular no cardinals
> Knta are collapsed in the extension of Vi12[Byn|[Cr] by Any1, and the model
has the <t covering property in the extension, for every cardinal T > Knio of
the model.

PROOF. Similar to the proof of Claim 4.20, using the fact that, by Claims
4.18, 4.19, and 4.20, V has the <kyt2 covering property in V,,2[B,][Ch]. o

COROLLARY 4.22. Forn > 2, ky, is a cardinal in Vi = V[Ap |[Bl[s1, v)][C],
and V has the <k, covering property in V1.

PRrROOF. Immediate working through the extensions in reverse, using Claims
4.18, 4.19, 4.20, and 4.21. -

Cram 4.23. Vi = VI[Ap »)|[Bl[k1,V)][C] is a <k1 closed extension of V, and
in particular kK1 is a cardinal in this extension.

PROOF. Vo = V[A}3.0,)][Bp1,w)l[Cl1,w)] is a <kz closed extension of V' by Claim
4.18. The posets A1, By, and Cy are <k closed in V, hence also in V5, so
VA1) [Ble, )] [Clow] is @ <k1 closed extension of V. -

LEMMA 4.24. In the extension V[A][U][S][e], kn = N, for each n, and V has
the <k, covering property for allmn > 2. The same is true in the larger extension
VAU kA][Bl[r1, v)][Clle].

Proor. By Corollary 4.22, , remains a cardinal in V[Ap ,,)|[B[[k1,7)][C]
for each n > 2, and V has the <k, covering property in this model. Since
A¢ = Add(w, kpn+2)V is wi-c.c. in this model, the poset Col(w, 11) leading to e has
size 1 < K1, and the poset Ulk; has size at most k1 by the requirements in Def-
inition 4.4, the same is true of the model V[Ap ,|[BI[r1,v)][C][Ao][e][U k1] =
VIA][BI[r1, V)][C][€][U 1]

By Claim 4.23, V[A[ ,,)|[B[[s1,7)][C] is a <k closed extension of V', and in
particular k; is a cardinal in this extension. Recall that k1 = p* for some u
which belongs to the set Index given in Definition 4.4. By definition of Index,
this implies that there is a largest point A in dom(¢) below p (equivalently largest
below k1, as dom(¢) includes only inaccessible cardinals), so that forcing with
AT x [U[)\ + 1 over any <k closed extension of V', does not collapse k1. So k1
remains a cardinal in V[Ap ,,)|[B[[k1,V)][C][ATA][UTA + 1]. Since there are no
points in the domains of conditions of B between A and u, U[A+1 is the same as
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Ulkq. Since Ag and Col(w, ) are k1-c.c. in any model where k; is a cardinal, the
addition of Ag[[), k2) and e does not collapse x1. It follows that k; is a cardinal
in VA ) |[Blls, VI[C][el[AlR2][UTk1] = VIA|[B[[k1, v)][Cl[e][UTr1]. Ko = w
is of course a cardinal in the model too. The addition of e, Alxs, and Uk does
not destroy the <7 covering property for any 7 > kg, since these objects are
added by posets which are kq-c.c. or of size k1.

We showed so far that &, is a cardinal in V[A][B[[k1,v)][C][e][U 1] for all n,
and that V has the <k, covering property in this model for n > 2. These prop-
erties transfer to the smaller model V[A][U[k1][U [[k1,v)][S][e] = V[A][U][S][e]-
To complete the proof of the lemma, it is enough to show that for every n < w,
all cardinals between k,, and K, are collapsed to &, in this model. For n > 1
this is true by Claim 4.17, and for n = 0 it is true because e collapses p, the
predecessor of k1, to w = kyg. -

REMARK 4.25. Recall that v = sup k,,. It follows from Lemma 4.24 that v*
is not collapsed in the extensions V[A][U][S][e] and V[A][U k1][Bl[k1, v)][C][€].
Since the posets leading to these extensions have size v+, no greater cardinals
are collapsed either. Note that the proof of Lemma 4.24 and the claims leading
to it could be repeated over any v closed extension V[E] of V, with no change. It
follows that for any such E, v is not collapsed by the forcing to add AU % S xe
over V[E], and similarly it is not collapsed by the forcing to add A x Uk *
Bl[k1,v) * C * e over V[E].

LEMMA 4.26. For each n < w, all sequences of ordinals of length < kpy1 in
V[A][U][S]]e] belong to V[Alkn+2][Ukn+1][STkn+1][€]-

PRrROOF. Let f be a sequence of ordinals of length < k,11 in V[A][U][S][e].
Then f belongs to V[A][Ukn+1][Bl[kn+1, V)][Skn+1][Cl[kn+1,7)][e], in other
words to Viuy1[Ajom][Ulkn11][STEns1]le].  Let f e Viat1 be a name so that
[ = flApmllUTEn41][SThn1][e].

Since #,41 is a cardinal in Vi1 1[A[n)][UlKns1][STRns1]le], and since the
length of f is smaller than k,, 1, there is 6 < k,41 so that the parts of Uk, 41
and S|k,4+1 needed to interpret f are just U[d and S[6. (In case n = 0, where
8 < k1, U6 means the restriction of U to a subset of U of size . We can find
such a restriction, which still suffices to interpret f , because of the properties
of K1 = pt given by the definition of the set Index, specifically condition (3) in
Definition 4.4.)

Since Ay ] i Kny1-c.c. in Vi1 1, and the poset giving rise to e, Col(w, 1), has
size 4 < Kp41, it follows using these restrictions that f can be replaced by a
name of size < kp41 in V4 1. By Claim 4.18, or Claim 4.23 if n = 0, it follows
that f belongs to V. Hence f belongs to VI[Aj0,m] U 6ns1)][STHns1][e]. 4

REMARK 4.27. It follows from the proof of Lemma 4.26 that if Q € V' is <k, 41
closed in V, then forcing with Q over V[A][U][S][e] does not add sequences of
ordinals of length < k,41. To see this, let @ be generic for Q over V[A][U][S][e],
and repeat the proof of Lemma 4.26 using V,,11[Q] instead of V,,;1 throughout.
(Vat1]Q] is a <kn41 closed extension of V', by the closure of Q, and this is
all that the proof required.) The proof shows that any sequence of ordinals
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of length < rn 1 in VIAIU][S][E][Q] belongs to V[Alns][U 1ns1][S1nsalle],
and in particular it belongs to V[A][U][S][e].

CrLAamM 4.28. In V[A][U][S]le], 2" = knt2 for each n.

PrROOF. It is clear that 2" > Kk, 4o, since A,, adds k,yo subsets of k,. For
the reverse direction, it is enough by Lemma 4.26 to show that 2% < k,42 in
the extension V[Alkpi2][Uknt1][STKn+1][€]-

The extension V[Alkn11][U[kn+1][SThn+1]]e] is obtained through a poset of
size Kn41, leaving k,42 an inaccessible cardinal. A standard counting of names
shows that in the further extension by Al[k,t1, knt2), 2" < Kpyo. -

LEMMA 4.29. In V[A][U][S]le], the tree property holds at k42 for each n.

PrOOF. Fix n. Let T be a k,4o tree, in other words an N, o tree, in
V[A][U][S]le]. We intend to produce, in a generic extension of V[A][U][S][e]
by some poset P, an elementary embedding 7: V[A][U][S]le] — V[A*][U*][S*][e]
with critical point k,42. Then since T is a kp12 tree, 7(T)[Kpq2 is simply T
itself. Any node on level k,1o of m(T) determines a cofinal branch through
7(T) [Kn+2, hence through T. So T has cofinal branches in the extension pro-
ducing 7, namely the extension by P. We will end the proof by showing that P is
a forcing notion that does not add new cofinal branches to T', so T" must already
have cofinal branches in V[A][U][S][e].

We begin by producing =, while keeping track of the forcing notions needed
to obtain it.

Let F = Alkpy2%U[Kpy2. Let Py be the forcing notion refining U [[ky,42, V) to
a generic G for BT [k, 42,7). Let Py be the forcing notion refining S|[kn 12, V)
to a generic Go for CH [k, 40, v).

CLAIM 4.30. Py and Py are <tni1 closed in V[A][U][S][kn+1,V)]-

ProOF. By Claim 4.9, every decreasing sequence of P; that has length < x,, 42
and belongs to V[F], has a lower bound in P;. By Lemma 4.26, every decreasing
sequence of length < k,41 in Py that belongs to V[A][U][SI[kn+1, V)], belongs
already to V[Alkni2|[Ulknt1] € V[F]. (A direct application of the lemma
gives that the sequence belongs to V[A|kn12][Ukn+1][STkn+1]. The sequence
is assumed to belong to V[A][U][S|[kn+1,V)]. These two models are mutually
generic extensions of V[A[ky42][Ulkn+1]. Since the sequence belongs to both,
it must belong to V[A[kn+2][U[Kn+1]-)

It follows that all decreasing sequence of length < k,41 in P; that belongs to
VIA][U][ST[kn+1,v)] have lower bounds in P;. A Similar argument using Claim
4.16 applies to Ps. n

The posets B [k, 42,v) and CH|[k,,42,v) belong to V[F] and are <k, 12
directed closed in this model, by Claims 4.7 and 4.15. We can therefore apply
Lemma 4.12, using specifically the indestructibility of the generic supercom-
pactness of k,49 under forcing with the product of these two posets. Apply-
ing the lemma we obtain an elementary embedding m: V[A][Upp . ][G1][G2] —
VA0 GG,
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By Lemma 4.12, 7 is obtained in the extension of V[A][Ujp »)][G1][G2] by the

posets Add(kn, T(kni2))” x Add(kpi1, m(kngs))Y. Let A, and A,41 be the
corresponding generics.

Let Up,. 1., be the upward closure of GT in m(Ujpy1,w)). Then Up, ., ) is
generic for m(Up,41,)) over V¥ [A™][UG , ]IG5].  Letting U* be the sequence

obtained by joining U[B,n] and U it follows that U* is generic for 7 (U)

n+1l,w)’
over V*[A*], and that G3 is gelgleiic ())VGI“ V*[A*][U*]. Moreover, m restricts
to an elementary embedding, which we also denote 7, from V[A][U][G2] to
VA [U(GS). o

Let S}, 1, ) be the upward closure of G in ﬂ((C)[flﬁlfg) . As in the previous
paragraph, 7 restricts further, to an elementary embedding of V' [A][U][Sp+41,u)]
into V*[A*][U*][S};, 11 .,)]- Since e and Sjg ;1) are generic for posets of size less
than k,42 = crit(m), this embedding in turn extends to an elementary embedding
of VIAJ[U][Sin+1.0)][Sto.n—u]le] into V[AT|U][S, 11 ] [S10,n-1][€]-

Finally, let G3 be generic for P3 = 7(C)*An+2 Ulknt1l[k, o 7(kpy2)). Let
G be the upward closure of G in 7(Cp) 4 U ki, T(Fni2)). (Note A* %
U* extends Alkpto * Ulkpy1.) Let Sf = S, x G;{. Then S} is generic for
7(CHAY) = 7(C,) A *U" | and 7 extends to an embedding of V[A][U][S][e] =
VIANUNStm+1.0)][S10m-11[€][Sn] into VF[A*[[U][S}, 1 )] [Sto.n—1][e][S7] which
is equal to V*[A*|[U*][S™][e].

CLAIM 4.31. The poset P3 = m(C)FAFn+2xUlkn1l[i, o 7(kpy2)) used to add
G3 is <tni1 closed in V[A|[U][S][kn+t1, V)]

PROOF. By part (2) of Claim 4.15, applied in V*[A*][U*], the poset is <kpn41
closed in V*[A* [kpt2)[U* 1knt1] = VF[AlEnt2][UlKn+1]-

V* is Kpqo closed in V[Ap, 2., and hence V*[Alkn 2] [Ulkni1] is <tny2
closed in V[Ap42.0)][AlKng2][Ukns1]. By the previous paragraph then, the
poset is <tpy1 closed in V[Ap,12.0)][AlKny2][UTKny1]-

By Lemma 4.26, any sequence of ordinals of length < x,41 that belongs to
VIA][U][ST[kn+1, V)], belongs already to V[Alkn42][Ulkn+t1], and hence belongs
to V[Ap42,0)][AlEns2][Ulknq1]. It follows that any descending chain of length
< Kp41 in the poset, that belongs to V[A][U][S][kn+1,7)], belongs already to
VI[Ant2,0)[AlKng2][Ulkny1], and has a lower bound using the closure in the
previous paragraph. -

We have so far produced an elementary embedding 7 on V[A][U][S][e], with
critical point k,42. Since w(T") determines cofinal branches through 7(T) [Kp 42 =
T, the model containing the embedding has such branches. This model is a
generic extension of V[A][U][S][e] by the product of Py, Py, Add (K, 7(kni2))",
Add(kyq1, m(knys))V, and P3. The generics added by these posets are Gy, Ga,
Ay, An+17 and G3. It remains to see that the extension by these objects does not
add new cofinal branches to T'. Since there are cofinal branches in the extension,
this implies that there are cofinal branches through T" already in V[A][U][S][e].

Note that all the posets involved in the extension belong to V[A][U][S][e].
We may therefore consider them in any order we wish. We will add An_l,_] first,
followed by G x G5 x Gs, followed finally by A,,.
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By Lemma 4.24, V has the <k,42 covering property in V[A][U][S][e]. It
follows using Claim 2.2 that the poset Add(k,i1,7(kni3))V adding An+1 is
Fingo-c.c. in V[A][U][S][e]. Hence by Claim 2.3, the extension by A, 1 does not
add new cofinal branches to T.

The extension by An+1, being ky,4o-c.c., does not collapse any cardinals at
or above k,y3. By Remark 4.27 it does not add any sequences of ordinals
of length < k41 (hence it does not collapse cardinals below ko either).
By Claims 4.30 and 4.31 it follows that Py, Py, and P35 are <k,41 closed in

VIAU][S![En+1, V)] [Ant1]. Let W denote this model. Note that 2" = k49 in

W, and V[A][U][S][e][An+t1] is an extension of W by the poset (C[T{:SU x Col(w, p).

CramM 4.32. The poset (C[B‘?SU x Col(w, pt) 8 Kpy1-c.c. in W.

PROOF. Since p < Kp41, and the posets (C;FA*U for i < n—1 have size < kp41,
it is enough to check that (if n > 1) CY is g, 41-c.c. in W.

Recall that An+1 does not add sequences of ordinals of length < k,11. From
this, the fact that n > 1, and Lemma 4.24, it follows that V has the <x,41 cov-
ering property in V[A][U][S][e][An+1], and therefore also in W. By an argument
similar to that of Claim 4.20, this implies that C, " is #,,41-c.c. in W. =

Since P; x Py x P3 belongs to W and is <kp41 closed in W, 2% = k1o in W,

and V[A][U][S][e][An+1] is @ kny1-c.c. extension of W, it follows using Claim 2.4
that forcing with Py x Py x Py over V[A][U][S][e][An+1], to add Gy x Go x G,
does not add any new cofinal branches to 7T'.

It remains to show that forcing to add A,, over V[AJ[U][S][e][An11][G1 x G2 X
G3] does not add new cofinal branches to T.

By Claim 2.5, the extension by G; x G5 x G3 does not add any sequences of
ordinals of length < kp4+1. If n > 1 it follows from this and Lemma 4.24 that V'
has the <f, 41 covering property in V[A][U][S][e][Ans1][G1 x G2 x G3]. This in
turn implies that Add(k,, 7(kns2))Y, the poset adding An, is Kpa1-c.c. in this
model, and indeed so is Add(k,,7(kni2) - A)V for any cardinal A\. The same
conclusion is true for n = 0, because the poset is Add(w, m(kn,) - A)V in this
case, and this poset is k1-c.c. in any model where k7 is a cardinal.

Kn+2 is collapsed in the extension by G; x G x G3. But since the extension
does not add sequences of ordinals of length < k,41, the cofinality of k,42 in
the extension is at least #,41. The poset Add(kp, T(kni2) - A)Y is a Adth power
of the poset Add(ky,, m(kni2))” adding A,,, meaning that it adds A mutually
generic filters for Add(ky,, m(kns2))". Using the fact that this poset is kyp1-
c.c. it now follows by Claim 2.3 that the final extension, by A,, over the model

VI[A][U][S]le][An+1][Gx G2 x G3], does not add new cofinal branches to T'. This
completes the proof of Lemma 4.29. —

We showed as part of the proof of Lemma 4.29 that for any m > 2, there are
generic elementary supercompactness embeddings on V[A][U][S][e], with critical
point K,,. The next claim summarizes some properties of these embeddings and
the posets used to obtain them.

CLAIM 4.33. Let A < v, and let n > 2 be large enough that k, > X. Then
there is a poset P in V[A][U][S][e], and a Ath power of this poset, P*, so that:
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1. Forcing with P over V[A][U][S]le] adds an elementary 7: V[A][U][S][e] —
V*[A*[U*][S*][e], with crit(m) = Kpio and sup(n”vT) < w(v™T).

2. Forcing with P* over V[A][U][S][e] does not add any sequences of ordinals
of length < Ky. In particular no cardinals < Kk, are collapsed, and the
cofinality of v+ is not reduced below K.

By a \th power of P here we mean a poset adding \ mutually generic filters for
P.

PROOF. Pis the product of Add (i, 7(kni2))", Add(Kni1, T(knis))Y, P1, Po,
and P3, used in the proof of Lemma 4.29 to extend the embedding 7. Starting
with an embedding which is at least v+ supercompact we then immediately get
condition (1). It remains to define P* and prove condition (2).

Let P* be the product of the posets Add (i, T(kni2))", Add(kny1, T(kni3))Y,
P}, P2, and P}, where the powers of Py, Py, and P3 are taken with full support
in the model V[A][U][S][kn+1,v)]. By Claims 4.30 and 4.31, P1, Py, and P5 are
<kn+1 closed in this model, and therefore so are their full support Ath powers.

Since each of Add(ky,, T(kni2))” and Add(kny1,T(kny3))Y is isomorphic to
a Ath power of itself, P* adds A mutually generic filters for PP.

By Remark 4.27, forcing with Add(k,, 7(Kni2))Y X Add(kni1, T(knis))V to
add A,, and An+1 does not add sequences of ordinals of length < k,,. As in the
proof of Lemma 4.29, P} x Py x P} is <k, 11 closed in V[A][U][S][Kns1,¥)][Ani1],
and using Claim 2.5 this implies that forcing with this poset over the model

VIA][U][S][An+1][An] does not add sequences of ordinals of length < k1.

§5. Further analysis. We showed in the last section that in V[A][U][S][e],
Kkn = N, for each n < w, and the tree property holds at x, for n > 2. In this
section we explore the model obtained by “removing” A;, e, and Sy. We use this
model later on. For now we just collect results on generic elementary embeddings
acting on the model.

Since Uy ) and (CH;Z‘J’;U rely on A; in their definitions, we have to pass to
coarser generics, in posets that do not rely on A, before we can remove A;. We
begin by defining the relevant posets.

Recall that whenever we work with a filter F' on A|3xU|3, we assume without
saying that the filter is rich enough that every condition in F' can be strengthened
inside F' to a condition of the form (a, @) (which abusing notation we refer to as
(a,u)). This assumption holds for generic filters.

DEFINITION 5.1. Let F be a filter on A3« U]3. Let v < v and let B be a
filter on BT¥'[[3, ). Define F+ B to be {{a,u) | (a,ulB) € F and u[[3,v) € B}.
For a condition b € B [[3,7), define F + b to be {(a,u) | {(a,u[B) € F and

b <p+rig,y) ullB,7)}-
It is easy to check that F'+ B is a filter on A[V*U['y, and similarly with F'+b.

CLAIM 5.2. Suppose that F is generic for A|B«U|B over V, and B is generic
for BYE'1[B,7) over V[F]. Then:

1. BYE+B [y, v) is <y directed closed in V[F][B].

2. If v < Kpyo then CTEFB [k, 10, v) is <k,yo directed closed in V[F][B].



26 ITAY NEEMAN

3. If B < kpya then CHEHB [k, o 1) is <kpio directed closed in V[F|[B].

ProOF. Conditions (1) and (2) are similar to Claims 4.7 and 4.15 respec-
tively. For condition (3), note that any set of size < k,12 in V[F]|[B] belongs
to V[F][Bkn+2] since by condition (1), Bl[kn+2,7) is added by a <kp2 closed
forcing over V[F|[Blknt2]. Thus it is enough to show that directed sets of size
< Kpyo in CHFHB[k, 5 v) that belong to V[F][B|k,42] have lower bounds.
This again can be done by arguments similar to those in the proofs of Claims
4.7 and 4.15. |

DEFINITION 5.3. Let F be a filter on A[S * U]3. Define Q(3, F) to be the
poset consisting of pairs (b,c) € B[[5,v) x C[[3,v), ordered by (b*,c*) < (b,c)
iff b* extends b in B[, v), and ¢* extends ¢ in CH+" |3, v).

The poset Q(f3,F) is forcing isomorphic to the composition of BT [[3,v)
followed by CTF+B][3,v), where B is the generic added by the first stage of
the composition. Indeed, the restriction of the composition to conditions of the
form (b, ¢) (as opposed to the more general (b, ¢)) is isomorphic to Q(S3, F).

CLAIM 5.4. Let B = Kpy2, and let F' be generic for AIS Ul over V. Then
Q(B, F) is <kpta directed closed in V[F].

PrOOF. Immediate from Claim 5.2, viewing Q(3, F') as a composition. Condi-
tion (1) of the claim implies that the first stage B¥F [[k,, 12, V) is <k,12 directed
closed in V[F], and condition (3) implies that the second stage Ct*{ 5[k, 2, v)
is <kKpyo directed closed in V[F|[B]. .

Let Q(ﬁ) € V name the poset Q(53, F') in the extension by A[f * U8 to add
F. Let Q(B) be the forcing associated to Q(8) by Remark 4.10. Conditions in
Q(ﬂ) are A3 x U[S names for elements of Q(ﬁ), with the ordering p* < p iff
this is forced by the empty condition in A[f * U|8. For a filter F C A|S*U|B,
(@(ﬂ)+F is the enriched poset with the same conditions but richer order given by
p* < p iff this is forced by some condition in F.

CLAIM 5.5. Let Ag x Uy be generic for Ag *EUO over V, and_let B be generic
for BHAoxUo [k, Knt2) over V[Ag x Up]. Let F'= Agx Uy + B. Then a dense
subset of Q(kny2)tE is isomorphic to Q(kpya, F).

PROOF. Q(Kpy2, F) is, immediately from the definitions, isomorphic to the
restriction of Q(kn42) ™ to “check names”, that is, conditions of the form (b, &)
rather than the more general form (b, ¢). The isomorphism witnessing this is the
map (b, c) — (b, ).

Thus, it is enough to prove that densely many conditions in Q(nn+2)+p are
equivalent to check names.

Let (b, ¢) be a condition in @(K;nJrg). Then b is an Alkpio % [U[K;nJrg name for
an element of B, y- Similarly ¢ is an Alkp 42 * [U[lin+2 name for an element
of (C[N"Jrz,l,).

Let D; be the set of & € [k,42,7) which can be forced into the domain of

Rn+2,V

b. Since these points are all inaccessible cardinals greater than k,42, and since
Alky2*¥Ul Ko has size K, 2, D; satisfies the support requirements in condition
(1) of Definition 4.1.
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Define b € By, ...y, with dom(b) = D;, as follows. For each a € D;, let b(«a)
be the canonical Ala s Ulo name for b[A[kp 4o * Ulknio](a)[Ala * Ula], where

this is understood to be the empty condition if & & dom(b[A k12 * Ulknia]).

Define ¢ € Cy, ., ) similarly, using the name ¢, except that D. must be
defined more carefully, since the support restrictions in Definition 4.13 are more
stringent: D¢ N [Kp42, Knt3) must have size < K,42. Dg satisfying this can be
obtained as in the proof of Claim 4.15.

Extending (b, ¢) trivially we may assume that the domain of b is forced equal
to Di), and the domain of ¢ is forced equal to Ds. One can now check that
(b, &) < (b,& in Qknsz2)F, and vice versa. —|

Let Ag*Up be generic for AgxUy over V, let By . be generic for BF40Uo ko, 1)
over V[Ag x Up), and let Cy ) be generic for CtAo*UotB[5, 1) over V[Ag *
Uol[Bp w)]- (Equivalently for the last two extensions, By ) * C[1 ) is generic for
Q(k2, Ag * Up).) Let Ajz ) be generic for A ) over V[Ag * Up][B(1,u)l[Cl1,0)]-

Let M denote the model V[A3 .)][Ao * Uo|[B1,)][Cl1,w)]- We work with this
model for the rest of the section. Let F' = Ag * Uy + Bjy o).

LEMMA 5.6. Let n > 3. Let A < k. Then there is a poset P in M, and a \th
power P* of P, so that, over M :

1. Forcing with P adds an elementary embedding w: M — M* with crit(n) =
Knt2, and sup(r”"vt) < w(vT).
2. Forcing with P* does not add sequences of ordinals of length < k.

ProOOF. This is similar to a combination of Lemma 4.12 and the construction
of 7 in the proof of Lemma 4.29, but various changes have to be made to account
for the fact that we are working with the filter F'[k, 42 rather than a full generic
filter on Alry o * U[/@nJrg.

Let m: V[Aji00)] = V*[A], 5 )] be a v supercompactness embedding for
some v > vt in V[Aj, 40,0, with crit(m) = Kpqo, 7[Ord in V, and such that
7(¢)(Knt2) = Q(Fnt2) and the next element of dom(7(¢)) above ki, 4o is greater
than +. Such an embedding can be found using the indestructibility properties
of knyo and ¢. We can also arrange that v is a fixed point of the embedding,
so that the various posets that come up in the construction below have at most
~T dense subsets that belong to the appropriate extensions of V*.

Since Ay * Uy is added by a small forcing relative to x,y2, ™ extends to an
embedding of V[Ap,42..)][A0 * Ug] to V*[A[*n+2’w)][A9 * Up).

Let G = B[l,w) ”IQTH_Q,I/) * C[Lw) Hli»,H_g,V). Let F' = Fr;‘ﬂl7l+2 = Ao * U(] +
Bi1 w)fnt2. Then by definitions, G is generic for Q(kn42, ) over V[Ap .)][F].
By Claim 5.5, G (more precisely its isomorphic image) is generic for @(K/n+2)+F .
It follows from this and the choice of 7 that By ) [kn42 and G join to form a
generic filter for m(B)t40*Uo [k, #,,1 2+ 1). Denote this generic by B ) lknt2+
1. (It consists of conditions u so that u[knyo € By ), and i(u(kn42)) € G where
i is the isomorphism given by Claim 5.5.)

Let B{,, denote the poset w(B) TAUot By Imntat e o 4 1, 1(v)). By
Claim 5.2, this poset is <a closed in V*[Ag * Ug][B1 w)[kn42][G] where a is
the first point in dom(7(¢)) above Ky, 42. By choice of 7, « is greater than + and
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V*[Ao * Up][B1,w) [Eny2][G] s v closed in V[A[y2.w)][A0 * Uol[B1,w) [Kns2][G],
which is equal to V[Ap,42.w)][A0 * Uol[Bl1,u)][Cl1,w) [[Knt2, v)]. Working inside
this model we can therefore find a filter Hy,, on Bf,, which meets all dense sets
that belong to V*[Ag * Up][B1,u) [kn+2][G]. Since 1" By o) [[kny2,v) belongs to
V*[Ao * Uo][Bp1,w) [Fnt2][G] (it can be computed from G using 7), and by di-
rected closure has a lower bound in B{,,, we can build H,, so that it contains
a lower bound for 7" By ,)[[kn42,7). Then Bfj ,)lknt2 + 1 and H{,, join to
form a generic B,  for 7(B)tA40*Uo [k, m(v)), and 7 extends to an embedding
of V[Ap12.w)][Ao * Uo][Bp w)] to V* [Arn+2,w)][A0 * U] [B[*Lw)}.

A similar argument, using the fact that Cfy ) [[n42, V) is also part of G, allows
finding, still inside the model V[A,12..)][Ao * Uo[Bp )] [Chiw) [[Eny2, )], a fil-
ter Cf} ) [[m(Kn+2),m(v)), so that m extends to an embedding of V/[A[,12,0)][Ao*
UO} [B[l,w)][c[l,w) ”HnjLQa V)} toV* [Arn+2,w)] [AO*UO][BE,@)] [C[*l,w) r[ﬂ(5n+2)7 7T(V))]

Since Afz,n) and C[y ) [Kny1 are added by small forcing, the embedding triv-
ially extends to absorb these generics too.

Finally, standard arguments allow extending w further, to absorb also A,,
Apy1, and Cpy [[&n+1, Knt2). These extensions require further forcing, with the
posets Add(kn, m(Kni2))Ys Add(Kna1, m(knes))V, and 7(C) T [ [kppo, T(Fna2))-

This completes the proof of part (1) of the lemma. The poset P needed to
produce the final extension of 7 is the product of the three posets in the previous
paragraph. The proof of part (2) for this poset is similar to the corresponding
proof in Claim 4.33. Let us only note that P* is taken to be the product of
Add(kp, T(kna2))Y, Add(Kni1,T(kni3))Y, and the full support Ath power of
7(C) M [kna2, T(Kna2)) in V¥[Ag * U] [Bl1,w) [Kn+2], where this poset is <fiy, 11
closed. -

LEMMA 5.7. In V[Ap,] there is a vt supercompactness embedding m from
VI[Ap,w] into V*[A], ] so that:

1. crit(m) = ke, w(ke) > v, |7(k2)| = vTT, and 7]Ord belongs to V. (v
supercompactness implies that also sup(n”'v™) < w(v1).)

2. In any extension M[Ag] of M by the poset Add(w, [k, m(k2)))Y ", 7 extends
to an elementary embedding m: M — M*, with v € 7(Index).

Since |m(k2)| = v, the poset in condition (2) is isomorphic, in V and hence
also in M, to Add(w,v*T).

PROOF. This is an application of Lemma 4.12, or more precisely its proof, but
without A;. Generic supercompactness is used in the extension of V[Ajg .)][Ao *
Uo] by Q(ke, Ag * Up).

The properties of 7 in condition (1) follow directly from the construction of
m, as does the fact that 7 extends to act on M given the additional generic Ay.
We leave the details of the construction of the embedding to the reader, noting
only that because M omits A;, there is no need to force to add the filter 1211
appearing in the proof of Lemma 4.12.

It remains to verify that, with the extended m, v € 7(Index), meaning that
v satisfies the requirements of Definition 4.4 over V*. Condition (1) of the
definition is immediate, as v is a strong limit in V*, and the largest point below
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v in dom(7(¢)) is kg. Condition (3) holds because A*[ky % U*[ky + 1 is the
poset A kg * Ulky composed with 7(¢)(k2)[Ao * Up], which in this case is equal
to Q(k2, Ag * Up), and has size vT. Finally, condition (2) of the definition holds
because forcing with A ke *Ulks composed with Q(kg, Ag*Up) does not collapse
vT, over any v closed extension V*[E*] of V*. This follows from Remark 4.25,
as V*[E*] can be subsumed by V[E][A[2,,] where V[E] is a v closed extension
of V', and the further extension by Ak, * U[ﬁg composed with Q(ka, Ag * Up) is
then subsumed by the forcing in the remark to add A « Ulky * B[[k1,v) *C x e
over V[E]. .

For each p < ko that belongs to the set Index of Definition 4.4 (defined over
V), let L(u) be the poset Add(ut, x3)" x Co(ut)T40*%0 x Col(w, ). (Recall
that k1 is a parameter in the definition of Cp, and Co(u™) denotes the poset
defined relative to the parameter 1 = pt.)

LEMMA 5.8. Let R be a rank initial segment of the universe, large enough to
contain all relevant objects. Let M = V[Ap ][40 * Uol[B1 )] [Cl1,w)] where V
is the transitive collapse of X <R with X € V, V,, C X, |X|=vT, and X closed
under sequences of length v in V. Let Ag be generic for Add(w, (vt )M) over
M, hence also over M. Let w: M — M* be the embedding given by Lemma 5.7,
applied in M[Ao]. Finally, let e be generic for Col(w,v) over M[Ay).

Then there are, in M[Ao][e], filters A and S so that A% x S& x e is generic
for w(L)(v) over M*.

PROOF. Let V*, AE"M), Af = Uj, Bfkl,w)’ and C‘[*Lw) be such that M* is the
model V*[A7, [[AG+Ugl[Bf ,IC]; )] By Lemma 5.7, V* belongs to VI[Ap )],
and hence also to VA ]. Using the closure properties given by the lemma, the
closure of V' itself, and the fact that any A5,y name for a sequence of ordinals
of length v can be thinned below some condition in Ap; ) to a name of size v,
V* is closed under sequences of length v in V[A3 ).

It is enough to produce a generic A% x Cg for Add(vt, w(ks))V™ x 7(Co)(vT)
over M*[e], in M[Ag]. The upward closure of Cf in m(Co)(v)*45*Us then yields
the necessary Sj.

Since M* is contained in M[Ay], it is enough to ensure that A} x C§ is generic
over M[A][e] = VA, [Ao * U] [B[Lw)][C[Lw)][AO][e]. Since the poset adding
A} x Cj belongs to V* C V[A[.], it is enough to construct A} x Cf so that it
is generic over V[A[Q,w)], and so that Ag * Uy * B[y o) * CJ1 ) ¥ Ay x e is generic
over V[Af2,.)][AT x Cg]. This in turn holds automatically if A} x C§ belongs to
VI[Aj2,w)]s as Ao * Uo * By ) * Cpp ) X Ay x e is generic over V[Af2.w)]-

So, it is enough to construct A% x C, generic for Add (v, 7(k3))V " x7(Co) (vT)
over V[Ap ], inside V[A[z .|

The poset Add(vT, 7 (k3))V" x 7(Co)(v") is v closed in V*, and hence also v
closed in V[Ap .y]. Since V[Ap )] has size vF, a generic over this model can be
constructed in V[Apy )] by enumerating all dense sets in V[A[p ] in order type
vt and meeting them one by one. B
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LEMMA 5.9. Let p € Index and let Ay x Sy x e be generic for L(u) over M.
Let A= Ag x Ay X Ajg ), let U = Uy x Uy ) where Upy ) is the upward closure
of Biiwy i Uy, and let S = Sg x S[1 .,y where Sy .y is the upward closure of
Ciw) in CL0yY. Let N denote VAJ[U][S].

Then By and Cp ) belong to a forcing extension N[G] of N by a poset
which is p closed in N. Moreover G is generic also over Nle], and v and vT are
not collapsed in N[e][G]. (In fact none of the ks is collapsed.)

PROOF. By, and C[y ) belong to the extension of V[A][U][S][e] by the prod-
uct of the factor poset refining U[y ) to a filter for B+40*Uo [[k,, v), and the factor
poset refining S|y ) to a filter for CHAoxUo kg, v). (Bp1,w) is itself generic for
the former; C|y ) is the upward closure in CHAoxUo+Bi.0) gy, 1) of a generic for
the latter.) The factor posets belong to V[A][U][S]. By Claims 4.9 and 4.16,
descending sequences of length < ks in these posets, that belong to V[Ag x Uy],
have lower bounds. By Lemma 4.26, all descending sequences of length < k; in
these posets that belong to V[A][U][S], belong to V[A[k2][U k1], and in partic-
ular they belong to V[Ag % Up]. So the factor posets are <k; closed, in other
words p closed, in N = V[A][U][S]. The model resulting from the extension of
Nle] by the factor posets is contained in the model V[A][U [k1][B[[k1,V)][C]le]
of Lemma 4.24 and Remark 4.25, and it follows from the lemma and remark
that vt remains a cardinal in the extension, as does each &,,, and hence so does
V. —

86. The tree property up to N, ;1. In this section we combine the ingredi-
ents given by the previous sections into a construction of a model where the tree
property holds both at all 8, for 2 < n < w, and at X,41. A direct combination
of these ingredients will yield the tree property at N,;; not in the model we
construct, but in a forcing extension of this model. The following preservation
lemma from Magidor—Shelah [4] will allow us to then pull the necessary branches
back to the original model. (The posets we refer to as p closed, in the lemma
and throughout the paper, are called u* closed in Magidor-Shelah [4].)

LEMMA 6.1 (Magidor—Shelah [4, Theorem 5.2]). Suppose v is a strong limit
cardinal of cofinalityw. Let N C N[G] where N[G] is a p1 closed forcing extension
of N, for some u < v. Let e be generic over N|[G] for a poset E € N of size
p. Let T be a vt tree in Nle]. Then any cofinal branch of T in Nle][G] belongs
already to Nle].

THEOREM 6.2. Suppose there are w supercompact cardinals, and let K,, 2 <
n < w, enumerate them in increasing order. Let v = sup{k, | 2 < n < w}.
Then there is a forcing extension in which k, = W,, N, is a strong limit,
(vH)V = V,11, and the tree property holds at each successor cardinal in the
interval [No, Ry 41].

PRrROOF. Using a preparatory forcing for indestructibility, we may assume that
each k,, 2 < n < w, is indestructibly supercompact. We may also assume that
each k, carries an indestructible Laver function in the sense of Section 4. We
begin the construction of the model witnessing Theorem 6.2 as in Section 5. Let
Ap+Uy be generic for AO*UO over V. Let B[y ., be generic for BH4o*Uo [[k2, V) over
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V[Ao * Ug]. Let Cp1 ) be generic for CTA0*VotB [, 1) over V[Ag x U] [Bj1 u))-
Let Ay be generic for A oy over V[Ag * Upl[B1,u)][C1,w)]-

Let M denote the model V[A[z ,)|[Ao * Uo][B1,6)][Cl1,w)]- Let Index C xa be
the set given by Definition 4.4. (The definition refers to A and Uy.)

For each p € Index, let (1) be the poset Add(u™, r3)V x Co(ut)F4o*Vo x
Col(w, p).

CLAIM 6.3. There is 1 € Index, so that in the extension of M by L(u), the
tree property holds at v,

PRrROOF. It is enough to check that the assumptions of Lemma 3.10 hold in
M. The claim then follows by an application of the lemma.

Assumption (1) of the lemma holds over M by Lemma 5.6, used with n = m+1
and \ = K,,.

Assumption (2) of the lemma holds over M by Lemma 5.8, and the properties
of the embedding 7 given by Lemma 5.7. The poset P = Px needed to introduce
the embedding 7 (acting on M) and the generic L is the poset Add(w,vt) x
Col(w,v). (This poset is isomorphic to the one used in Lemma 5.8, as (v++)M
has cardinality v+ in M.) It is vT-Knaster by standard arguments using a A-
system for the component Add(w,v") and the fact that Col(w,v) has size less
than vT. -

Let p be given by Claim 6.3, and let A; x Sy x e be generic for L(u) over M.
Let k1 = ILLJF.

Let A = Ag x A1 X A ). Let Up )y be the upward closure of By ) in Upy ),
and let U = Up * Upy . Similarly, let Sj; ) be the upward closure of C[y ) in
CHAU, and let S = Sp * S|y o). Let N be the model V[A][U][S].

[Lw) 2

CrLAM 6.4. In Nle], k, = X, N, is a strong limit, and the tree property holds
at N, forn > 2. Nle] and V have the same cardinals from v upward.

PROOF. These are simply the results of Section 4, including, in particular,
Claim 4.28, Lemmas 4.29 and 4.24, and Remark 4.25 B

CLAIM 6.5. In Nle], the tree property holds at vT.

PROOF. Let T € Nle] be a vt tree. Then T belongs to M[A; x Sy x €] (as N
was defined in M[A4; x Sp]). By Claim 6.3 and the subsequent choice of u, this
model satisfies the tree property at v+, and therefore T' has a cofinal branch in
the model.

By Lemma 5.9, there is a p closed forcing extension N[G] of N, so that By .
and Cfy ) belong to N[G], G is generic also over Nle], and v and v* remain
cardinals in Ne][G].

Since By, and C1 ) belong to N[G], and since Ag * Up, A1, Ajz.,), and Sp
belong to N, the entire model M[A; x Sy X e] is contained in Nle][G]. Since T
has a cofinal branch in M[A; x Sy X e], it has a cofinal branch in N[e][G].

An application of Lemma 6.1 now shows that T has a cofinal branch already
in Nle]. -

Claims 6.4 and 6.5 establish that in Nle], the tree property holds at X,, (which
is equal to ;) for 2 < n < w, and at 8,1 (which is equal to v+). This completes
the proof of Theorem 6.2. =
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