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Abstract. We present two applications of forcing with finite sequences of

models as side conditions, adding objects of size ω2. The first involves adding
a �ω1 sequence and variants of such sequences. The second involves adding
partial weak specializing functions for trees of height ω2.
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1. Introduction

The method of using side conditions consisting of finite sequences of models to
ensure properness goes back to the work of Todorcevic [23, 22], and has seen many
applications since. Most relevant for us here is the development by Friedman [7] and
Mitchell [13] of side conditions that enforce preservation of both ω1 and a second
cardinal that becomes ω2. Friedman [7] used the new method to present a poset
that adds a club in ω2 using finite conditions, an analogue of a well known poset of
Baumgartner [3, Section 3] that does this on ω1. Mitchell [13] also used the method
to add a club by finite conditions, in a cardinal θ that is collapsed to ω2. The side
conditions of Friedman and Mitchell were simplified in Neeman [16] by the addition
of non-countable models. These side conditions, in the original or simplified version,
have been applied to obtain several results, including in Friedman [8] to show that
PFA does not imply that a model correct about ω2 must contain all reals, in Mitchell
[14] to show that the approachability ideal on ω2 can be trivial, in Neeman [16] to
obtain a finite support proof of the consistency of PFA, and in Velickovic-Venturi
[27] to add thin very tall superatomic Boolean algebras and chains of length ω2 in
(ωω1

1 , <fin) giving new proofs of results originally due to Baumgartner-Shelah [4]
and Koszmider [10] respectively.

Here we use the framework of side conditions of Neeman [16] to add square
sequences of length ω2, and to add partial functions that satisfy weak specializing
conditions introduced in Shelah [19] and Todorcevic [21, 24], for trees of height
ω2. Previous work on specializing for trees of height ω2 has mostly been in the
negative direction. The results we obtain on square principles show that some of
this negative work applies also in our context, and places limitations on the type and
domain of any specializing functions one can hope to obtain. We isolate additional
limitations below. Our positive results here reach precisely to these limitations.

Recall that ⟨Cα | α < κ+⟩ is a �κ sequence if Cα is club in α of order type
≤ κ, and β ∈ Limit(Cα) → Cβ = Cα ∩ β. (Limit(Cα) here consists of the limit
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ordinals γ so that X ∩ γ is cofinal in γ.) More generally ⟨Cα,i | α < κ+, i < nα⟩
is a �κ,<δ sequence if Cα,i is club in α of order type ≤ κ, nα < δ for each α, and
β ∈ Limit(Cα,i) → (∃j)Cβ,j = Cα,i ∩ β. �κ,δ sequences are defined similarly with
nα = δ for all α. �κ,fin denotes �κ,<ω. These principles are standard. One new
variant that comes up in the work here is that of a �ta

κ,δ sequence (read �κ,δ with

tail agreement). We call ⟨Cα,i | α < κ+, i < δ⟩ a �ta
κ,δ sequence if it is a �κ,δ

sequence and in addition, for every α < κ+ and every i, j < δ, Cα,i and Cα,j agree
on a tail, meaning that there is some β < α so that Cα,i − β = Cα,j − β.

These sequences are important for many reasons (we will see one below), and
there are many ways to force their existence. In Section 3 we present a forcing
that adds a �ω1 sequence using finite conditions. An earlier forcing to add a �ω1

sequence with finite conditions was given by Dolinar-Dzamonja [6], but in that forc-
ing the individual clubs Cα are not added with finite conditions. A mathematical
consequence of this is that the forcing in [6] is not strongly proper. The forcing
we present in Section 3 adds the individual sets Cα using finite conditions, and is
strongly proper. A poset doing this was also obtained by Krueger [11]. The posets
here and in [11] were obtained independently around the same time. Krueger’s
poset collapses the continuum to ω1 by Krueger-Mota [12]. In contrast the poset
we give here is proper and ω2-c.c. under assumptions which are compatible with
arbitrarily large value of the continuum.

The poset we use to force �ω1 is easily modified to obtain variants of �ω1 . We
present two such modifications in Section 3. The first adds a �ω1,fin sequence,
and the second adds a �ta

ω1,ω sequence. Both principles are weakenings of �ω1 ,
and the point of working on forcing them is that the posets used to force them
enjoy additional properties, that are not satisfied by the poset forcing �ω1 . These
properties, which are given by Lemmas 3.15 and 3.23, can be used to show that the
posets for �ω1,fin and �ta

ω1,ω belong to certain classes of posets that can be iterated
(with side conditions) while preserving ω1 and ω2. This includes some of the classes
developed in Neeman’s work on higher analogues of the proper forcing axiom. We
refer the reader to [15] for more on the extent of square under these analogues. The
posets also belong to a variant of the class ℵ1.5-c.c. developed by Asperó-Mota [1].
In particular then, the corresponding forcing axiom implies both �ω1,fin and �ta

ω1,ω.
We show this in Theorem 3.36.

The strengthening of the Asperó-Mota axiom that we assume in Theorem 3.36
involves requiring master conditions only for models N whose intersection with ω2

belongs to a fixed set U which satisfies certain coherence conditions. We show in
Section 3 that the work in Asperó-Mota [1] easily adapts to give the consistency
of this strengthening. We also show, in Theorem 3.49, that the original axiom in
Asperó-Mota [1] does not imply �ω1,fin and �ta

ω1,ω, or even for that matter �ω1,ω.
Our second application, in Section 4, involves notions of specializing for trees.

Let τ = κ+ be an infinite successor cardinal and let T be a tree of height τ . Recall
that T is Aronszajn if it has no cofinal branches. T is special if there is a function
f : T → κ which is injective on branches of T . The existence of such a function
implies in particular that T is Aronszajn.

For the case of τ = ω1 there are well known forcing notions that add specializing
functions to Aronszajn trees, without collapsing ω1. The simplest, adding the
function with finite partial subfunctions, is c.c.c. This forcing notion has been used
extensively in the context of forcing axioms.
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Infinitary combinatorics imposes many more difficulties at the level of ω2 than
ω1, and most of the work on specializing at ω2 to date has been on negative results.
Cummings [5], Shelah-Stanley [20], and Todorcevic [25], under various set theoretic
hypotheses, all construct ω2 Aronszajn trees that are not special, with the existence
of such trees persisting to all generic extensions that preserve ω1 and ω2 in the case
of [20] and [25]. This is in contrast to the situation on ω1, where any tree can
be specialized without collapsing any cardinals, and where the forcing to specialize
trees can be iterated to a point where all trees are special. The hypothesis used
by Shelah-Stanley [20] is the existence of a �ω1 sequence, and their construction
adapts to use a �ta

ω1,ω sequence instead (see Fact 3.25 and its proof sketch). Since
we show in Section 3 that such sequences can be forced using posets that belong to
iterable classes, it follows that non-special ω2 Aronszajn trees exist provably under
the corresponding forcing axioms. These results all suggest that at the level of ω2

one should work with a weaker notion of specializing.
A function f defined on X ⊆ T is a weak specializing function if f(t) < height(t)

for every t ∈ X, and f is injective on chains of T . A tree T of height ω2 is weakly
special on X ⊆ T if there is a weak specializing function on X. This is equivalent
to a notion introduced in Todorcevic [21, 24]: if height(t) is sufficiently closed for
all t ∈ X then T is weakly special on X iff X is non-stationary in the sense of
[21, 24]. (The equivalence uses the fact that the height of the tree T , in our case
ω2, is a successor cardinal.) It is also equivalent to a notion introduced in Shelah
[19]: if X = T |S, by which we mean the set of nodes of T on levels α ∈ S, and
the ordinals in S are sufficiently closed, then being weakly special on X is exactly
the same as being S-st-special in the sense of [19, Chapter IX]. If S is stationary
then being weakly special on T |S implies the nonexistence of cofinal branches, and
hence for many purposes the weak notions are as good as the original notion.

Even with the weakened notion there is still an impediment for specializing at
ω2, that has no parallel at ω1. We end the introduction with a description of this
impediment. In Section 4 we show that this is the only impediment. The forcing
notion we define there adds a weak specializing function whose domain consists of
exactly the nodes of T where this impediment does not occur.

Definition 1.1. Let θ be some large regular cardinal, A ⊆ H(θ)<ω, and C ⊆ ω2.

(1) A model M overlaps t ∈ T if t ̸∈ M and there is a (non-cofinal) branch u
of T with t ∈ u and u ∈M .

(2) β ∈ C is an extensive overlap point for t ∈ T (relative to θ, A, and C) if
β ≤ height(t), cof(β) = ω1, and for every countable a ⊆ β and countable
b ⊆ ω2 − β, there is a countable M ≺ (H(θ);A) so that M ⊇ a, (M ∪
Limit(M)) ∩ b = ∅, and M overlaps t.

(3) t ∈ T is extensively overlapped (relative to θ, A, and C) if height(t) or
arbitrarily large β < height(t) are extensive overlap points for t.

When we omit reference to θ, A, and C, it is understood that θ is large enough, A
codes all relevant objects, and C is the club of ordinals β < ω2 so that there are
M ≺ (H(θ);A) with M ∩ ω2 = β.

Claim 1.2. Suppose f is a partial weak specializing function for T , t ∈ dom(f),
β is an extensive overlap point for t, and models M witnessing this can be found
which are elementary relative to T and to f . Then f(t) ≥ β.
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Proof. Suppose for contradiction that f(t) < β. Let α = f(t), a = {α}, and b = ∅.
Let M and u witness the extensive overlap for a and b, with M elementary relative
to T and f . Since f is injective on chains, the set {s ∈ u | f(s) = α} has exactly one
element, t. The set belongs to M since u, α ∈M . So t ∈M , a contradiction. �

The definition of an extensive overlap point β for t requires there to be many
models M ≺ (H(θ);A) witnessing many overlaps. All ℵ1.5-c.c. posets preserve the
elementarity of enough of these models that β continues to be an extensive overlap
point for t in the generic extension, relative to θ, A′, C where A′ codes both A
and the generic G. If G adds a partial weak specializing function f = ḟ [G] on

T , and A codes ḟ and T , then it follows using Claim 1.2 that f(t) ≥ β. Since
f(t) < height(t) this means in particular that t ∈ dom(f) is impossible if t is
extensively overlapped in V . The same is true with posets which are ℵ1.5-c.c.
relative to U assuming MA1.5

ω1
(U) (see Definitions 3.26 and 3.27), and with the

ω2-c.c. posets within the iterable classes developed in Neeman [15]. So partial
weak specializing functions added by forcing within any of these classes, or for that
matter any class of posets which preserve elementarity relative to the generic object
sufficiently often to preserve extensive overlap points, cannot have in their domains
nodes which are extensively overlapped in V . The largest domain one can expect
is {t ∈ T | t is not extensively overlapped}, as determined in V .

The poset we describe in Section 4 adds a partial weak specializing function with
exactly this domain. We also discuss, at the end of the section, the fact that in some
situations all posets that preserve ω1 and ω2 also preserve some extensive overlap
points, and therefore none of them can add a total weak specializing function.

2. Preliminaries

This section includes a brief outline of relevant definitions and lemmas from
Neeman [16], phrased specifically for the situations of interest to us here. The
rest of the paper is mostly self-contained, granted the definitions and results in the
current section.

The results from Neeman [16] that are outlined below are on a simplification
of the side conditions developed by Friedman [7] and Mitchell [13]. The simpli-
fication involves explicitly adding uncountable models to the side conditions, and
demanding closure under intersections with these models. The uncountable models
may be viewed as implicitly hidden in the side conditions of the original posets
of Friedman and Mitchell, generated there from Skolem hulls of the uncountable
cofinality ordinals sup(M ∩Ord−N ∩Ord), for countable models M,N in the side
condition and in its closure under intersections with the generated hulls. Some of
the work with the simplified poset, including for results in this section, then traces
very directly to work by Friedman and Mitchell. We refer the reader to [16] for a
better account of this tracing with more specific details.

We work throughout under the assumption that S and T satisfy conditions
(ST1)–(ST5) below.

(ST1) K =
∪
T satisfies a large enough fragment of ZFC−Powerset, andK∩Ord =

ω2. For the exact consequences of ZFC needed in K see the first paragraph
of [16, Section 2].

(ST2) T ⊆ {W ≺ K |W is transitive, W ∈ K, and ω1 ∈W}.
(ST3) S ⊆ {M ≺ K |M is countable, M ∈ K, and ω1 ∈M}.
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(ST4) If M ∈ S, W ∈ T , and W ∈M , then M ∩W ∈ S and M ∩W ∈W .
(ST5) S and T are stationary in P(K).

Such sets can always be obtained, for example taking K = H(ω2), T = {W ≺
K |W is transitive, |W | = ω1, and W is internal on a club}, and S = {M ≺ K |M
is countable}. By internal on a club we mean that for a club of P ⊆ W , P ∈ W .
Equivalently, W =

∪
ξ<ω1

Pξ where ⟨Pξ | ξ < ω1⟩ is increasing and continuous

with Pξ ∈ W for all ξ. If W is internal on a club as witnessed by ⟨Pξ | ξ < α⟩,
K = H(ω2), and M ≺ K is countable with W ∈ M , then M ∩W = Pα where
α = sup(M ∩ ω1), and in particular M ∩W ∈W , as required for condition (ST4).

We refer to elements of S as countable nodes, and to elements of T as transitive
nodes. S and T satisfying the above conditions are appropriate for ω, ω1, and
K in the sense of [16, Definition 2.2]. The next definition gives the resulting side
condition poset of [16, Definition 2.4].

Definition 2.1. A side condition (relative to S and T ) is a finite sequence s =
⟨Mi | i < n⟩ so that:

(1) Each Mi belongs to S ∪ T .
(2) s is increasing, meaning that Mi ∈Mi+1 for all i+ 1 < n.
(3) s is closed under intersections, meaning that if M and W occur in s, M is

countable, W is transitive, and W ∈M , then M ∩W occurs in s.

Side conditions are ordered by t ≤ s iff all nodes of s occur in t. The poset of side
conditions is denoted Pside or Pside(S, T ).

Forcing with Pside adds a sequence of nodes of length ω2, so that its restriction
to transitive nodes is linearly ordered by ∈, the countable nodes between any two
successive transitive nodes are linearly ordered by ∈, and the sequence is closed
under intersections.

We often refer to s = ⟨Mi | i < n⟩ ∈ Pside as a set {Mi | i < n} rather than a
sequence. There is no loss of information in this, since the ordering of the nodes in
s is determined uniquely by condition (2). With this notation, t ≤ s iff t ⊇ s.

When working with side conditions we use interval notation in the natural way.
For example (M,W )s consists of all nodes of s that occur strictly between M and
W . We omit the subscript s when it is clear from the context.

For s satisfying conditions (1) and (2), closure under intersections is a conse-
quence of the weaker condition that requires M ∩W ∈ s only under the additional
assumption that W is the largest transitive node of s below M . For a proof of this
see [16, Claim 2.12].

Definition 2.2. Let s ∈ Pside and let Q ∈ s. Then resQ(s) is defined to be s ∩Q.

By [16, Lemma 2.18], resQ(s) is itself a side condition. The following result gives
one of the most important properties of side conditions. It is a join of Lemmas 2.20
and 2.21 in [16].

Lemma 2.3. Let s ∈ Pside, let Q ∈ s, and let t ∈ Q ∩ Pside extend resQ(s). Then
s and t are compatible. Moreover, this is witnessed by s ∪ t if Q is transitive, and
by the closure of s ∪ t under intersections if Q is countable.

For countable Q the proof of the lemma involves an analysis of the way resQ(s)
sits inside s. In this context, the residue gaps of s in Q are the intervals [Q∩W,W )
for W ∈ s∩Q transitive. It is easy to check, and shown in [16, Section 2], that the
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residue gaps are disjoint from the residue, and the residue consists precisely of the
nodes of s which occur below Q and do not belong to any residue gap. Under the
assumptions of Lemma 2.3 (for Q countable) one can check that s∪t is ∈-increasing
when viewed as the sequence obtained from t by adding the nodes of each residue
gap [Q ∩W,W ) right before W , and adding the nodes of s from Q upward above
the largest node of t. s ∪ t need not be closed under intersection, and the main
part of the proof of [16, Lemma 2.21] involves adding enough nodes to it to secure
this closure. For R ∈ t − s of transitive type, let Q̄R be the bottom node of the
first residue gap of s in Q above R if there is such, and let Q̄R = Q if there are
no residue gaps above R. Let ER consist of the countable nodes of s from (and
including) Q̄R up, to (and not including) the first transitive node of s above Q̄R

if there is one. Let FR = {M ∩ R | M ∈ ER}. We refer to FR as the tacked-on
sequence or interval associated to R. The side condition witnessing Lemma 2.3 in
case Q is countable is the sequence obtained from s ∪ t by adding the nodes of
each tacked-on interval FR, in order and right before R. The proof of [16, Lemma
2.21] shows that this sequence is both increasing and closed under intersections.
Closure under intersections is obtained by showing that for every countable M in
the sequence which does not belong to t, and any transitive R ∈ t− s with R ∈M ,
M ∩R is one of the nodes in the tacked-on interval FR.

Let Ġ be the canonical Pside name for the generic filter. It follows from Lemma
2.3 that every s ∈ Pside is a strong master condition for every Q ∈ s, meaning
that s forces Ġ ∩ Q to be generic (over V ) for Pside ∩ Q. For more details on this
see [16, Claim 4.1]. It also follows from the lemma that for any t ∈ Pside and any
Q ∈ S ∪ T with t ∈ Q, there is r ≤ t with Q ∈ r. (Use the lemma with s = {Q}.)
This implies that Pside is strongly proper for S ∪T , meaning that for all Q ∈ S ∪T ,
every t ∈ Q ∩ Pside extends to a strong master condition for Q. Since S and T
are stationary in P<ω1(K) and P<ω2(K) respectively, strong properness for S ∪ T
implies that Pside preserves the cardinals ω1 and ω2. For more details on this see
[16, Section 3].

Let G be generic for Pside. We say that Q occurs in G if (∃s ∈ G)Q ∈ s. Abusing
notation we write Q ∈ G to mean that Q occurs in G. Let Ot = {sup(W ∩Ord) |
W ∈ G and W is transitive}. Let Ȯt name Ot .

Claim 2.4. Ot is unbounded in ω2, and ω1 closed.

Proof. ThatOt is unbounded in ω2 is clear using genericity ofG and the stationarity
of T . Suppose α ∈ Limit(Ot) (meaning that Ot∩α is cofinal in α) and cof(α) = ω1.
We prove that α ∈ Ot .

Let Q be the least node in G with sup(Q ∩ Ord) ≥ α. Q must be transitive,
rather than countable. Otherwise A = {sup(M ∩ Ord) | M ∈ Q} is countable,
hence bounded in α, and since (using condition (2) of Definition 2.1) A is cofinal
in {sup(M ∩ Ord) | M occurs in G below Q}, this contradicts the fact that α is a
limit point of Ot .

If sup(Q ∩ Ord) = α then α ∈ Ot and we are done. Suppose for contradiction
sup(Q ∩ Ord) > α, and hence α ∈ Q. Let M ∈ G be a countable node with
{α,Q} ⊆ M . Such a node exists by genericity of G and the stationarity of S.
Using the closure under intersections given by condition (3) of Definition 2.1, it
must be that M ∩ Q ∈ G. But since α < sup(M ∩ Q ∩ Ord) < sup(Q ∩ Ord) this
contradicts the minimality of Q. �
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The posets we give in Sections 3 and 4 can be defined using S and T satisfying
conditions (ST1)–(ST5), and shown using these conditions to preserve ω1, preserve
ω2, and be |K|+-c.c. This allows for the possibility that the posets collapse cardinals
in the interval (ω2, |K|], and indeed they will collapse |K| to ω2 in case |K| > ω2.

With some additional assumptions on S and T the posets in Sections 3 and 4
can be shown to be ω2-c.c. The additional assumptions which we use for this are
conditions (ST6)–(ST9) below. These conditions abstract properties used in the
proof of Claim 5.7 of Neeman [16] to show that in the poset of side conditions
there, every side condition can be extended to incorporate any given transitive
node, and hence every side condition is a strong master condition for every element
of T . Assuming conditions (ST6)–(ST9) we obtain a parallel result here, in Claim
2.5.

(ST6) There is some relation Ξ ⊆ K so that W ∈ T iff W ≺ (K;∈,Ξ), W is
transitive, ω1 ∈W , |W | = ω1, and cof(W ∩ ω2) = ω1.

(ST7) Every M ∈ S is elementary in (K;∈,Ξ).
(ST8) Every Q ≺1 (K;∈,Ξ) is uniquely determined from Q ∩Ord.
(ST9) If M ∈ S, W ∈ T , and M ∩Ord ⊆W , then M ∈W .

Condition (ST6) implies in particular that T is stationary in P<ω2(K), making
that part of condition (ST5) redundant. Condition (ST9) implies in particular that
M ∩W ∈W forM andW as in condition (ST4), making the final part of condition
(ST4) redundant. Conditions (ST6) and (ST8) imply that T is linearly ordered by
∈ and ω1-closed.

The existence of S and T satisfying the additional conditions is not provable
in ZFC. It is equivalent to the existence of a thin stationary subset of P<ω1(ω2),
and can be obtained by forcing with Pside(S, T ) for any S, T satisfying the earlier
conditions (ST1)–(ST5). We discuss both these facts next.

Recall that R ⊆ P<ω1(ω2) is thin in the sense of Friedman [7] if for every δ < ω2

the set {x ∩ δ | x ∈ R} has size at most ω1. The condition was used earlier,
for example by Rubin-Shelah [17] where it appears as (∗) of Theorem 4.12. Thin
stationary sets exist under many circumstances, but their existence is not provable
in ZFC. For more on this we refer the reader to Friedman-Krueger [9].

We mentioned above that the existence of S and T satisfying conditions (ST1)–
(ST9) is equivalent to the existence of a thin stationary set. In one direction, given
S and T , simply take R = {Q ∩ ω2 | Q ∈ S}. To see that R is thin, note that for
every W ∈ T and every Q ∈ S, Q ∩W ∈ W . (This is clear if Q ∈ W . If Q ̸∈ W ,
then by Remark 2.7 below there is a transitive W ∗ ⊇ W with W ∗ ∈ Q. Taking
a ∈-minimal such W ∗ we have Q ∩W = Q ∩W ∗ ∈ W by minimality.) It follows
that for every δ < ω2, and any transitive W ⊇ δ, {x ∩ δ | x ∈ R} is contained in
{M ∩ δ |M ∈W} and in particular has size at most ω1.

In the other direction, given a thin set R, let f : ω2 → P<ω1(ω2) enumerate
all elements of {x ∩ δ | δ < ω2 ∧ x ∈ R}, ordered first by their supremum. Let
K = Lω2 [Ξ] where Ξ is the predicate {⟨α, ξ⟩ | ξ ∈ f(α)}. Let T consist of transitive
W ≺ (K;∈,Ξ) of size ω1 with ω1 + 1 ⊆ W and cof(W ∩ ω2) = ω1. Let S consist
of all models Q ∩W where Q ≺ (K;∈,Ξ) is countable with ω1 ∈ Q, Q ∩ ω2 ∈ R,
W ∈ T , and W ∈ Q. This is similar to a more general construction of S and
T from a thin stationary set in Subsection 5.2 of Neeman [16], restricting S to
just the nodes that are used in the proof of [16, Claim 5.5]. (The move from Q
to Q ∩W is important there, to limit the set of supremums of countable nodes.
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It is not so important here.) It is easy to check that S and T satisfy conditions
(ST1)–(ST9), except possibly the requirement that S is stationary. The thinness of
R is important in verifying condition (ST9). If R is stationary then S is stationary.

One can also obtain S ′ and T ′ satisfying conditions (ST1)–(ST9) by forcing with
Pside(S, T ) starting with S, T which satisfy only conditions (ST1)–(ST5). To see
this, let G be generic for Pside(S, T ), and let Ξ ⊆ K be the set of nodes occurring in
G. Then the sets T ′ = {W ∈ T |W ≺ (K,∈,Ξ)} and S ′ = {M ∈ S |M ∈ G∧M ≺
(K;∈,Ξ)} satisfy conditions (ST1)–(ST9), in V [G]. Indeed, most of the conditions
are simply inherited from properties of S and T , in some cases using the closure of
G, genericity of G, and strong properness of Pside. The use of G, and the closure
given by Claim 2.4, allows us to obtain the right-to-left direction of the equivalence
in condition (ST6). The use of G also allows us to avoid countable nodes that
conflict with condition (ST9), and obtain condition (ST8). For the latter point
note that if Q ≺1 (K;∈,Ξ) then Q is exactly equal to

∪
{M ∈ Ξ | M is countable

and sup(M ∩Ord) ∈ Q}.
This method for obtaining conditions (ST1)–(ST9) is important since it allows

us to reduce our assumptions in forcing constructions, from S ′ and T ′ satisfying
conditions (ST1)–(ST9), to S and T satisfying just conditions (ST1)–(ST5), simply
by composing a poset which uses S ′ and T ′ with an initial application of Pside(S, T ).
Moreover, any properness we obtain for the original poset and nodes in S ′, T ′ will
typically continue to hold for the composition with Pside and nodes in S, T , using
the strong properness of Pside.

In addition to Pside there are other finite conditions posets that can be used
to obtain S ′ and T ′ which satisfy the full list of conditions (ST1)–(ST9) from
assumptions which are satisfiable in ZFC, for example the two-type side condition
posets with tower nodes in Neeman [15].

For the rest of the section we work with S and T satisfying all the conditions
above, (ST1)–(ST9).

Claim 2.5. (Assuming conditions (ST1)–(ST9).) Let s ∈ Pside, and let W be a
transitive node. Then there is u ∈ Pside extending s with W ∈ u.

Proof. Similar to the proof of Claim 5.7 in [16]. Suppose W ̸∈ s as otherwise u = s
works. Suppose also that s has nodes outside W , since otherwise u = s∪ {W} is a
side condition and witnesses the claim.

Let Q be the first node of s outside W . Inductively we may assume that any s∗

with a node outside W that has smaller ordinal height than Q, can be extended to
u with W ∈ u.

By choice of Q, ress(Q) ⊆ W . So ress(Q) ∪ {W} is a side condition. If W ∈ Q
then ress(Q)∪{W} belongs to Q, so by Lemma 2.3 it is compatible with s. Letting
u witness the compatibility we have W ∈ u as required.

Suppose then that W ̸∈ Q. Since T is linearly ordered by ∈, it follows, using
our earlier assumptions that Q ̸∈ W and W ̸∈ s, that Q is countable rather than
transitive. Let α be the least ordinal ofQ at or above sup(W∩Ord). Such an ordinal
must exist, since otherwise Q ∩ Ord ⊆ W and hence Q ∈ W by condition (ST9).
If α = sup(W ∩ Ord) then by condition (ST8), W is the unique Σ1 elementary
substructure of (K;∈,Ξ) withW ∩Ord = α. ThenW belongs to Q by elementarity,
a contradiction. So α > sup(W ∩Ord).

By condition (ST8), for each ν < ω2 there is at most one Y ≺1 (K;∈,Ξ) with
Y ∩ Ord = ν. Let h(ν) denote this Y if it exists. Note that for every β < α
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and n < ω, there is ν ∈ [β, α) so that h(ν) is defined and is Σn elementary in
(K;∈,Ξ). Otherwise by elementarity of Q, a counterexample β exists in Q. Then
β < sup(W ∩ Ord) by minimality of α, and taking ν = sup(W ∩ Ord) gives a
contradiction.

Letting W ∗ =
∪

ν∈α∩dom(h) h(ν) it follows that W ∗ ∩ Ord = α and that W ∗ ≺
(K;∈,Ξ). By condition (ST6) and since cof(α) = ω1, this implies that W ∗ ∈ T .
(To see cof(α) = ω1 note that otherwise Q is cofinal in α, and this contradicts the
minimality of α.)

By elementarity of Q, W ∗ ∈ Q. Arguing as we did above in the case of W ∈ Q it
follows that there is a side condition s∗ extending s, with W ∗ ∈ s∗. The first node
of s∗ outside W is either W ∗ or an earlier node, and in either case it has smaller
ordinal height than Q. By our induction hypothesis there is therefore u extending
s∗ with W ∈ u. �
Remark 2.6. By the proof of Claim 2.5, a condition u witnessing the claim can be
obtained from s through repeated applications of only the following consequences
of Lemma 2.3: (a) For any condition ŝ ∈ Pside and any transitive Ŵ with ŝ ⊆ Ŵ ,

there is r̂ ≤ ŝ with Ŵ ∈ r̂; and (b) For any condition ŝ ∈ Pside, any Q ∈ ŝ, and any

transitive Ŵ ∈ Q with ŝ ∩Q ⊆ Ŵ , there is r̂ ≤ ŝ with Ŵ ∈ r̂.

Remark 2.7. The proof of Claim 2.5 shows that for any countable node Q, and
any transitive node W with Q ̸∈ W , there is a transitive node W ∗ ⊇ W with
W ∗ ∈ Q.

It follows from Claim 2.5 that, assuming conditions (ST1)–(ST9), every s ∈ Pside

is a strong master condition for everyW ∈ T . (No s′ ≤ s can force the generic filter
to avoid a dense subset of Pside ∩W , since s′ extends to u with W ∈ u, and any
such u is a strong master condition for W by Lemma 2.3.) In particular then for
all large enough θ, and all sufficiently elementary H ≺ H(θ) of cardinality ω1 with
ω1 ⊆ H∧cof(H∩ω2) = ω1, every condition in Pside is a master condition for H∩K,
as H ∩K ∈ T by condition (ST6). Since strong properness implies properness in
this context (see for example Neeman [16, Remarks 3.1,3.2]), every condition in
Pside is a master condition for H. Such a wealth of master conditions for models
of size ω1 implies that Pside is ω2-c.c., by analogues of the standard arguments one
cardinal down.

3. Square

Work throughout with S and T satisfying conditions (ST1)–(ST9) in Section 2.
We describe a strongly proper for S∪T , ω2-c.c., finite conditions poset which forces
the existence of a �ω1 sequence, and variants which belong to iterable classes and
force �ω1,fin and �ta

ω1,ω.
Conditions (ST6)–(ST9) are included in our assumptions for simplicity and to

obtain the ω2-chain condition. Posets forcing the same principles with finite condi-
tions, which are strongly proper for S∪T , can be obtained assuming just conditions
(ST1)–(ST5), by prefixing the posets we define below with a preparatory forcing by
A = Pside, as described before Claim 2.5. Each of these combinations with A can
be written as a single poset with finite conditions, but we leave the details to the
reader. The results we obtain below under conditions (ST1)–(ST9) also hold for
the combined posets under conditions (ST1)–(ST5), except for the claims related
to the ω2-chain condition.
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Recall that Ȯt names {sup(W ∩Ord) | W ∈ T and W occurs in Ġ}. By Claim

2.5, which is proved using conditions (ST6)–(ST9), Ȯt is forced to name the ground
model set {sup(W ∩ Ord) | W ∈ T }. In Definition 3.1 and later in the section we
use Ot to denote {sup(W ∩ Ord) | W ∈ T }, and rely on the fact that this set is

forced to be equal to Ȯt . When working with only conditions (ST1)–(ST5) one has

to be more careful, and refer to Ȯt and the Pside forcing relation in the definitions.

Definition 3.1. Square = Square(S, T ) is the poset of pairs ⟨s, c⟩ where:
(1) s ∈ Pside(S, T ).
(2) c is a function on the nodes in s.
(3) (Linearity) For each M ∈ dom(c), c(M) is an ∈-linear set of countable

nodes, contained in s ∩M .
(4) (Separation) If Ot is cofinal in sup(M ∩Ord), then Ot is cofinal in sup(M̄ ∩

Ord) for every M̄ ∈ c(M). If Ot is bounded in sup(M∩Ord) then c(M) = ∅.
(5) (Coherence) If M̄ ∈ c(M) then c(M̄) = c(M) ∩ M̄ .
(6) (Fullness) If W ∈M are nodes of s of transitive and countable type respec-

tively, and sup(W ∩Ord) is a limit point of Ot , then M ∩W ∈ c(W ).

The ordering on Square is given by setting ⟨s∗, c∗⟩ ≤ ⟨s, c⟩ iff:
(i) s∗ ≤ s in Pside.
(ii) c∗(M) ∩ s = c(M) for every M ∈ s.
(iii) (Novelty jump) For M ∈ s, R ∈ c(M) ∪ {M}, and P ∈ c∗(M) ∩ R, if

P ⊇ c(M) ∩R ̸= ∅ then P ⊇ s ∩R.

The fullness condition is equivalent to its restricted version that demands M ∩
W ∈ c(W ) only in case that, in addition to the assumptions in the condition,
there are no transitive nodes between W and M in s. The equivalence can be seen
inductively by replacing a given M with M ∩W ∗, for W ∗ ∈ s largest transitive
below M in case W ∗ ̸=W .

The novelty jump condition is equivalent to its restricted version that applies only
to R = M . We refer to this restricted version as the end novelty jump condition.
It states that for any P ∈ c∗(M), if P ⊇ c(M) ̸= ∅ (or equivalently by linearity,
P occurs in c∗(M) above the largest node of c(M)) then P ⊇ s ∩M . To see that
the end novelty jump condition implies the full novelty jump condition, note that
by coherence of c and c∗, instances of the novelty jump condition for c∗(M) with
R ∈ c(M) are the same as the end novelty jump condition for c∗(R).

Remark 3.2. We could have dropped the requirement that c(M) ∩ R ̸= ∅ in the
hypothesis of the novelty jump condition, and similarly the requirement c(M) ̸= ∅
in the hypothesis of the end novelty jump condition. The results on Square would
still go through, with the same proofs. The place where these requirements make
a difference is in later results on Squarefin. More specifically, the restriction to
cases where c(M) ∩ R ̸= ∅ in the novelty jump condition is important for the
first paragraph in the proof of Lemma 3.15. We could also have weakened the
requirement in condition (ii) of Definition 3.1 to just c∗(M) ⊇ c(M), and the results
on Square would still go through, with the same constructions and in some cases
slightly simpler arguments. The place where the requirement that c∗(M)∩s = c(M)
becomes important is in later results on Squarefin, specifically for Remark 3.10.

Claim 3.3. The ordering on Square is transitive.
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Proof. The only nontrivial part involves the novelty jump condition. Suppose
⟨s∗∗, c∗∗⟩ ≤ ⟨s∗, c∗⟩ ≤ ⟨s, c⟩. It is enough to verify the end novelty jump condi-
tion for c∗∗ relative to ⟨s, c⟩. Fix M ∈ s and P ∈ c∗∗(M). Suppose that P ⊇ c(M).
We prove that P ⊇ s ∩M .

If P ⊇ c∗(M) then P ⊇ s∗∩M by the end novelty jump condition for c∗∗ relative
to ⟨s∗, c∗⟩, and therefore P ⊇ s ∩M .

Suppose P ̸⊇ c∗(M) and let R be ∈-minimal in c∗(M)−P . Then c∗(M)∩R ⊆ P .
If R = P then P ∈ c∗(M), so P ⊇ s ∩ M by the end novelty jump condition
for c∗ relative to ⟨s, c⟩. If R ̸= P then by linearity of c∗∗(M) it must be that
P ∈ R. By the novelty jump condition for c∗∗ relative to ⟨s∗, c∗⟩ it follows that
P ⊇ s∗ ∩ R ⊇ s ∩ R. Since P ∈ R we have P ⊆ R and hence R ⊇ c(M). By the
end novelty jump condition for c∗ relative to ⟨s, c⟩ (with the current R standing for
P of the condition), R ⊇ s ∩M . So P ⊇ s ∩R ⊇ s ∩M . �

For ⟨s, c⟩ ∈ Square and Q ∈ s define resQ(s, c) to be ⟨resQ(s), c′⟩ where c′(M) =
c(M) ∩ Q for each M ∈ resQ(M). If Q is of transitive type then c(M) ⊆ M ⊆ Q
for each M ∈ resQ(s), so c′(M) = c(M). If Q is countable, then by the same
reasoning c′(M) = c(M) for countable M ∈ resQ(s). For transitive W ∈ resQ(s)
with sup(W ∩ Ord) a limit point of Ot , Q ∩ W ∈ c(W ) by fullness, and c′(W )
consists precisely of the nodes of c(W ) before Q∩W , or equivalently by coherence,
c′(W ) = c(Q∩W ). For transitive W ∈ resQ(s) with Ot bounded in sup(W ∩Ord),
c(W ) = ∅ and hence c′(W ) = ∅. Note in this case that by elementarity of Q and
W , Ot is also bounded in sup(Q ∩W ∩ Ord), so c(Q ∩W ) = ∅, and hence again
c′(W ) = c(Q ∩W ).

It is easy using these observation to check that resQ(s, c) ∈ Square. It is also
clear that ⟨s, c⟩ ≤ resQ(s, c). The only non-trivial condition in verifying this is
the end novelty jump condition at transitive W in resQ(s) with Ot unbounded in
sup(W ∩ Ord). In this case the first node in c(W ) − c′(W ) = c(W ) − c(Q ∩W )
is Q ∩ W , and hence by linearity all nodes in c(W ) − c′(W ) contain Q ∩ W ⊇
resQ(s) ∩W .

Lemma 3.4. Let ⟨s, c⟩ ∈ Square, let Q ∈ s, and let ⟨t, d⟩ ∈ Q ∩ Square extend
resQ(s, c). Then ⟨s, c⟩ and ⟨t, d⟩ are compatible. Moreover there is a condition
⟨r, b⟩ witnessing this so that r = s∪ t if Q is transitive, and r is the closure of s∪ t
under intersections if Q is countable.

Proof. By Lemma 2.3, s and t are compatible in Pside, and moreover there is r
witnessing this which is equal to s∪t ifQ is transitive, and equal to the closure of s∪t
under intersections if Q is countable. It remains to define b so that ⟨r, b⟩ ∈ Square,
b(M) ∩ s = c(M) for M ∈ s, b(M) ∩ t = d(M) for M ∈ t, and b satisfies the end
novelty jump condition relative to ⟨s, c⟩ and ⟨t, d⟩.

If Q is transitive then the nodes of r below Q are exactly the nodes of t, and
the nodes of r from Q upward are the ones from Q upward in s. Set in this case
b(M) = d(M) for M below Q. Note that then trivially b(M) ∩ t = d(M), and
b(M) ∩ s = d(M) ∩ s = c(M) since ⟨t, d⟩ ≤ resQ(s, c). For M at or above Q, set
b(M) = c(M) if c(M) has no nodes below Q, and otherwise set b(M) = c(M)∪b(P )
where P is the largest node of c(M) below Q. b(M) in the latter case consists of
b(P ) followed by the nodes of c(M) from P onward, since c(M)∩P = c(P ) ⊆ b(P )
using coherence. This implies that b(M) is ∈-linear. We have b(M) ∩ s = c(M)
since b(P )∩ s = d(P )∩ s = c(P ) = c(M)∩P , using the fact that ⟨t, d⟩ ≤ resQ(s, c)
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and coherence. It is easy to check with these assignments that ⟨r, b⟩ satisfies the
coherence required in Definition 3.1, and also the separation condition. Fullness
holds for W from Q upward because all the relevant nodes then belong to s, and
b(W ) ⊇ c(W ). ForW below Q, the restricted fullness condition, where there are no
transitive nodes between W and M , holds because then both W and M are below
Q, hence elements of t. The end novelty jump condition for b relative to ⟨t, d⟩ holds
trivially since b(M)− d(M) = ∅ for M ∈ t. It holds trivially for b relative to ⟨s, c⟩
at nodesM from Q upward since the largest node of b(M) belongs to c(M), making
the condition vacuous. For M below Q it is inherited from the end novelty jump
condition for d relative to resQ(s, c).

Suppose now that Q is countable. For M ∈ t of countable type, set b(M) =
d(M). For each residue gap [Q∩W,W ) of s in Q, set b(Q∩W ) = d(W ). Separation
for b(Q∩W ) is then inherited from separation for d(W ), since sup(Q∩W ∩Ord) is
a limit point of Ot iff sup(W ∩Ord) is a limit point of Ot , by the elementarity of Q
and W . If Ot is bounded, in sup(W ∩Ord) and equivalently in sup(Q∩W ∩Ord),
then b(Q ∩ W ) = d(W ) = c(W ) = c(Q ∩ W ) = ∅. If Ot is unbounded then
c(Q∩W ) = c(W )∩Q = d(W )∩s∩Q = d(W )∩s = b(Q∩W )∩s, with the first equality
holding by coherence and fullness, the second holding since ⟨t, d⟩ ≤ resQ(s, c), and
the third since d ∈ Q. So either way, b(Q ∩W ) ∩ s = c(Q ∩W ).

Let U consist of the countable nodes in t, plus the bottom nodes of residue gap.
So far we defined b�U . For M ∈ s − t other than the bottom nodes of residue
gaps, set b(M) = c(M) ∪ b(P ) where P is the largest node of c(M) that belongs
to U if there is one, and b(M) = c(M) otherwise. Then as in paragraph dealing
with transitive Q, b satisfies linearity, coherence, separation, and fullness on its
domain. (One additional note needed here, in verifying fullness of b for transitive
W ∈ s− t, is that there are no countable M ∈ t with W ∈M , since M ⊆ Q for all
countable M ∈ t. For verifying fullness this is used together with the fact that any
countable M ∈ r − t is either in s or of the form M∗ ∩W ∗ for countable M∗ ∈ s,
see the discussion following Lemma 2.3.) Again as in the argument for transitive
Q, b(M) ∩ s = c(M). b also satisfies the end novelty jump condition at nodes in
U ∪ (s − t) relative to ⟨s, c⟩ and ⟨t, d⟩. In the case of a bottom node Q ∩W of
a residue gap, the condition for b(Q ∩W ) relative to ⟨s, c⟩ is inherited from the
condition for d(W ) relative to resQ(s, c). The other cases are similar to the ones in
the paragraph on transitive Q.

By the discussion following Lemma 2.3, r consists of the nodes of s∪ t, plus the
nodes in tacked-on intervals FW for transitive W ∈ t − s. The tacked-on intervals
are pairwise disjoint, and disjoint from s∪t. Moreover, for any transitiveW ∈ t−s,
and any M ∈ r− t with W ∈M , the intersection M ∩W belongs to the tacked-on
interval FW .

To complete the definition of b, it remains to handle transitive nodes in t, and
nodes in tacked-on sequences.

Suppose W ∈ t is transitive and belongs to s. Then W is the top node of a
residue gap of s in Q. By fullness, separation, coherence, and the facts that ⟨t, d⟩
belongs to Q and extends resQ(s, c), d(W ) ∩ s = c(W ) ∩ Q = c(Q ∩ W ), with
d(W ) = c(W ) = c(Q ∩ W ) = ∅ in case Ot is bounded in sup(W ∩ Ord), and
Q ∩W ∈ c(W ) in case Ot is unbounded. Set b(W ) = d(W ) ∪ c(W ). Then b(W ) is
∈-linear, and indeed it consists of the nodes of d(W ) followed by the nodes of c(W )
from Q ∩W upward. The equality b(W ) ∩ t = d(W ) holds because c(W ) − Q is
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disjoint from t and c(W )∩Q ⊆ d(W ). The equality b(W )∩s = c(W ) holds because
d(W )∩s = c(W )∩Q ⊆ c(W ). Separation for b(W ) is inherited from separation for
c(W ) and d(W ). Fullness of c(W ) and d(W ) in s and t respectively gives fullness
of b(W ) in s ∪ t, and hence also in r since all countable nodes of r − (s ∪ t) are of
the formM ∩R for countableM ∈ s. Our definition of b on countable nodes above,
including in particular the case of bottom nodes of residue gaps, is such that b(W )
coheres with b(M) for countableM ∈ b(W ). As for the end novelty jump condition,
it holds vacuously for b(W ) relative to ⟨s, c⟩ since the largest node of b(W ) belongs
to c(W ), and it holds relative to ⟨t, d⟩ since the first node in b(W )− d(W ) (in case
b(W ) ̸= ∅) is Q ∩W , which contains t ∩W .

Suppose W is transitive and belongs to t− s. If Ot is bounded in sup(W ∩Ord),
set b(W ) = ∅. In this case Ot is also bounded in sup(P ∩ Ord) for each P in the
tacked-on interval FW , since these nodes have the form P ∗∩W for countable P ∗ ∈ s
with W ∈ P . Set b(P ) = ∅ for all P ∈ FW . These assignments trivially satisfy
linearity, separation, coherence, fullness, and the novelty jump condition. In the
case of coherence note that since FW is disjoint from s ∪ t, there is no interference
with our previous definitions for b.

Suppose W is transitive and belongs to t− s, and Ot is cofinal in sup(W ∩Ord).
Set b(W ) = d(W ) ∪ FW , where FW is the tacked-on interval associated to W .
The smallest node of the tacked-on interval is equal to Q ∩ W . From this, the
fact that FW is ∈-linear, the linearity of d(W ), and the fact that d(W ) ⊆ Q ∩W ,
it follows that b(W ) is ∈-linear, and that b(W ) ∩ Q = d(W ) hence in particular
b(W ) ∩ t = d(W ). Using coherence of d and our earlier definitions it also follows
that b(W ) ∩M = b(M) for every M ∈ b(W ) on which b has already been defined,
meaning every M ∈ b(W ) − FW . For every countable M∗ ∈ r with W ∈ M∗,
we have M∗ ∩W ∈ d(W ) ⊆ b(W ) if M∗ ∈ t, and (by properties of the tacked-on
intervals) M∗ ∩W ∈ FW ⊆ b(W ) if M∗ ∈ r − t. So b(W ) is full. The end novelty
jump condition holds for b(W ) (relative to ⟨t, d⟩) since each node in FW contains
the smallest node of FW , which is equal to Q ∩W , and therefore contains t ∩W .
Each M ∈ FW is of the form M∗ ∩W for a node M∗ ∈ s with W ∈ M∗, and by
elementarity of W and M∗ this implies that sup(M∗ ∩W ∩ Ord) is a limit point
of Ot iff sup(W ∩ Ord) is a limit point of Ot . Using this one can prove that the
separation condition for b(W ) is inherited from the same condition for d(W ).

Finally, for each P that belongs to the tacked-on interval FW , set b(P ) = d(W )∪
(FW ∩ P ). Coherence for b(P ) is clear, and using the definition in the previous
paragraph, so is coherence for b(W ) at P ∈ FW . Linearity and separation hold
as in the previous paragraph. There are no instances of the end novelty jump
condition to check as P ̸∈ s ∪ t. This completes the proof of Lemma 3.4. �

Corollary 3.5. The poset Square(S, T ) is strongly proper for S ∪ T .

Proof. Immediate from Lemma 3.4 with the usual argument: If ⟨s, c⟩ ∈ Square,
Q ∈ s, and D is dense in Square ∩Q, then by density there is ⟨t, d⟩ ∈ D extending
resQ(s, c), and by Lemma 3.4, ⟨t, d⟩ is compatible with ⟨s, c⟩. This implies that any
⟨s, c⟩ with Q ∈ s is a strong master condition for Q. The lemma, when used with
the initial condition ⟨{Q}, {Q 7→ ∅}⟩, whose residue in Q is the empty condition,
also shows that any condition in Square ∩Q extends to a condition that has Q as
a node. �
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Since S and T are both stationary, it follows from Corollary 3.5 that Square
preserves ω1 and ω2.

Claim 3.6. Let ⟨s, c⟩ ∈ Square and let W ∈ T . Then there is ⟨s′, c′⟩ ≤ ⟨s, c⟩ with
W ∈ s′. Moreover such a condition can be found so that c′(M) = c(M) for all
M ∈ s.

Proof. Similar to the proof of Claim 2.5, using Lemma 3.4 instead of Lemma 2.3.
To show that the constructed c′ has the property that c′(M) = c(M) for all M ∈ s,
it is enough, by Remark 2.6, to show that: (a) for any ⟨ŝ, ĉ⟩ ∈ Square and any

transitive Ŵ with ŝ ⊆ Ŵ , there is ⟨r̂, b̂⟩ ≤ ⟨ŝ, ĉ⟩ with Ŵ ∈ r̂ and b̂(M) = ĉ(M) for

all M ∈ ŝ; and (b) for any ⟨ŝ, ĉ⟩ ∈ Square, any Q ∈ ŝ, and any transitive Ŵ ∈ Q

with ŝ∩Q ⊆ Ŵ , there is ⟨r̂, b̂⟩ ≤ ⟨ŝ, ĉ⟩ with Ŵ ∈ r̂ and the additional property that

b̂(M) = ĉ(M) for every M ∈ ŝ. Part (a) holds trivially setting r̂ = ŝ ∪ {Ŵ} and

b̂(Ŵ ) = ∅. Part (b) follows from an application of Lemma 3.4 to the condition ⟨t̂, d̂⟩
obtained from resQ(ŝ, ĉ) by adding the node Ŵ to ŝ ∩Q and setting d̂(Ŵ ) = ∅. A
quick look through the proof of the lemma shows that the condition ⟨r̂, b̂⟩ it produces
in this case has the additional property that b̂(M) = ĉ(M) for all M ∈ ŝ. Indeed,

b̂ is the function that extends ĉ with just the following assignments: b̂(Ŵ ) = FŴ

and b̂(P ) = FŴ ∩ P for P ∈ FŴ , where FŴ is the tacked-on interval for Ŵ , if

Q is countable and Ot is unbounded in sup(Ŵ ∩ Ord); b̂(Ŵ ) = b̂(P ) = ∅, where
P ∈ FŴ , if Q is countable and Ot is bounded in sup(Ŵ ∩Ord); and b̂(Ŵ ) = ∅ if Q
is transitive. �

Corollary 3.7. The poset Square is ω2-c.c.

Proof. Suppose A is a maximal antichain in Square with |A| = ω2. Then for every
W ∈ T , every ⟨s, c⟩ ∈ A −W forces the generic filter to avoid A ∩W . Taking W
sufficiently elementary that A∩W is a maximal antichain in Square∩W this gives
a contradiction, since by Lemma 3.4 and Claim 3.6, every ⟨s, c⟩ ∈ Square extends
to a strong master condition for W . �

Lemma 3.8. Forcing with Square adds a �ω1 sequence.

Proof. Let G be generic for Square. Let αM denote sup(M ∩Ord). Let X = {αM |
M occurs in G}.

For α = αM ∈ X ∩Limit(Ot) let Cα = {αP | (∃⟨s, c⟩ ∈ G)(M ∈ s∧P ∈ c(M))}.
By the separation condition, Cα ⊆ Limit(Ot). For α ∈ Limit(Ot)−X set Cα = ∅.
We will show that ⟨Cα | α ∈ Limit(Ot)⟩ is a �′

ω1
sequence on Limit(Ot). Precisely

this means that Cα ⊆ Limit(Ot) ∩ α is closed in α and of ordertype ≤ ω1; if
cof(α) > ω and α is a limit point of Limit(Ot) then Cα is unbounded in α; and
Cβ = Cα ∩ β whenever β ∈ Cα.

Such a sequence can be turned into a �ω1 sequence by standard arguments: Let
φ : ω2 → Limit(Ot) be an order preserving bijection. Define Dα to be the preimage
by φ of Cφ(α) in case Cφ(α) is unbounded in α. If Cφ(α) is bounded in α, note that
cof(α) ≤ ω, and define Dα to be any cofinal subset of α of ordertype ≤ ω. It is
easy to check that ⟨Dα | α < ω2⟩ is a �ω1 sequence.

It is clear using the coherence condition in Definition 3.1 that β ∈ Cα → Cβ =
Cα ∩ β. Using the linearity condition and since c(M) consists only of countable
nodes, it is clear that Cα is a subset of α with ordertype at most ω1. By the
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fullness condition, Claim 3.6, and a genericity argument using Lemma 3.4 to show
that (∀a ⊆ ω2 finite)(∃M countable occurring in G)(a ⊆ M), Cα is cofinal in α
whenever α ∈ Ot ∩ Limit(Ot). Since Ot is ω1 closed this implies that Cα is cofinal
in α for all α of cofinality ω1 in Limit(Ot). The only remaining property to prove
is that Cα is closed in α.

Fix α ∈ Limit(Ot), and suppose for contradiction that Cα is not closed in α. In
particular Cα ̸= ∅, so α ∈ X and there is M occurring in G with α = αM . Let
β < α be a limit point Cα which does not belong to Cα. Fix ⟨s, c⟩ ∈ G forcing this.
We may assume M ∈ s. Since β is a limit point of Cα we may also assume that
there are nodes U ∈ c(M) with αU < β. Let U be the largest such node. Let R
be the first node of c(M) above U if there is one, and otherwise set R =M . Since
β ̸∈ Cα, we have αR > β.

By the separation condition in Definition 3.1, and since α = αM ∈ Limit(Ot),
Ot is unbounded in sup(N ∩ Ord) for all N ∈ c(M). Hence in particular Ot is
unbounded in sup(R ∩Ord). Let γ ∈ Ot ∩ αR be larger than β. Using Remark 2.7
we may, by increasing γ if necessary, assume that γ = sup(W ∩Ord) for a transitive
nodeW ∈ R. By Claim 3.6 there is ⟨s′, c′⟩ ≤ ⟨s, c⟩ withW ∈ s′, and c′(M) = c(M).
But now by the novelty jump condition in Definition 3.1, for any ⟨s∗, c∗⟩ ≤ ⟨s′, c′⟩,
if P ∈ c∗(M) ∩R is above U (which is the largest node of c(M) ∩R = c′(M) ∩R),
then P ⊇ s′ ∩ R, and hence in particular W ∈ P . It follows that αP > γ > β.
Hence ⟨s′, c′⟩ forces that the first element of Cα above αU , which is either of the
form αP for P as above, or else equal to αR, is larger than β. This contradicts the
fact that ⟨s, c⟩ forces β to be a limit point of Cα. �

Though strongly proper, the poset Square need not belong to the iterable classes
for which Neeman [15] obtains forcing axioms that allow meeting ω2 maximal an-
tichains, nor to the classes of Asperó-Mota [1, 2], or their modification in Definition
3.26. Indeed the forcing axioms in [15] and [1, 2] are compatible with failure of �ω1 .
We continue to describe two variants of Square that do belong to iterable classes.
The first variant adds a �ω1,fin sequence, the second adds a �ta

ω1,ω sequence. The
additional properties they enjoy that allow showing that they belong to certain
iterable classes are proved in Lemmas 3.15 and 3.23. After defining the posets and
deriving the lemmas, we will discuss the way they connect to iterable classes.

Definition 3.9. Squarefin = Squarefin(S, T ) is the poset of pairs ⟨s, c⟩ where:
(1) s ∈ Pside(S, T ).
(2) c is a function with dom(c) ⊆ ω × s. We write ci(M) for c(i,M). The sets

ci(M) are distinct.
(3) (Domain size) For each M ∈ s there exists n = nc(M) ∈ [1, ω) so that

⟨i,M⟩ ∈ dom(c) iff i < n. For transitive M , nc(M) = 1.
(4) (Linearity) ci(M) is an ∈-linear set of countable nodes, contained in s∩M .
(5) (Separation) If Ot is cofinal in sup(M ∩Ord), then Ot is cofinal in sup(M̄ ∩

Ord) for every M̄ ∈ ci(M). If Ot is bounded in sup(M ∩ Ord), then
ci(M) = ∅.

(6) (Coherence) If M̄ ∈ ci(M) then there exists j so that cj(M̄) = ci(M)∩ M̄ .
(7) (Fullness) If W ∈M are nodes of s of transitive and countable type respec-

tively, and sup(W ∩Ord) is a limit point of Ot , then M ∩W ∈ c0(W ).

The ordering on Squarefin(C) is given by setting ⟨s∗, c∗⟩ ≤ ⟨s, c⟩ iff:
(i) s∗ ≤ s in Pside.
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(ii) nc∗(M) = nc(M) and c∗i (M) ∩ s = ci(M) for every M ∈ s and each
i < nc(M).

(iii) (Novelty jump) For M ∈ s, i < nc(M), R ∈ ci(M) ∪ {M}, and P ∈
c∗i (M) ∩R, if P ⊇ ci(M) ∩R ̸= ∅ then P ⊇ s ∩R.

Note that the coherence witness j in condition (6) is necessarily unique, since by
condition (2), the sets cj(M̄) are distinct.

Remark 3.10. Suppose ⟨s∗, c∗⟩ ≤ ⟨s, c⟩ ∈ Squarefin. Let M ∈ s, i < nc(M), and
M̄ ∈ ci(M). Let j witness the coherence condition for ci(M) at M̄ in ⟨s, c⟩. Then
the same j also witnesses the coherence condition for c∗i (M) at M̄ in ⟨s∗, c∗⟩. To see
this, note that for every j′ < nc(M̄) other than j, cj′(M̄) ̸= cj(M̄) = ci(M) ∩ M̄ ,
hence by condition (ii) of Definition 3.9, c∗j′(M̄) ̸= c∗i (M)∩ M̄ , and since nc∗(M̄) =

nc(M̄) it follows that only j can witness coherence for c∗i (M) at M̄ in ⟨s∗, c∗⟩.

Claim 3.11. The ordering on Squarefin is transitive.

Proof. Similar to the proof of Claim 3.3. We only note that here too the end novelty
jump condition for ⟨s∗∗, c∗∗⟩ relative to ⟨s, c⟩ implies the full novelty jump condition,
and that the proof of this uses the coherence preservation noted in Remark 3.10,
to see that (in the notation of the novelty jump condition for ⟨s∗∗, c∗∗⟩ relative to
⟨s, c⟩) there is j so that both c∗∗i (M) ∩R = c∗∗j (R) and ci(M) ∩R = cj(R). �

For ⟨s, c⟩ ∈ Squarefin and Q ∈ s define resQ(s, c) to be ⟨resQ(s), c′⟩, where
nc′(M) = nc(M) and c′(i,M) = c(i,M)∩Q for each M ∈ resQ(s). Then resQ(s, c)
is a condition in Squarefin, and ⟨s, c⟩ ≤ resQ(s, c). The proof of this is similar to
the corresponding proof for the poset Square, noting in addition that for every
M ∈ resQ(s), the sets c′(i,M) are distinct, because they are equal to the distinct
sets c(i,M) when M is countable, and because nc′(M) = 1 when M is transitive.

Lemma 3.12. Let ⟨s, c⟩ ∈ Squarefin, let Q ∈ s, and let ⟨t, d⟩ ∈ Q∩Squarefin extend
resQ(s, c). Then ⟨s, c⟩ and ⟨t, d⟩ are compatible. Moreover there is a condition ⟨r, b⟩
witnessing this so that r = s∪ t if Q is transitive, and r is the closure of s∪ t under
intersections if Q is countable.

Proof. Similar to the proof of Lemma 3.4. We only note the key new points.
When defining b(Q∩W ) in the proof of Lemma 3.4, for Q∩W a bottom node of a

residue gap of s inQ so that sup(Q∩W∩Ord) ∈ Limit(Ot), we set b(Q∩W ) = d(W ).
Here we set bj(Q ∩W ) = d0(W ) for the unique j so that cj(Q ∩W ) = c0(W ) ∩Q.
Such j is given by the coherence and fullness conditions. For i ̸= j we define
bi(Q ∩W ) following the procedure in the next paragraph.

Several times in the proof of Lemma 3.4, when defining b(M), we looked for the
largest node P ∈ c(M) which belongs to Q or is a bottom node of a residue gap of s
in Q, and set b(M) = c(M)∪ b(P ). Here, when defining bi(M) in similar situations
(and when defining bi(Q ∩W ) for i not equal to the coherence witness used in the
previous paragraph), we look for the largest node P ∈ ci(M) which belongs to Q
or is a bottom node of a residue gap of s in Q, and set bi(M) = ci(M) ∪ bl(P ) for
the unique l so that cl(P ) = ci(M) ∩ P . Such l exists by the coherence condition.

With these modifications, and with the obvious adaptations from the context of
Definition 3.1 to the current context of Definition 3.9, the resulting pair ⟨r, b⟩ is an
element of Squarefin extending both ⟨s, c⟩ and ⟨t, d⟩. The arguments involved in
proving this are largely similar to the arguments in the proof of Lemma 3.4. The



TWO APPLICATIONS OF FINITE SIDE CONDITIONS AT ω2 17

specific assignments mentioned in the previous paragraphs are used in verifying
coherence. One new condition here that has no parallel in Lemma 3.4 is that for each
M ∈ r the sets bi(M), i < nb(M), must be distinct. This condition holds for ⟨r, b⟩ at
transitive M and at M in tacked-on intervals since then nb(M) = 1. For countable
M ∈ s it is inherited from the same condition for ⟨s, c⟩ since bi(M) ∩ s = ci(M).
For countable M ∈ t it is similarly inherited from the same condition for ⟨t, d⟩. �

Corollary 3.13. Squarefin is strongly proper for S ∪ T , and hence preserves ω1

and ω2. Assuming conditions (ST6)–(ST9), for every ⟨t, d⟩ ∈ Squarefin and every
W ∈ T there is ⟨t∗, d∗⟩ ≤ ⟨t, d⟩ with W ∈ t∗, and Squarefin is ω2-c.c.

Proof. Similar to Corollary 3.5, Claim 3.6, and Corollary 3.7, but using Lemma
3.12. �

Lemma 3.14. Forcing with Squarefin adds a �ω1,fin sequence.

Proof. Similar to Lemma 3.8, but defining Ci,α = {αP | (∃⟨s, c⟩ ∈ G)(M ∈ s∧ P ∈
ci(M))}, for α = αM = sup(M ∩Ord) and i < nc(M). (nc(M) is the same for all
⟨s, c⟩ ∈ G with M ∈ s.) By Remark 3.10 the sequence defined this way satisfies
coherence. It can be converted to a �ω1,fin sequence as in the proof of Lemma
3.8. �

Lemma 3.15. Let s ∈ Pside, let Q ∈ s, and let ⟨t, d⟩ ∈ Q ∩ Squarefin with t ⊇
resQ(s). Suppose resQ(s) has no countable nodes. Then there is ⟨r, b⟩ ≤ ⟨t, d⟩ with
r ⊇ s.

Proof. It is enough to show that there is c so that ⟨s, c⟩ ∈ Squarefin, nc(M) =
nd(M), and ci(M) ∩ Q = ∅, for all M ∈ resQ(s). Then the facts that t ⊇ resQ(s)
and resQ(s) has no countable nodes imply that ⟨t, d⟩ ≤ resQ(s, c) (note in particular
that the novelty jump condition holds trivially since, letting ⟨s′, c′⟩ = resQ(s, c),
there are no instances where c′i(M) ∩ R ̸= ∅), and the existence of ⟨r, b⟩ ≤ ⟨t, d⟩
with r ⊇ s follows by Lemma 3.12.

Since resQ(s) has no countable nodes, the requirements that nc(M) = nd(M)
and ci(M)∩Q = ∅ trivialize: nc(M) = nd(M) = 1 for allM ∈ resQ(s) by condition
(3) of Definition 3.9 since all M ∈ resQ(s) are transitive, and all nodes in ci(M)
are countable nodes of s, hence ci(M)∩Q = ∅. So it is enough to simply find some
c so that ⟨s, c⟩ ∈ Squarefin.

Let u consist of M ∈ s so that sup(M ∩ Ord) ∈ Limit(Ot). For M ∈ s − u
set nc(M) = 1 and c(M) = ∅. For transitive W ∈ u, let M0, . . . ,Ml list all the
countable nodes of s above W , up to and not including the next transitive node of
s if there is one. Set nc(W ) = 1 and c0(W ) = {M0 ∩W, . . . ,Ml ∩W}. The nodes
M0∩W, . . . ,Ml∩W all belong to u, and this ensures that separation holds atW . For
each countableM ∈ u, let nc(M) be the number of ∈-linear sets of countable nodes
from u ∩M , and let ci(M), i < nc(M), enumerate these sets without repetitions.
The domain size, linearity, separation, and fullness conditions of Definition 3.9 are
clear for ⟨s, c⟩ with these assignments. Coherence holds because ci(M) ∩ M̄ for
M̄ ∈ ci(M) is an ∈-linear set of countable nodes from u∩ M̄ , hence equal to one of
the sets cj(M̄). �

Remark 3.16. Lemma 3.15 fails without an assumption limiting the nodes in
resQ(s). For example one can arrange that there are countable nodes M1 ∈ M2

in resQ(s) so that in s there is transitive W with sup(W ∩Ord) ∈ Limit(Ot), and
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there are countable M∗
1 ∈M∗

2 with W ∈M∗
i and M∗

i ∩W =Mi, but there are no
such W,M∗

1 ,M
∗
2 in resQ(s). One can then construct ⟨t, d⟩ ∈ Squarefin, in Q and

with t ⊇ resQ(s), so that for every j, M1 ̸∈ dj(M2). But for any ⟨r, b⟩ ∈ Squarefin
with r ⊇ s, by fullness at W and coherence for b0(W ) at M2, there must be j so
that M1 ∈ bj(M2). So ⟨r, b⟩ cannot extend ⟨t, d⟩.

Remark 3.17. The parallel of Lemma 3.15 for the poset Square, as opposed to
Squarefin, can fail. To see this, construct a side condition s that has transitive
nodes N,W with sup(W ∩ Ord) ∈ Limit(Ot), and countable nodes M0 ∈ M1 and
P0 ∈ P1 with N ∈M0 andW ∈ P0, so thatM1∩N = P1∩W , and linearity fails for
M0 ∩N and P0 ∩W , meaning they are not equal, and neither is an element of the
other. (Such side conditions can be constructed in some situations, see for example
Remark 3.46. They cannot be constructed, at least not with arbitrary degree of
elementarity, in models that satisfy �ω1 , by an argument as in the proof of Claim
3.40.) Then there is no ⟨r, b⟩ ∈ Square so that r ⊇ s, since coherence and fullness
would combine to require that both M0 ∩ N and P0 ∩W belong to b(M1 ∩ N),
contradicting linearity.

Definition 3.18. Squareta = Squareta(S, T ) is the poset of pairs ⟨s, c⟩ where:
(1) s ∈ Pside(S, T ).
(2) c is a finite function with dom(c) ⊆ ω×s. We write ci(M) for c(i,M). The

sets ci(M) are distinct.
(3) (Domain size) For transitive W ∈ s, ⟨i,W ⟩ ∈ dom(c) iff i = 0.
(4) (Linearity) ci(M) is an ∈-linear set of countable nodes, contained in s∩M .
(5) (Separation) If Ot is cofinal in sup(M ∩Ord), then Ot is cofinal in sup(M̄ ∩

Ord) for every M̄ ∈ ci(M). If Ot is bounded in sup(M ∩ Ord), then
ci(M) = ∅.

(6) (Coherence) If M̄ ∈ ci(M) then there exists j so that cj(M̄) = ci(M)∩ M̄ .
(7) (Fullness) If W ∈M are nodes of s of transitive and countable type respec-

tively, and sup(W ∩Ord) is a limit point of Ot , then M ∩W ∈ c0(W ).

The ordering on Squareta is given by setting ⟨s∗, c∗⟩ ≤ ⟨s, c⟩ iff:
(i) s∗ ≤ s in Pside.
(ii) ⟨i,M⟩ ∈ dom(c∗) and c∗i (M) ∩ s = ci(M) for every ⟨i,M⟩ ∈ dom(c).
(iii) (Novelty jump) For ⟨i,M⟩ ∈ dom(c), R ∈ ci(M)∪{M}, and P ∈ c∗i (M)∩R,

if P ⊇ ci(M) ∩R ̸= ∅ then P ⊇ s ∩R.
(iv) (Coherence preservation) If j witnesses the coherence condition for ci(M)

at M̄ in ⟨s, c⟩, then the same j also witnesses the coherence condition for
c∗i (M) at M̄ in ⟨s∗, c∗⟩.

(v) (Tail agreement) IfM is countable, ⟨i,M⟩, ⟨j,M⟩ ∈ dom(c), and cj(M) ̸= ∅,
then every R in the tail-end of c∗j (M) above cj(M) belongs to the tail-end
of c∗i (M) above ci(M), meaning precisely that if R ∈ c∗j (M) ∧ R ⊇ cj(M)
then R ∈ c∗i (M) ∧R ⊇ ci(M).

In contrast with Definition 3.9, for the ordering relation on Squareta we allow
the domain size to increase, meaning that we allow {i | ⟨i,M⟩ ∈ dom(c∗)} ) {i |
⟨i,M⟩ ∈ dom(c)} forM ∈ s. One consequence of this is that the proof of coherence
preservation for Squarefin in Remark 3.10 does not work for Squareta, and instead
we added coherence preservation as an explicit condition. We also added the new
condition of tail agreement. We require it only for countable M , but it holds
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also for transitive M , for the trivial reason that, by the domain size condition,
⟨i,M⟩, ⟨j,M⟩ ∈ dom(c) → i = j = 0 for transitive M .

Claim 3.19. The ordering on Squareta is transitive.

Proof. Let ⟨s∗∗, c∗∗⟩ ≤ ⟨s∗, c∗⟩ ≤ ⟨s, c⟩. That conditions (i)–(iii) of Definition 3.18
hold for ⟨s∗∗, c∗∗⟩ and ⟨s, c⟩ can be proved as in Claim 3.3. Condition (iv) is clearly
transitive. We prove that condition (v) holds.

Fix ⟨i,M⟩, ⟨j,M⟩ ∈ dom(c). Let R ∈ c∗∗j (M) with R ⊇ cj(M) ̸= ∅.
If R ⊇ c∗j (M) then by condition (v) for ⟨s∗∗, c∗∗⟩ and ⟨s∗, c∗⟩ we have R ∈ c∗∗i (M)

and R ⊇ c∗i (M). The latter implies that R ⊇ ci(M).
If R ∈ c∗j (M) then by condition (v) for ⟨s∗, c∗⟩ and ⟨s, c⟩ we have R ∈ c∗i (M),

which implies R ∈ c∗∗i (M), and R ⊇ ci(M).
Suppose R ̸⊇ c∗j (M) and R ̸∈ c∗j (M). By linearity of c∗∗j (M) it follows that there

is U ∈ c∗j (M) with R ∈ U . Fix the least such, so that R ⊇ c∗j (M) ∩ U . Since
R ⊇ cj(M) we have U ⊇ cj(M). Hence by condition (v) for ⟨s∗, c∗⟩ and ⟨s, c⟩,
U ∈ c∗i (M) and U ⊇ ci(M). By coherence there is l so that c∗l (U) = c∗j (M) ∩ U ,
and k so that c∗k(U) = c∗i (M)∩U . By the coherence preservation condition we have
also c∗∗l (U) = c∗∗j (M)∩U and c∗∗k (U) = c∗∗i (M)∩U . By condition (v) for ⟨s∗∗, c∗∗⟩
and ⟨s∗, c∗⟩ at U we have R ∈ c∗∗k (U) and R ⊇ c∗k(U). It follows that R ∈ c∗∗i (M)
and R ⊇ c∗i (M) ∩ U ⊇ ci(M). �

For ⟨s, c⟩ ∈ Squareta and Q ∈ s define resQ(s, c) to be ⟨resQ(s), c′⟩ where
dom(c′) = dom(c) ∩ Q and c′(i,M) = c(i,M) ∩ Q. Then resQ(s, c) is a condi-
tion in Squareta, and ⟨s, c⟩ ≤ resQ(s, c), using the fact that c′(i,M) = c(i,M) for
countable M to see that the tail agreement condition holds trivially.

Lemma 3.20. Let ⟨s, c⟩ ∈ Squareta, let Q ∈ s, and let ⟨t, d⟩ ∈ Q∩Squareta extend
resQ(s, c). Then ⟨s, c⟩ and ⟨t, d⟩ are compatible. Moreover there is a condition ⟨r, b⟩
witnessing this so that r = s∪ t if Q is transitive, and r is the closure of s∪ t under
intersections if Q is countable.

Proof. For the most part this is similar to the proofs of Lemmas 3.4 and 3.12. The
straightforward adaptation of the constructions there produces ⟨r, b⟩ ∈ Squareta
which satisfies conditions (i)–(iv) of Definition 3.18 relative to ⟨s, c⟩ and ⟨t, d⟩.
The tail agreement condition (v) is also satisfied in all but one of the cases of the
construction, for the trivial reasons that it is either vacuous—in many of the cases
there are no new nodes of bi(M) above nodes of ci(M) or respectively di(M)—or
directly inherited from the same condition for ⟨s, c⟩ and ⟨t, d⟩.

The one exception, and the one case where we have to change the construction
from the previous lemmas, is the case of bottom nodes of residue gaps [Q ∩W,W )
of s in Q with sup(Q ∩W ∩ Ord) ∈ Limit(Ot) and c0(W ) ∩Q ̸= ∅. Let j be such
that cj(Q ∩W ) = c0(W ) ∩ Q. Such j exists by coherence and fullness, and it is
unique since the sets ci(Q ∩W ) are distinct. In the proof of Lemma 3.12 we set
bj(Q ∩W ) = d0(W ), and we do the same here.

For i ̸= j let b̄i(Q∩W ) be the value defined for bi(Q∩W ) in the proof of Lemma
3.12. Precisely this is ci(Q∩W )∪ dl(M) where M is the largest node of ci(Q∩W )
and l is such that cl(M) = ci(Q∩W )∩M . (If ci(Q∩W ) = ∅ we take b̄i(Q∩W ) = ∅
too.) We cannot set bi(Q ∩W ) to the same value here, as this would violate the
tail agreement condition at Q ∩W .
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Let A list the elements of bj(Q ∩ W ) = d0(W ) above the largest element of
cj(Q∩W ) = c0(W )∩Q. By the novelty jump condition, P ∈ A→ P ⊇ s∩Q∩W .
Since the largest node of b̄i(Q ∩W ) is a node of ci(Q ∩W ), hence an element of
s ∩ Q ∩W , it follows that b̄i ∪ A is ∈-linear for all i, with A forming its tail-end.
Set bi(Q ∩W ) = b̄i(Q ∩W ) ∪A for i ̸= j, instead of bi(Q ∩W ) = b̄i(Q ∩W ). It is
clear that with this new assignment the tail agreement condition holds at Q ∩W .

For each P ∈ A and each i ̸= j we can, by increasing the domain of b if necessary,
arrange that there is some k so that bk(P ) = bi(Q ∩W ) ∩ P = b̄i(Q ∩W ) ∪A ∩ P .
We can do this while maintaining the fact that bm(P ) = dm(P ) for m so that
⟨m,P ⟩ ∈ dom(d). It is then easy to check that coherence holds for these assignments
and the assignments in the previous paragraph. This completes the changes to the
construction for the case of bottom nodes of residue gaps. The other aspects of the
construction remain the same. �
Remark 3.21. For the assignments in the final paragraph of the proof of Lemma
3.20 it is important that we are allowed to expand the domain of b, meaning that
for P ∈ t we are allowed to have m so that ⟨m,P ⟩ ∈ dom(b) even though ⟨m,P ⟩ ̸∈
dom(d). It is for this reason that when requiring tail agreement we have to change
from �ω1,fin sequences to �ω1,ω sequences. The parallel of Lemma 3.20 would fail
if we required {m | ⟨m,P ⟩ ∈ dom(b)} = {m | ⟨m,P ⟩ ∈ dom(d)}.

Corollary 3.22. Squareta is strongly proper for S ∪ T , and hence preserves ω1

and ω2. Assuming conditions (ST6)–(ST9), for every ⟨t, d⟩ ∈ Squareta and every
W ∈ T there is ⟨t∗, d∗⟩ ≤ ⟨t, d⟩ with W ∈ t∗, and Squareta is ω2-c.c.

Proof. Similar to the combined results given by Corollary 3.5, Claim 3.6, and Corol-
lary 3.7, but using Lemma 3.20. �

The next lemma establishes a condition similar to the one in Lemma 3.15, but
stronger, dropping the requirement that resQ(s) has no countable nodes from the
hypothesis.

Lemma 3.23. Let s ∈ Pside, let Q ∈ s, and let ⟨t, d⟩ ∈ Q ∩ Squareta with t ⊇
resQ(s). Then there is ⟨r, b⟩ ≤ ⟨t, d⟩ with r ⊇ s.

Proof. Let r be the closure of s∪ t under intersections, define b(⟨i,M⟩) = d(⟨i,M⟩)
for ⟨i,M⟩ ∈ dom(d) with M countable, define b(⟨0,W ⟩) = d(⟨0,W ⟩) ∪ FW for
transitive W ∈ t with sup(W ∩Ord) ∈ Limit(Ot), where FW consists of the nodes
in {M∗ ∩W | M∗ ∈ r ∧W ∈ M∗} that do not belong to Q, define b(⟨0,W ⟩) so
as to satisfy fullness for transitive W ∈ s − t with sup(W ∩ Ord) ∈ Limit(Ot),
define b0(M) = ∅ if Ot is bounded in sup(M ∩ Ord), and finally, expanding the
domain of b as necessary, make sure that for every countable M ∈ r with sup(M ∩
Ord) ∈ Limit(Ot), every ∈-linear subset of M ∩ {P ∈ r | P is countable and
sup(P ∩Ord) ∈ Limit(Ot)} is equal to b(⟨i,M⟩) for a unique i. The last part uses
the fact that {i | ⟨i,M⟩ ∈ dom(b)} is allowed to be larger than {i | ⟨i,M⟩ ∈ dom(d)}
for countable M , and would not work with Squarefin. �
Lemma 3.24. Forcing with Squareta adds a �ta

ω1,ω sequence.

Proof. Let G be generic for Squareta and let X = {αM | M occurs in G}, where
αM = sup(M ∩ Ord). For α = αM ∈ X ∩ Limit(Ot), and i < ω, set Cα,i = {αP |
(∃⟨s, c⟩ ∈ G)(M ∈ s ∧ P ∈ ci(M))}. For α ∈ Limit(Ot) − X set Cα,i = ∅. By
genericity, Cα,i is defined for all i < ω if cof(α) = ω, and for i = 0 if cof(α) = ω1.
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As in the proof of Lemma 3.8, the sequence ⟨Cα,i | α ∈ Limit(Ot)⟩ is a coherent
sequence of closed sets with the property that Cα,0 is unbounded in α if α is a limit
point of Limit(Ot) of cofinality ω1.

In addition the current sequence has the following property of tail agreement:
For every α ∈ Limit(Ot) of countable cofinality, and every i, j < ω with Cα,i and
Cα,j non-empty, there is β < α so that Cα,i−β = Cα,j−β. To see this, fixM so that
α = αM (the case α ̸∈ X is clear) and fix ⟨s, c⟩ ∈ G with ⟨i,M⟩, ⟨j,M⟩ ∈ dom(c) and
ci(M), cj(M) non-empty. Let β = max{αU | U ∈ ci(M)∪ cj(M)}+1. Then by the
tail agreement condition, for every ⟨t, d⟩ ≤ ⟨s, c⟩ and every P with sup(P∩Ord) ≥ β
we have P ∈ di(M) ↔ P ∈ dj(M). So sup(P ∩Ord) ∈ Cα,i ↔ sup(P ∩Ord) ∈ Cα,j .

The sequence ⟨Cα,i | α ∈ Limit(Ot)⟩ can be converted to a �ta
ω1,ω sequence

⟨Dα | α < ω2⟩ using an argument as in the proof of Lemma 3.8, with slight
additional care to maintain the tail agreement property. Let φ : ω2 → Limit(Ot)
be an order preserving bijection. For α and i so that Cφ(α),i is cofinal in φ(α), set
Dα,i equal to the preimage of Cφ(α),i under φ. For α so that for all i, Cφ(α),i is
bounded in φ(α), pick a cofinal subset of α of order type ≤ ω and set Dα,i, for all
i, equal to this subset. These assignments may leave Dα,l undefined for some (but
not all) l. These l may be ignored, or defined values of Dα,i can be duplicated to
Dα,l. �

The principle �ta
ω1,ω can serve as a replacement for the stronger �ω1 in at least

some applications. The following example of this is relevant for some results in
Section 4. A sequence ⟨x̄α | α < ω2⟩ is an ascent path in a tree T of height ω2 if for
each α, x̄α is a sequence ⟨xαn | n < ω⟩ of distinct elements of the αth level of T , and
for every α < β < ω2, for all but finitely many n, xαn <T xβn. The notion is due to
Laver. Shelah-Stanley [20] constructed an ω2-Aronszajn tree with an ascent path,
assuming �ω1 , but �ta

ω1,ω suffices:

Fact 3.25 (By Shelah-Stanley [20]). The existence of a �ta
ω1,ω sequence implies the

existence of an ω2 Aronszajn tree with an ascent path.

Sketch of proof. This is a modification of the proof in Section 1 of [20]. We briefly
sketch the necessary changes. First note that a given �ta

ω1,ω sequence ⟨Cδ,k | δ <
ω2, k < ω⟩ can be adjusted to make sure that the sets C ′

δ,k = Limit(Cδ,k)−{δ} are
all disjoint from a fixed non-reflecting stationary set S, by discarding from each Cδ,k

all points γ so that some tail of a Cδ,k∩γ has ordertype below ν, for some fixed large
enough countable ν (and making standard adjustments to any Cδ,k which become
bounded as a result). Then modify the argument in Section 1 of [20], to construct
at each level i < ω2 not one candidate x̄i = ⟨xin | n < ω⟩ for the element of the
ascent path on that level, but ω candidates x̄i,k = ⟨xi,kn | n < ω⟩, with x̄i,k1 = x̄i,k2

if Ci,k1
= Ci,k2

, and with tail agreement, meaning that for every i, k1, k2, for all
sufficiently large n, xi,k1

n = xi,k2
n . Condition (1) of the construction of [20, Section

1] adapts naturally to this, modifying it to require that if i < j then for all k, l, for
all sufficiently large n, xi,kn ▹ xj,ln ∧{f(z) | z ∈ (xi,kn , xj,ln ]▹}∩λi = ∅. (We are using
the notation of [20].) Conditions (2)–(5) remain unaffected. Instead of one function
h we now construct ω functions hk. For each j ̸∈ S and each k < ω, hk(x, j) is
defined on all x ∈ Ti for i ∈ C ′

j,k, and assigns to each such x an element of Tj . For

each j, the functions hk(x, j) for k < ω satisfy the following tail agreement, which
matches the tail agreement of Cj,k: if i is large enough that Cj,k1 − i = Cj,k2 − i,
then hk1(x, j) and hk2(x, j) agree on all x ∈ Ti. Condition (7) of the construction
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remains essentially as it is, applying individually to each C ′
j,k. Conditions (6) and

(8) are modified to reflect the coherence of the �ta
ω1,ω sequence. In the case of

condition (6) this means that the conclusion of the condition, for i1 < i2 both in
C ′

j,k and x ∈ Ti1 , is that h
k(x, j) = hk(hl(x, i2), j) for all l so that Ci2,l = Cj,k ∩ i2.

(At least one such l exists by coherence.) In the case of condition (8) this means
that the conclusion, for i ∈ C ′

j,k, is changed to hk(xi,ln , j) = xj,kn for each l so that

Ci,l = Cj,k∩i. The construction itself proceeds largely as in [20], with some obvious
adaptations to fit the changes above. The various tail agreement conditions above
are important for the modified condition (1), which in turn is important in case
1 of the construction, namely the case that α ̸∈ S and C ′

α,k is bounded in α for

some (equivalently for all) k < ω. Finally, once the construction is over, each of
the sequences ⟨x̄α,kα | α < ω2⟩, for any choice of map α 7→ kα, gives an ascent path
in the tree T . The construction ensures that T is Aronszajn, and in fact weakly
special on T |S. �

The property of Squareta given by Lemma 3.23 can be viewed as a form of
properness for models of two sizes. But rather than state that every condition in
Squareta∩Q extends to a master condition for Q (in fact a strong master condition),
it strengthens the conclusion by obtaining a master condition for all nodes in a side
condition s that has Q as an element, while in return requiring in the hypothesis
that the side part of the starting condition in Q contains resQ(s). This property
allows showing that Squareta belongs to the classes of posets that can be iterated
using side conditions with nodes of three sizes, developed in Neeman [15]. Since the
corresponding forcing axioms there allow meeting ω2 dense sets, it follows that they
imply �ta

ω1,ω. The property of Squarefin given by Lemma 3.15 is weaker, placing
an additional constraint in the hypothesis, that resQ(s) has no countable nodes.
This is still sufficient to show that Squarefin belongs to some (though not all) of
the classes developed in [15], and hence that �ω1,fin follows from the corresponding
forcing axioms.

More precise details on this can be found in [15]. Here instead we will use the
properties of Squarefin and Squareta given by Lemmas 3.15 and 3.23 to show that
the posets belong to a variant of the class of ℵ1.5-.c.c. posets developed by Asperó-
Mota [1]. The following definition gives a simple adaptation of their class; the
special case where U = Pω(ω2), or equivalently the notion obtained by removing
the requirement Ni ∩ ω2 ∈ U from the hypothesis, is precisely Definition 1.1 of [1].

Definition 3.26. Let U ⊆ Pω(ω2). A poset P has the ℵ1.5-chain condition relative
to U if for every regular θ large enough that P ∈ H(θ), there is a clubD ⊆ Pω(H(θ)),
so that for every finite {Ni | i < n} ⊆ D with (∀i)Ni ∩ ω2 ∈ U , for every j < n
with sup(Nj ∩ ω1) minimal in the set {sup(Ni ∩ ω1) | i < n}, and for every p ∈ Nj ,
there exists q ≤ p which is a master condition for each of the models Ni.

Definition 3.27. The forcing axiom MA1.5
<λ(U) is the statement that for every P

with the ℵ1.5-chain condition relative to U , and every collection A of fewer than λ
dense subsets of P, there is a filter on P which meets every set in A. The forcing
axiom MA1.5

λ (U) is defined similarly, allowing λ dense sets. The special case when
U = Pω(ω2) gives the axioms MA1.5

<λ and MA1.5
λ of Asperó-Mota [1, Definition 1.5].

Fact 3.28 (By Asperó-Mota [1]). Suppose 2ℵ0 = ℵ1, κ > ω2 is regular, (∀µ <
κ)µℵ0 < κ, and ♢({α < κ | cof(α) ≥ ω1}) holds. Let U ⊆ Pω(ω2) be stationary.
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Then there exists a poset P, which is ω2-c.c. and proper relative to the class of
countable N so that N ∩ ω2 ∈ U (hence in particular cardinal preserving), and
forces that 2ℵ0 = κ and that MA1.5

<κ(U) holds.

Sketch of proof. Adapt the proof in Section 2 of [1], restricting the countable models
throughout the proof to ones whose intersection with ω2 belongs to U . The proof
involves fixing at the start a predicate T onH(θ) and working with models which are
elementary relative to T . Strengthen T to make sure that it codes U . The various
amalgamation lemmas then hold when restricted to models N with N∩ω2 ∈ U , and
the other proofs adapt easily to the same restriction. The adaption of Lemma 2.22
of [1] no longer establishes properness, but only properness relative to structures
whose intersection with ω2 belongs to U . Since U is stationary this is enough for
ω1 to be preserved. �

For any λ ≥ ω1, the axiom MA1.5
λ (U) implies that for every α < ω2, the set of

restrictions of elements of U to α contains a club, meaning that there is a club in
Pω(α) which is contained in {x∩α | x ∈ U}. The reason is that the forcing to add
such a club with finite conditions is ℵ1.5-c.c. relative to U . In particular the axiom
implies that U is stationary. But the axiom does not imply that U contains a club in
Pω(ω2). For example, we will below obtain the consistency of the axiom with U of
cardinality ω2 in a model where the continuum is greater than ω2. Since every club
subset of Pω(ω2) has cardinality at least the continuum, this combination implies
that U does not contain a club.

Definition 3.29. Let ψ : ω2 → Pω(ω2). A set U ⊆ Pω(ω2) is coherent relative to
ψ just in case that there is a club C ⊆ ω2, whose successor points all have cofinality
ω1, so that:

(1) For every x, y ∈ U , if sup(x) = sup(y) then x = y.
(2) For every x, y ∈ U , if sup(x) < sup(y) and C ∩ (sup(x), sup(y)) = ∅, then

x ∈ ψ′′y.
(3) For every x ∈ U , the set {γ ∈ C∩sup(x) | cof(γ) = ω1 and γ ∈ x} is cofinal

in the set {γ ∈ C ∩ sup(x) | cof(γ) = ω1}.
(4) For every x ∈ U and every α ∈ C of cofinality ω1, x ∩ α ∈ U .

We say that U is coherent if it is coherent relative to some ψ. The club C is said
to witness that U is coherent relative to ψ.

If U is stationary, then the conditions of Definition 3.29 imply in particular that
every element of U belongs to the range of ψ. To see this, fix x ∈ U , let β be the
least element of C above sup(x), and using the stationarity of U , find y ∈ U so
that sup(y ∩ β) > sup(x). By condition (4) of the definition, y ∩ β ∈ U . Now by
condition (2) of the definition, x ∈ ψ′′(y ∩ β).

It is clear that forcing with the poset Pside of Section 2 adds a coherent set,
namely the set of Q∩ω2 for countable nodes Q belonging to the generic filter. Here
we intend to work with a coherent U in the context of Fact 3.28, and since this
requires a model where (∀µ < θ)µℵ0 < θ, we cannot use Pside. Instead we use the
countably closed poset given by the next lemma.

Lemma 3.30. Suppose θ ≥ ω2 is regular and (∀µ < θ)µℵ0 < θ. In particular
θℵ0 = θ. Let ψ : θ → Pω(θ) be a bijection. Then there is a countably closed θ-c.c.
forcing extension which collapse all cardinals in the interval (ω1, θ), turning θ to
ω2 of the extension, and adds a stationary coherent set relative to ψ.
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Proof. Let Z be the set of λ < θ so that cof(λ) ≥ ω1 and ψ�λ is a bijection
from λ onto Pω(λ). By the lemma assumptions, Z is unbounded in θ. Let C =
Z∪Limit(Z). Since Z is ω1-closed, it is equal to the set of λ ∈ C so that cof(λ) ≥ ω1.

We use countable approximations to add U which is stationary and coherent
relative to ψ with witness C. Define the poset B to consist of countable u ⊆ Pω(θ)
so that u and C satisfy conditions (1)–(4) of Definition 3.29, ordered by reverse
inclusion, meaning that u∗ ≤ u iff u∗ ⊇ u. Since each of the conditions in Definition
3.29 involves only finitely many elements of u at a time, it is clear that B is countably
closed. Indeed if un, n < ω, is a descending sequence, then

∪
ui is a condition in B

extending each un.

Claim 3.31. Suppose M ≺ (H(θ);ψ,C) is countable, u ∈ B, and u ⊆ M . Then
there is u∗ ≤ u so that M ∩ θ ∈ u∗. In particular there are non-empty conditions
in B.

Proof. Let u∗ = u ∪ {M ∩ θ} ∪ {M ∩ λ | λ ∈ Z ∩M}. We verify the instances of
the conditions of Definition 3.29 for x, y ∈ u∗ which do not both belong to u. The
other instances are inherited from u.

No two elements of u∗ − u have the same supremum, nor does any of them have
a supremum in M . This secures the instances of condition (1) of Definition 3.29
with {x, y} ̸⊆ u. For every α < sup(M ∩ θ), M ∩ α = M ∩ λ for the least λ ≥ α
in M ∩ θ. If α belongs to C then by elementarity of M so does λ. If λ > α ∈ C
then cof(λ) ≥ ω1, otherwise by elementarity M is cofinal in λ, contradicting the
minimality of λ. It follows from this that u∗ satisfies conditions (3) and (4) of
Definition 3.29 at x =M ∩ θ, and similarly for all other x ∈ u∗ − u.

For any two distinct x, y ∈ u∗ − u, there is an element of Z between sup(x) and
sup(y). The same is true for x ∈ u∗ − u and y ∈ u ⊆ M with sup(y) > sup(x).
If x = M ∩ θ and y ∈ u then y ∈ M and hence y ∈ ψ′′x by elementarity of M .
Finally, if x = M ∩ λ for λ ∈ Z ∩M , y ∈ u, and sup(y) < sup(x), then y ⊆ λ,
hence by definition of Z there is ν < λ so that y = ψ(ν), and by elementarity of M
such ν can be found in M , so y ∈ ψ′′x. This establishes condition (2) of Definition
3.29. �

Claim 3.32. Let θ∗ > θ, let M∗ ≺ (H(θ∗);ψ,C,B) be countable, and let u ∈ B
belong to M∗. Then there is u∗ ≤ u which is a master condition for M∗ with
M∗ ∩ θ ∈ u∗.

Proof. Let Dn, n < ω, enumerate the dense subsets of B which belong to M∗.
Let u0 = u and working inductively fix un+1 ≤ un with un+1 ∈ M∗ ∩ Dn. Let
uω =

∪
un. Let u∗ be the extension of uω given by Claim 3.31 applied to uω and

M =M∗ ∩H(θ). �

For λ ∈ Z and u ∈ B, define resλ(u) = u ∩ Pω(λ). It is clear that resλ(u) ∈ B
and that u ≤ resλ(u).

Claim 3.33. Suppose λ ∈ Z, u, v ∈ B, v ⊆ Pω(λ), and v ≤ resλ(u). Then u, v are
compatible, and indeed u ∪ v ∈ B.

Proof. The only potential problems are with instances of conditions (1) and (2) of
Definition 3.29 involving x ∈ v−u and y ∈ u−v or vice versa. The conditions hold
in these instances since x ∈ v− u implies sup(x) < λ, x ∈ u− v implies sup(x) > λ
(using the assumption that v ⊇ resλ(u)), and λ ∈ Z. �
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Claim 3.34. Every condition in B is a strong master condition for every W ≺
(H(θ);ψ,C) which is transitive, countably closed, and bounded below θ. In partic-
ular B has the θ-chain condition.

Proof. Let λ =W ∩θ. Then cof(λ) ≥ ω1 by countable closure ofM , and ψ�λ : λ→
Pω(λ) is a bijection by the elementarity and countable closure of W , so λ ∈ Z. By
the countable closure ofW , B∩W is equal to B∩Pω(λ). Hence by Claim 3.33, every
condition u ∈ B is compatible with every v ∈ B ∩W which extends resλ(u) ∈ W .
In particular for every dense D ⊆ B ∩W there is v ∈ D compatible with u. This
establishes the strong properness in the claim. By the cardinal assumptions of
Lemma 3.30 there are stationarily many W as in the claim, and from this and the
strong properness it follows as in the proof of Corollary 3.7 that B has no antichains
of size θ. �

Let G be generic for B. Let U =
∪
{u | u ∈ G}. U is stationary by Claim

3.32 and genericity. By the definition of B, every countable subset of U satisfies
the conditions of coherence relative to ψ with witness C, and it follows from this
that U is coherent relative to ψ with witness C. The conditions of coherence imply
that for any successive λ, λ′ ∈ C, the set Y = {x ∈ U | λ < sup(x) < λ′} has
ordertype at most ω1 when ordered by sup(x). Hence

∪
Y has cardinality at most

ω1. Since U is closed under intersections with λ′, and stationary,
∪
Y contains λ′.

So all cardinals between ω1 and θ are collapsed to ω1. This completes the proof of
Lemma 3.30. �

Theorem 3.35. Relative to the consistency of ZFC, it is consistent with arbitrarily
large values of the continuum that MA1.5

<2ℵ0 (U) holds for a coherent U .

Proof. Start with a model of the GCH, pass to a countably closed forcing extension
adding a coherent stationary U using Lemma 3.30 applied at any regular θ ≥ ω2,
force further to add square by initial segments at any κ > θ, and then apply Fact
3.28 to force MA1.5

<2ℵ0 (U). The coherence of U is preserved since the definition of
coherence involves only bounded quantifiers. �

Theorem 3.36. The statement that MA1.5
ω2

(U) holds for a coherent U implies both
�ω1,fin and �ta

ω1,ω.

Proof. Fix a coherent U , relative to some ψ : ω2 → Pω(ω2), with witness C say, so
that MA1.5

ω2
(U) holds. In particular U is stationary. We will find S and T , satisfying

conditions (ST1)–(ST9), so that {M∩ω2 |M ∈ S} is equal to the restriction of U to
a club, this restriction is coherent relative to ψ, and this is witnessed by the closure
of {W ∩ ω2 | W ∈ T }. Using coherence we will then argue that every finite u ⊆ S
extends to a side condition s with min{N ∩ ω1 | N ∈ s} = min{N ∩ ω1 | N ∈ u}.
From this, using the properties of Squarefin(S, T ) and Squareta(S, T ) given by
Lemmas 3.15 and 3.23, we will show that both posets are ℵ1.5-c.c. relative to U .

We begin with a lemma showing that coherence is robust under restrictions to
clubs.

Lemma 3.37. (Assuming U ⊆ Pω(ω2) is stationary and coherent relative to ψ

with witness C.) Let f : ω<ω
2 → ω2, and let Ĉ ⊆ C − ω1 be club. Suppose every

successor α ∈ Ĉ is of cofinality ω1, closed under f , and closed enough that for
every x ∈ U with sup(x) < α, there exists ν < α so that ψ(ν) = x. Then there is a
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club E ⊆ Pω(ω2) whose elements are all closed under f so that U ∩ E is coherent

relative to ψ with witness Ĉ.

Proof. For each α ∈ Ĉ ∪ {0} fix a bijection ϕα : ω1 → β where β is the successor

of α in Ĉ ∪ {0}. For α ∈ ω1 − ω fix a bijection ϕα : ω → α. Define h : ω<ω
2 → ω2

through the following condition:

• h(0, n) = n+ 1 for n < ω.
• h(1, α) is the least ν so that ψ(ν) ∈ U and sup(ψ(ν)) = α if such ν exists.
• h(2, α, ξ) = ϕα(ξ) if ϕα(ξ) is defined.

• h(3, µ) is the largest α ≤ µ in Ĉ ∪ {0}.
• h(4, α, µ) is equal to the unique ξ < ω1 so that ϕα(ξ) = µ if such ξ exists.
• h(5, α, ξ) is the least ν so that ψ(ν) = ϕ′′αξ, if such ν exists and ϕ′′αξ ∈ U .

• If α ∈ Ĉ has cofinality ω then {h(6, α, n) | n < ω} is cofinal in α and

consists of successor points of Ĉ.
• h(⟨7⟩⌢a) = f(a).
• In all other cases, h takes value 0.

Let E be the club of x ∈ Pω(ω2) which are closed under h. Let Û = U ∩ E. We

claim that Û is coherent with witness Ĉ.
Condition (1) of Definition 3.29 for Û is immediate from the same condition for

U . The same is true with condition (4) for Û and Ĉ, because every α ∈ Ĉ is closed

under h. Condition (3) holds for Ĉ at all x which are closed under h because from

any µ ∈ x, the values h takes on tuples starting with 3 and with 6 give points of Ĉ
of cofinality ω1 cofinal in the set of such points below µ+ 1.

For condition (2), fix successive α < β ∈ Ĉ ∪ {0}, fix x, y ∈ Û , and suppose
α ≤ sup(x) < sup(y) ≤ β. Note that α ∈ y by closure of y and using the definition
of h on tuples starting with 3.

If sup(x) = α then since x ∈ range(ψ) and x is the unique element of U with
sup(x) = α, it follows that h(1, α) is defined and equal to the least ν so that
ψ(ν) = x. Then ν ∈ y by closure and hence x ∈ ψ′′y.

If sup(x) > α, then α belongs to both x and y. By closure of x and y, using the
definition of h on tuples starting with 2 and 4, it follows that x = ϕ′′αζ and y = ϕ′′αξ
where ζ = x ∩ ω1 and ξ = y ∩ ω1. Both ξ and ζ are ordinals, using the closure of x
and y under the successor function on ω and under the functions ϕδ for δ ∈ ω1−ω.
Since ψ′′

αζ = x ∈ U , h(5, α, ζ) gives the least ν so that x = ψ(ν). ζ must be smaller
than ξ, since otherwise y ⊆ x contradicting the fact that sup(x) < sup(y). So ζ ∈ y.
It follows that h(5, α, ζ) ∈ y, and hence x ∈ ψ′′y. �

Lemma 3.38. (Assuming U ⊆ Pω(ω2) is stationary and coherent relative to ψ
with witness C.) There is K, S, T , and a club E ⊆ Pω(ω2), so that the following

conditions hold where Û = U ∩ E:

(1) K, S, and T satisfy conditions (ST1)–(ST9).

(2) {M ∩ ω2 |M ∈ S} is exactly equal to Û .

(3) Û is coherent relative to ψ and this is witnessed by the closure of {W ∩ω2 |
W ∈ T }.

Proof. Let Ξ be a relation on ω2 which codes U , ψ, and C. Let K = Lω2 [Ξ]. Let T
be defined as in condition (ST6). Let Ĉ be the closure of {W ∩ω2 |W ∈ T }, namely
the set of α < ω2 of cofinality ω1 so that Lα[Ξ] is elementary in (K;∈,Ξ), plus the
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countable cofinality limits of such α. Let φ : ω<ω
2 → K be a Σ1 Skolem function

for K, and fix f : ω<ω
2 → ω2 so that x ⊆ ω2 is closed under f iff ω2 ∩ φ′′x = x and

φ′′x ≺ (K;∈,Ξ). Let E be given by Lemma 3.37. Define S = {φ′′x | x ∈ U ∩ E}.
It is easy to check that these assignments satisfy the requirements of the lemma.
We only note that condition (ST4) for S and T uses the closure of U ∩ E under

intersections with elements of Ĉ of cofinality ω1, and that the stationarity of S
required for condition (ST5) is a consequence of the stationarity of U . �

Lemma 3.39. Suppose K, S, T , and Û are as in Lemma 3.38. Then for every
finite u ⊆ S there exists s ∈ Pside(S, T ) so that s ⊇ u. Moreover, for every transitive
W ∈ s there exists Q ∈ u so that W ∈ Q, and for every countable M ∈ s there
exists Q ∈ u and W ∈ Q ∩ T so that M = Q ∩W .

Proof. This is a direct consequence of the coherence of Û . Work by induction
on max{sup(Q ∩ ω2) | Q ∈ u}. Note that for every Q,Q′ ∈ u, if Q ̸= Q′ then
sup(Q ∩ ω2) ̸= sup(Q′ ∩ ω2). This is because Q is determined from Q ∩ ω2 by
condition (ST8) and Q ∩ ω2 is determined from sup(Q ∩ ω2) by condition (1) of
Definition 3.29. Let Qi, i < n, enumerate the elements of u, ordered so that
sup(Qi ∩ ω2) < sup(Qi+1 ∩ ω2).

If Qi ∈ Qi+1 for every i, then u itself is a side condition and there is nothing
further to prove. Suppose then that there exists i so thatQi ̸∈ Qi+1, and let k be the
largest such. Let Ξ be as in conditions (ST6)–(ST8). By elementarity of Qk+1, and
since Qk is the Σ1 hull of Qk ∩ω2 in (K;∈ Ξ), it must be that Qk ∩ω2 ̸∈ Qk+1, and
hence using elementarity relative to ψ, Qk∩ω2 ̸∈ ψ′′(Qk+1∩ω2). Since Qk∩ω2 and

Qk+1 ∩ ω2 both belong to Û which is coherent with witness Ĉ equal to the closure

of {W ∩ ω2 | W ∈ T }, it follows by condition (2) of Definition 3.29 that Ĉ has
elements between sup(Qk ∩ ω2) and sup(Qk+1 ∩ ω2). Let α be the least one. Then

in particular α is a successor point of Ĉ, and hence has cofinality ω1. By condition
(3) of Definition 3.29 there is γ ≥ α with γ ∈ Ĉ, cof(γ) = ω1, and γ ∈ Qk+1 ∩ ω2.
Let W be the Σ1 hull of γ in (K;∈,Ξ). Then W ∈ Qk+1 by elementarity, and

W ∈ T by definition of Ĉ and condition (ST6). Since Qk+1 ∈ Qk+2 ∈ . . . Qn−1 by
maximality of k, W ∈ Qi for all i ≥ k + 1. By condition (ST4) then Qi ∩W ∈ S
and Qi ∩W ∈W , for i ≥ k + 1.

Let ū = {Qi | i ≤ k} ∪ {Qi ∩ W | i ≥ k + 1}. Then ū is a finite subset of
S, and ū ⊆ W , hence in particular max{sup(Q ∩ ω2) | Q ∈ ū} < sup(Qk+1 ∩
ω2) ≤ max{sup(Q ∩ ω2) | Q ∈ u}. It follows by induction that there is a side
condition s̄ ⊇ ū, satisfying the requirements of the lemma relative to ū. Since
ū ⊆ W these requirements imply in particular that s̄ ⊆ W . Using the fact that
W ∈ Qk+1 ∈ Qk+2 ∈ · · · ∈ Qn−1, and that Qi ∩W ∈ ū ⊆ s̄ for all i ≥ k + 1, it is
easy now to check that s̄ ∪ {W,Qk+1, . . . , Qn−1} is a side condition, and satisfies
the requirements of the lemma for u. �

Using Lemmas 3.38 and 3.39 we can now complete the proof of Theorem 3.36.
Let K, S, T , E be as in Lemma 3.38. Let Ξ witness conditions (ST6)–(ST8).
It is enough to show that Squarefin(S, T ) and Squareta(S, T ) have the ℵ1.5-chain
condition relative to U . Then noting that the proofs of Lemmas 3.14 and 3.24 only
require a filter meeting a rich enough collection of ω2 dense sets, it follows under
MA1.5

ω2
(U) that there exist �ω1,fin and �ta

ω1,ω sequences.
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Fix θ > ω2. Let D ⊆ Pω(H(θ)) be a club so that every N ∈ D is elementary in
(H(θ);K,Ξ, E). Fix a finite {Ni | i < n} ⊆ D, satisfying (∀i < n)Ni ∩ ω2 ∈ U . Fix
j < n such that Nj ∩ ω1 is minimal in {Ni ∩ ω1 | i < n}. We have to prove that
every condition in Nj ∩ Squarefin(S, T ) extends to a master condition for all Ni,
and similarly with Squareta(S, T ).

Let Qi = Ni ∩ K, and let xi = Qi ∩ ω2 = Ni ∩ ω2. Then xi ∈ E by the
elementarity of Ni, and since Ni ∩ ω2 ∈ U it follows that xi ∈ Û = U ∩ E. By the
conditions in Lemma 3.38 there is M ∈ S with M ∩ ω2 = xi. By condition (ST8)
it must be that M is the Σ1 hull of xi in (K;∈,Ξ), and hence by the elementarity
of Qi it must be that M = Qi. So Qi ∈ S for each i.

By Lemma 3.39 there is a side condition s containing {Qi | i < n}, and moreover
every countable node in s is the intersection of some Qi with a transitive node. In
particular, min{Q ∩ ω1 | Q ∈ s} = min{Ni ∩ ω1 | i < n}, and hence Qj ∩ ω1 is
minimal in {Q ∩ ω1 | Q ∈ s}. This in turn implies that resQj

(s) has no countable
nodes.

Fix now any condition ⟨t, d⟩ ∈ Nj ∩ Squarefin. By Corollary 3.13 and since
resQj (s) has only transitive nodes, we may, extending ⟨t, d⟩ if necessary, but doing
this inside the elementary Nj , assume that t ⊇ resQj (s). Now by Lemma 3.15 there
is ⟨r, b⟩ extending ⟨t, d⟩ with r ⊇ s. By Lemma 3.12 then ⟨r, b⟩ is a strong master
condition for every Q ∈ s. Since Ni ∩K ∈ s for each i, it follows in particular that
⟨r, b⟩ is a master condition, in fact a strong master condition, for each Ni.

The proof for Squareta is similar, but using Lemma 3.23, which is stronger than
Lemma 3.15. This completes the proof of Theorem 3.36. �

The hypothesis in Theorem 3.36 combines two elements. One is the axiom
MA1.5

ω2
(U), the other is the coherence of U . We end this section by showing that

neither of these elements by itself implies �ω1,fin and �ta
ω1,ω, or even for that matter

�ω1,ω. We will also comment on the question of whether Theorem 3.36 can be
improved to give �ω1 .

Claim 3.40. Let τ ≤ κ be regular cardinals, with κ ≥ ω1. Suppose that for every
club E ⊆ P<κ(κ

+) there is an ordinal η, limit ordinals λξ < κ+ of cofinality κ, and
sets xξι ∈ E, for ξ < τ and ι ≤ η, so that:

(1) For every ξ and ι, λξ ∈ xξι .
(2) For every ξ and ι < η, sup(xξι ∩ λξ) < sup(xξη ∩ λξ).
(3) For every ξ, ζ, and ι, sup(xξι ∩ κ) = sup(xζι ∩ κ).
(4) For every ξ and ζ, sup(xξη ∩ λξ) = sup(xζη ∩ λζ).
(5) For every ξ and ζ, there exists ι < η so that sup(xξι ∩ λξ) ̸= sup(xζι ∩ λζ).

Then �κ,<τ fails.

Proof. Suppose for contradiction that C⃗ = ⟨Cα,i | α < κ+, i < nα⟩, where nα < τ
for each α, is a �κ,<τ sequence. Let E consist of the x ∈ P<κ(κ

+) which are
elementary in κ+ relative to predicates for the successor function on κ and for the
graph of the function sending α < κ+ and δ < κ to the δth element of Cα,0 in
ordertype. Let η, λξ, and xξι satisfy the conditions of the claim for the club E. Let
α be the common value of sup(xξη ∩ λξ), given by condition (4). By elementarity

of xξη and since λξ ∈ xξη, α ∈ Limit(Cλξ,0) for every ξ. By elementarity of xξι ,

sup(xξι ∩ λξ) is the διth element of Cλξ,0, where δι < κ is the common value of

sup(xξι ∩ κ) over ξ < τ , given by condition (3). By coherence, for every ξ there
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exists some jξ < nα so that Cα,jξ = Cλξ,0 ∩α. Since sup(xξι ∩λξ) < α by condition

(2), it follows that for every ι < η, sup(xξι ∩ λξ) is the διth element of Cα,jξ . Then

by condition (5), the sets Cα,jξ , for ξ < τ , are distinct. Hence ξ 7→ jξ injects τ into
nα < τ , a contradiction. �

It is easy to obtain objects satisfying the conditions in Claim 3.40 if κ+ is replaced
by a greater cardinal θ. If θ is Mahlo then one can do this in a way that persists
to certain generic extensions where θ becomes κ+. Claim 3.40 can then be used in
the generic extensions to rule out � principles. We will follow this approach in the
next theorem to show that the existence of a stationary coherent set is compatible
with failure of �ω1,ω, and in Remark 3.47 to show that the posets Squarefin and
Squareta need not add �ω1,n sequences for any finite n.

Theorem 3.41. (Assuming a Mahlo cardinal.) The existence of a coherent U does
not imply �ω1,ω.

Proof. Let θ be Mahlo. Let ψ : θ → Pω(θ) be a bijection. Let B be the poset
used in the proof of Lemma 3.30. Let Z be as in the proof of the lemma, that is
Z = {λ < θ | cof(λ) ≥ ω1 and ψ�λ is a bijection onto Pω(λ)}. Let C be the set of
cardinals τ so that |H(τ)| = τ .

In the extension by B, ω2 = θ and there is a coherent set. It is enough then to
show that �ω1,ω fails in the extension. For this in turn it is enough to establish the

conditions in Claim 3.40 for τ = κ = ω1. Fix a name Ė for a club in Pω(θ). Fix a
condition u0 ∈ B. We will find a generic G for B with u0 ∈ G, so that in V [G] the

conditions in Claim 3.40 can be satisfied for Ė[G].

Fix a name ḟ for a function from θ<ω into θ so that Ė is forced to be the set
of countable x closed under ḟ . Let S be the set of countable y ⊆ H(θ) elementary
relative to a wellordering of H(θ), the poset B, the map ψ, and the relation u 
ḟ(a) = µ, with u0 ∈ y. By elementarity and since B is θ-c.c., for every y ∈ S and
every a ∈ y, there is D ∈ y which is a maximal antichain of conditions forcing
values for ḟ(a). Thus any master condition for y ∈ S forces that y ∩ θ belongs to

Ė.

Claim 3.42. There is a regular λ ∈ Limit(Z ∩C), and M ∈ S elementary relative
to S, with λ ∈ M , so that for cofinally many λ∗ < θ, there is M∗ ∈ S and an
isomorphism φλ,λ∗ : Mλ → Mλ∗ which respects S and B, maps λ to λ∗, and is the
identity on elements of H(λ).

Proof. For each regular λ ∈ Limit(Z ∩C) fix a countable Mλ ⊆ H(θ) satisfying the
elementarity in the claim with λ ∈M . Let Dλ be the elementary diagram of Mλ in
a language with predicates for S and B, a constant for λ, and additional constants
for all elements of Mλ ∩ H(λ). Dλ and Mλ ∩ H(λ) can be coded by a countable
subset of H(λ), hence by an element of λ since λ ∈ Z ∩ C. Since θ is Mahlo, Mλ

is defined on stationarily many λ < θ. By a pressing down argument there is a
stationary set Y of regular λ ∈ Limit(Z ∩ C) on which Mλ is fixed. Then for any
λ, λ∗ ∈ Y there exists an isomorphism from Mλ to Mλ∗ which respects B and S,
maps λ to λ∗, and fixes elements of H(λ). Since Y is unbounded in θ this proves
the claim. �
Claim 3.43. For every regular λ ∈ Limit(Z ∩ C) and every countable u, there
exist yl ∈ S and τl ∈ yl ∩ λ ∩ Z ∩ C, for l ∈ {0, 1}, so that u ⊆ y0, y1, λ, τl ∈ yl,
τ1 > sup(y0 ∩ λ), and y0 ∩H(τ0) = y1 ∩H(τ1).
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Proof. Similar to the proof of Claim 3.42, and in fact one can further arrange that
there is an isomorphism from y0 onto y1 which fixes elements of H(τ0) and maps
τ0 to τ1. Note that since the proof involves a pressing down argument with a map
that assigns to each τ a countable subset of H(τ), it is important that λ is regular
and belongs to Limit(Z ∩ C). �

Work with λ and M given by Claim 3.42. Let yn,l and τn,l, for n < ω and
l ∈ {0, 1}, be given by inductive applications of Claim 3.43, arranging that u0
belongs to each of y0,0, y0,1, that yn,0, yn,1 both belong to each of yn+1,0, yn+1,1,
and that the nth element in some fixed enumeration of M in ordertype ω belongs
to each of yn+1,0, yn+1,1. Using the elementarity of M , choose yn,l which belong to
M . Then

∪
n<ω yn,0 =

∪
n<ω yn,1 =M .

Claim 3.44. There exists us ∈ B ∩M , for s ∈ 2<ω, so that:

(1) us is a master condition for each of yi,s(i), i < lh(s).
(2) If s ⊇ t then us ≤ ut. u∅ = u0.
(3) If lh(s) ≤ n then us belongs to both yn,0 and yn,1.
(4) If lh(s) = lh(t) then resλ(us) = resλ(ut).

Proof. Work by induction on lh(s). For the base case, set u∅ = u0. Suppose
inductively that us have been defined for s of length n. Let ⟨tj , Ej⟩ enumerate
all pairs ⟨t, E⟩ where lh(t) = n + 1 and E is a dense subset of B which belongs
to yn,t(n). For t ∈ 2n+1, working by simultaneous induction on j, we construct

conditions vtj ∈ yn,t(n), w
0
j ∈ yn,0, and w

1
j ∈ yn,1, maintaining inductively that:

(i) resλ(v
t
j) = w

t(n)
j .

(ii) resτn,0(w
0
j ) = resτn,1(w

1
j ).

Set vt0 = ut�n to begin. By condition (4) of the claim, resλ(ut�n) is independent
of t. Set w0

0 and w1
0 equal to the constant value of resλ(ut�n) for t ∈ 2n+1. By

condition (3), w0
0 = w1

0 belongs to both yn,0 and yn,1. Since yn,0 ∩ yn,1 ∩H(λ) =
yn,0 ∩H(τn,0) = yn,1 ∩H(τn,1) it follows that resτn,0(w

0
0) = w0

0 = w1
0 = resτn,1(w

1
0).

For the inductive step, suppose the conditions above hold for j. We define vtj+1,

w0
j+1, and w

1
j+1.

Suppose for definitiveness that tj(n) = 0. The case that tj(n) = 1 is similar.

Let v
tj
j+1 be some extension of v

tj
j in yn,0 meeting Ej . Let w0

j+1 = resλ(v
tj
j+1). For

t ∈ 2n+1 with t(n) = 0 and t ̸= tj , set v
t
j+1 = vtj ∪w0

j+1. This is a condition in B by

Claim 3.33 applied at λ, since w0
j+1 ≤ w0

j = resλ(v
t
j), and this same computation

also implies resλ(v
t
j+1) = w0

j+1.

Set w1
j+1 = w1

j ∪ resτn,0(w
0
j+1). This is a condition in B by Claim 3.33 applied

at τn,1, since resτn,0
(w0

j+1) ≤ resτn,0
(w0

j ) = resτn,1
(w1

j ) and since resτn,0
(w0

j+1) ∈
yn,0 ∩ H(τn,0) = yn,1 ∩ H(τn,1) ⊆ H(τn,1). These computations also show that
w1

j+1 ∈ yn,1 and that resτn,1(w
1
j+1) = resτn,0(w

0
j+1). For t ∈ 2n+1 with t(n) = 1,

set vtj+1 = vtj ∪ w1
j+1. This is a condition in B by Claim 3.33 applied at λ, since

w1
j+1 ≤ w1

j = resλ(v
t
j), and this same computation also implies that resλ(v

t
j+1) =

w1
j+1. This completes the inductive construction of vtj , w

0
j , and w

1
j for all j.

Now for each t ∈ 2n+1 set vt =
∪

j<ω v
t
j . Set w0 =

∪
j<ω w

0
j , and set w1 =∪

j<ω w
1
j . Since yn,0 and yn,1 both belong to each of yn+1,0 and yn+1,1, we could

have picked the enumeration ⟨tj , Ej⟩ used above to be an element of both yn+1,0

and yn+1,1. Then by elementarity the entire construction of the previous paragraph
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can be done in the intersection of these sets, so that vt, w0, and w1 all belong to
both yn+1,0 and yn+1,1.

By construction vt extends ut�n, vt ⊆ yn,t(n), and vt meets all dense subset of

B in yn,t(n). Again by construction, resλ(v
t) = wt(n), so in particular wl ⊆ yn,l for

l ∈ {0, 1}, and resτn,0(w
0) = resτn,1(w

1).

Set w = w0 ∪w1. This is a condition in B by Claim 3.33 applied at τn,1 with w1

standing for u, since w0 ⊆ yn,0 ∩ λ ⊆ H(τn,1) and w
0 ≤ resτn,0(w

0) = resτn,1(w
1).

Set finally ut = vt ∪w. This is a condition in B by Claim 3.33, with residue at λ
equal to w (for all t of length n+1), since w ≤ wt(n) = resλ(v

t). This completes the
induction on length that constructs the conditions us witnessing Claim 3.44. �

Let wn be the common value of resλ(us) over s ∈ 2<ω of length n. Let w =∪
n<ω wn. Let G be generic for B with w ∈ G, and hence in particular u0 ∈ G.

It remains to prove that in V [G] we can find objects satisfying the conditions in

Claim 3.40 for Ė[G].

Claim 3.45. For every r ∈ 2ω there exists λr < θ of cofinality ω1 in V [G], and

xri ∈ Ė[G] for i < ω, so that λr ∈ xri and xri ∩ λr = yi,r(i) ∩ λ.

Proof. Fix p ∈ G extending w. We will find p∗ ≤ p forcing the existence of λr and
xri . This is enough to prove the claim.

Let λ∗, M∗, and φλ,λ∗ be given by Claim 3.42, with λ∗ large enough that p ∈
H(λ∗). Let q =

∪
n<ω ur�n. Let q∗ = φ′′

λ,λ∗q =
∪

n<ω φλ,λ∗(ur�n). Since φλ,λ∗

sends λ to λ∗ and is the identity on elements of H(λ), resλ∗(q∗) = resλ(q) =∪
n<ω resλ(ur�n) =

∪
n<ω wn = w. Since p ≤ w and p ∈ H(λ∗) it follows by Claim

3.33 that p and q∗ are compatible. Let p∗ witness this.
By elementarity of φλ,λ∗ , and since q is a master condition for each of the models

yi,r(i), q
∗ is a master condition for each of the models φλ,λ∗(yi,r(i)). Setting xri =

φλ,λ∗(yi,r(i))∩θ and using the fact that φλ,λ∗(yi,r(i)) ∈ S it follows that q∗  xri ∈ Ė.
Since φλ,λ∗ maps λ to λ∗ and fixes elements of H(λ), and since λ ∈ yi,r(i), we have
further that xri ∩ λ∗ = yi,r(i) ∩ λ and λ∗ ∈ xri . �

Now let rξ, ξ < ω1, list distinct elements of 2ω. Let λξ = λr
ξ

, xξi = xr
ξ

i for

i < ω, and xξω =
∪

i<ω x
ξ
i . Using the fact that xri ∩ λr = yi,r(i) ∩ λ it is then easy

to check λξ and xξi satisfy the conditions in Claim 3.40 in V [G] with τ = κ = ω1.
The key points are that sup(xξω ∩ λξ) is equal to sup(M ∩ λ) independently of ξ,

that sup(xξi ∩ κ) is equal to either sup(yi,0 ∩ κ) or sup(yi,1 ∩ κ) but the two are

the same since κ < τ0, τ1, and that sup(xξi ∩ λξ) is equal to sup(yi,rξ(i) ∩ λ). Since
sup(yi,0 ∩ λ) < τi,1 < sup(yi,1 ∩ λ), the last point implies that for ξ ̸= ζ there

exists i so that sup(xξi ∩ λξ) ̸= sup(xζi ∩ λζ), specifically any i so that rξ(i) ̸= rζ(i).
Through a use of Claim 3.40, this completes the proof of Theorem 3.41 �

Remark 3.46. Let θ be Mahlo, let P = Pside(S, T ) where T consists of all count-
ably closed H(λ) ≺ H(θ) and S consists of all countable x ≺ H(θ), and let G
be generic for P. Let S ′ and T ′ be defined from G as indicated in Section 2
so that S ′ and T ′ satisfy conditions (ST1)–(ST9). For any club C ⊆ θ and
any club Y ⊆ Pω(H(θ)), using Claim 3.42 and 3.43, one can find M,M∗ ∈ Y ,
y0, y1 ∈ Y ∩M , λ ∈ C ∩ y0 ∩ y1, λ∗ ∈ M∗ ∩ C, τ0 ∈ y0 ∩ C ∩ λ, τ1 ∈ y1 ∩ C ∩ λ,
and φ : M → M∗, so that τ1 > sup(y0 ∩ λ), y0 ∩ H(τ0) = y1 ∩ H(τ1), τ0, τ1 have
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uncountable cofinality, λ, λ∗ are inaccessible, λ∗ > sup(M ∩ θ), and φ is an iso-
morphism sending λ to λ∗ and fixing all elements of H(λ). Choosing C and Y so
that (∀ρ ∈ C)H(ρ) ≺ H(θ) and (∀x ∈ Y )x ≺ H(θ), it is easy to check that s =
{y0 ∩ y1 ∩H(λ),H(τ0), y0 ∩H(λ),H(τ1), y1 ∩H(λ), H(λ), y0,M,H(λ∗), φ(y1),M

∗}
is then a condition in P, with its nodes arranged in the order listed. By Lemma 2.3,
s is compatible with any u which belongs to y0∩y1∩H(λ) = y0∩H(τ0) = y1∩H(τ1).
It follows by genericity that objects as above can be found so that s ∈ G. One can
arrange, through choice of the clubs C and Y and strong properness, that the nodes
of s are sufficiently closed in V [G] that the countable nodes in s belong to S ′, and
the transitive nodes in s are limits of transitive nodes in T ′. The nodes of s then
give rise to the configuration mentioned in Remark 3.17, when setting M0 = y0,
M1 = M , P0 = φ(y1), P1 = M∗, N = H(λ), and W = H(λ∗). It follows by the
remark that the parallel of Lemma 3.15 fails for the poset Square(S ′, T ′) in V [G].

Remark 3.47. Continuing with the objects in Remark 3.46, note that by Lemma
3.15, every condition ⟨t, d⟩ ∈ Squarefin(S ′, T ′)∩y0∩y1∩H(λ) extends to a condition
⟨r, b⟩ ∈ Squarefin(S ′, T ′) with r ⊇ s. Letting H be generic for Squarefin(S ′, T ′) over
V [G] it follows using a density argument that s as in Remark 3.46 can be found
with all its nodes belonging to H. Using strong properness and restricting the clubs
C and Y in Remark 3.46 it follows further that for any club E ⊆ Pω(H(θ))V [G∗H],
one can find such s with all its countable nodes in E. By Claim 3.40, with κ = ω1

and τ = 2, this implies that �ω1 fails in V [G ∗H]. A similar argument with more
nodes (but still finitely many, as conditions in Pside(S, T ) and Squarefin(S ′, T ′) are
required to be finite) can be used to show that for every n < ω, �ω1,n fails in
V [G ∗ H]. The same arguments work with Squareta(S ′, T ′), using Lemma 3.23.
Thus, with V [G], S ′, and T ′ as in Remark 3.46, for every n < ω, the posets
Squarefin(S ′, T ′) and Squareta(S ′, T ′) force the negation of �ω1,n.

Abstractly the only consequence of Lemmas 3.15 and 3.23 used here for the
posets Squarefin and Squareta in V [G] is that for every large enough θ∗ there is a
club D ⊆ Pω(H(θ∗))V [G] so that for every finite s∗ ⊆ D, if {U ∩ H(θ) | U ∈ s∗}
extends to s ∈ Pside(S ′, T ′) through only the addition of transitive nodes and closure
under intersections, then every condition p ∈

∩
s∗ extends to a master condition

for all U ∈ s∗. Any poset Q with this property forces the failure of �ω1,n, for all
n < ω, over V [G].

Claim 3.48. Suppose that for every club E ⊆ Pω(ω2) there exists λ < ω2 of
uncountable cofinality, and x, z ∈ E, so that λ ∈ z, sup(z ∩ λ) ∈ x, and x ∩ z is
bounded below sup(z ∩ λ). Then �ω1,ω fails.

Proof. Suppose for contradiction that C⃗ = ⟨Cα,i | α < ω2, i < ω⟩ is a �ω1,ω

sequence. For each α of cofinality ω, each of the sets Cα,i has countable ordertype,
and hence

∪
i<ω Cα,i is countable. Let h : ω2 × ω → ω2 be a function so that for

every α of countable cofinality {h(α, i) | i < ω} ⊇
∪

i<ω Cα,i. Let E consist of
the countable x ⊆ ω2 which contain ω, and are closed under h, under the function
which maps α, i, ξ to the ξth element of Cα,i, and under the function which maps
α, i, γ to the least ξ so that the ξth element of Cα,i is greater than γ. Let λ, x,
and z be as in the claim, for the club E. Let α = sup(z ∩ λ) < λ. By the closure
of z and since λ ∈ z, α is a limit point of Cλ,0 and z includes a cofinal subset of

Cλ,0∩α. By the coherence of C⃗ there is n < ω so that Cλ,0∩α = Cα,n. Since α ∈ x
it follows by the closure of x under h that Cλ,0 ∩ α ⊆ x. But then since z contains
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a cofinal subset of Cλ,0 ∩ α it follows that z ∩ x is cofinal in α, contradicting the
conditions in the claim. �
Theorem 3.49. (Assuming a measurable cardinal.) The axiom MA1.5

<2ℵ0 , with

arbitrarily large value for 2ℵ0 , does not imply �ω1,ω.

Proof. Let (†) denote the following strengthening of Chang’s conjecture, taken from
condition (2) in Theorem 2.5 of Shelah [19, Chapter XII]: for every large enough
regular θ, for every wellordering < of H(θ), for every countable M ≺ (H(θ);∈, <),
and for every α < ω2, there exists a countableM∗ ≺ (H(θ);∈, <) so thatM∗ ⊇M ,
M∗ ∩ ω1 = M ∩ ω1, and M

∗ ∩ ω2 ̸⊆ α. We will use (†) to obtain models as in the
hypothesis of Claim 3.48, and then use a strengthening of properness for the poset
of Asperó-Mota [1] to ensure the models remain sufficiently closed when forcing to
obtain MA1.5

<2ℵ0 . The next two facts give (†) and the necessary strengthening of
properness.

Fact 3.50 (By Shelah [19]). Let τ be measurable. Let G be generic for Col(ω1, <τ).
Then (†) holds in V [G].

Sketch of proof. This is Conclusion 2.8 of [19, Chapter XII]. The proof in [19] in-
volves winning strategies in a certain game, and this proof has other applications,
for example in Todorcevic [26, Section 2]. But for us only the end principle is rel-
evant, and it can be obtained directly through the following argument. The direct
proof has its own applications, for example as a starting point for the variant in
Sakai [18].

Let θ > 22
τ

, <, M , and α be as in the hypothesis of (†), interpreted in V [G].

Then τ = ω
V [G]
2 ∈ M , and α < τ . Let K be generic for Col(ω1, τ

+) over V [G],
chosen using countable closure to contain a master condition for M . Then M [K]
is elementary in (H(θ)V [G∗K];∈, <) and M [K] ∩ ω1 = M ∩ ω1. In V [G ∗K] there
is a measure over PV [G](τ), and by elementarity there exists such a measure µ
in M [K]. Let π : V [G] → V ∗[G∗] be the ultrapower embedding by µ. By the
elementarity ofM [K] and the definability of π from µ, the Skolem hull of {τ}∪π′′M
in π((H(θ)V [G];∈, <)) is contained inM [K]. This hull then witnesses the conclusion
of (†) for π(M) and α = π(α). By elementarity of π a witness for the conclusion of
(†) for M and α then exists in V [G]. �

When we talk about Skolem hulls in (H(θ);∈, <), in the proof of Fact 3.50
and further below, we mean the closure under functions which select <-minimal
witnesses to true existential formulas in (H(θ);∈, <).

Fact 3.51 (By Asperó-Mota [1]). Suppose 2ℵ0 = ℵ1, κ > ω2 is regular, (∀µ <
κ)µℵ0 < κ, and ♢({α < κ | cof(α) ≥ ω1}) holds. Let ⟨Pα | α ≤ κ⟩ be the sequence
of posets defined in Section 2.2 of Asperó-Mota [1] (or as modified for Fact 3.28),
so that in the extension by P = Pκ, the continuum is κ and MA1.5

<2ℵ0 holds (or

MA1.5
<2ℵ0 (U) holds, if working as in Fact 3.28). Then there exists T ⊆ H(κ) so that

for every large enough regular θ, for every finite set {N∗
i | i < m} of countable

subsets of H(θ), and for every p ∈ P∩
∩

i<mN∗
i , if {N∗

i ∩H(κ) | i < m} is a partial
T -symmetric system in the sense of [1, Definition 2.2], then there is q ≤ p which is
a master condition for all the models N∗

i , i < m.

Sketch of proof. This follows from the proof of Lemma 2.2 of [1], starting with
a finite set of models {N∗

i | i < m} instead of a single model N∗. The assumed
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symmetry of {N∗
i ∩H(κ) | i < m} (relative to the predicate T used in the definition

of P) implies that {N∗
i ∩ H(κ) | i < m} can be amalgamated with any system of

models ∆ occurring in a condition of P which belongs to
∩

i<mN∗
i . This allows

modifying condition (1)α of the lemma to give q′ so that all the pairs (N∗
i ∩H(κ), α),

or (N∗
i ∩H(κ), sup(N ∩ κ)) in case α = κ, belong to ∆q′ . From this and condition

(2)α of the lemma it follows that q′ is a master condition for N∗
i for all i < m. �

Given a measurable cardinal τ we can, by passing to an inner model, reach a class
model where τ is still measurable, and ♢ holds everywhere. The forcing extension
of this class model by Col(ω1, τ) then satisfies the CH, ♢ everywhere above ω2,
and, by Fact 3.50, (†). To prove Theorem 3.49 it is therefore enough to work over
such a model, and force further to obtain MA1.5

<2ℵ0 , an arbitrarily large value for the
continuum, and failure of �ω1,ω.

Work then assuming (†), the CH, and ♢ above ω2. Let κ > ω2 be regular with
(∀µ < κ)µℵ0 < κ. Let P be the poset of Asperó-Mota [1, Section 2.2]. (This uses ♢
and the CH.) It is forced in P that the continuum is κ and MA1.5

<2ℵ0 holds. We will
be done if we can establish that the assumption of Claim 3.48 is forced in P, as by
the claim this gives the failure of �ω1,ω in the extension by P.

Fix Ė which names a club subset of Pω(ω2) in the extension by P. Fix p ∈ P.
We will find λ < κ of uncountable cofinality, x and z as in Claim 3.48, and q ≤ p
which forces that x and z belong to Ė.

Let θ1 < θ2 < θ3 be regular, with θ1 large enough for (†) and for Fact 3.51, and

large enough that Ė,H(κ) ∈ H(θ1). Let T ⊆ H(κ)V [G] be given by Fact 3.51. Let
< be a wellordering of H(θ1).

Let N ≺ H(θ3) be countable with {Ė, T,P, p, <, κ, θ1, θ2} ⊆ N . Let ⟨Qi | i <
ω⟩ ∈ N be a sequence of models so that ω1 ∪{Ė, T,P, p,<, κ, θ1} ⊆ Qi, Q0 ≺ Q1 ≺
· · · ≺ H(θ2), each Qi is countably closed, and |Qi| = ω1. That such a sequence
exists follows from the CH. The sequence can be picked in N by elementarity. Let
αi = Qi ∩ ω2.

Let D be the elementary diagram of N ∩H(θ1) in a language with the relation
T and constants for the elements of N ∩ Q0 ∩ H(θ1). By the countable closure
of Q0, D ∈ Q0. By elementarity of Q0, an elementary substructure of H(θ1)
with the same diagram D can be found inside Q0. Fix such a structure N̄ . Then
Ė, T,P, p ∈ N̄ , N̄∩H(κ) is elementary in (H(κ),∈, T ), and there is an isomorphism
φN̄,N : N̄∩H(κ) → N∩H(κ) which respects T and is the identity on N̄∩N∩H(κ) =
N ∩Q0 ∩H(κ). We will use this later to argue for partial T -symmetry.

Let R ≺ H(θ2) be countable with {Ė, T,P, p,<, κ, θ1, Q0, N̄} ⊆ R. Let M0 =
R∩Q0∩H(θ1). Let Y be the set of η < ω2 so that there is R′ ⊇M0, elementary in
(H(θ1);∈, <), with R′∩ω1 =M0∩ω1 and min(R′∩ω2−M0) = η. By the countable
closure of Q0, M0 ∈ Q0, and hence by elementarity Y ∈ Q0. If Y is bounded in ω2,
then by elementarity of Q0 a bound must exist in Q0, meaning that the bound is
smaller than α0. But this is impossible, since α0 itself belongs to Y as witnessed
by R′ = R ∩ H(θ1). So it must be that Y is unbounded in ω2. Using this inside
Q1, fix η0 ∈ Y ∩Q1 with η0 > α0. Let M1 ∈ Q1 be the Skolem hull of M0 ∪ {η0}
in (H(θ1);∈, <). Then M1 is a subset of every R′ witnessing that η0 ∈ Y , hence in
particularM1∩ω1 =M0∩ω1, andM1∩η0 ⊆M0∩ω2 ⊆ Q0∩ω2 = α0, so α0 ̸∈M1.

Now by induction on n ∈ [1, ω) define Mn+1 ∈ Qn+1 as follows. Using (†)
inside Qn+1 find some countable M ′ ≺ (H(θ1);∈, <), in Qn+1, so that M ′ ⊇ Mn,
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M ′ ∩ ω1 =Mn ∩ ω1, and M
′ ∩ ω2 ̸⊆ αn. Fix ηn ∈M ′ ∩ ω2 − αn. Let Mn+1 be the

Skolem hull of Mn ∪ {ηn} in (H(θ1);∈, <).
Let Mω =

∪
n<ωMn. Through another application of (†), find ηω > supn<ω αn

so that the Skolem hull of Mω ∪ {ηω} in (H(θ1);∈, <) has the same intersection
with ω1 as Mω. Let M =Mω+1 be this Skolem hull.

To summarize some of the properties of the construction, Mn for 1 ≤ n ≤ ω + 1
is the Skolem hull ofM0∪{ηi | i < n} in (H(θ);∈, <),Mn∩ω1 =M0∩ω1 = R∩ω1,
αn ≤ ηn < αn+1 for n < ω, and α0 ̸∈M1.

Claim 3.52. M ∩N ⊆ Q0.

Proof. Let f⃗ = ⟨fξ | ξ < ω⟩ be the <-least enumeration of all functions on ω<ω
2

in Q0 ∩ H(θ1). By elementarity the enumeration belongs to both N and R. Let
δN = N∩ω1 and let δR = R∩ω1. Since N̄ ∈ R, and since N̄∩ω1 = N∩ω1, δR > δN .
By elementarity of R, the functions on ω<ω

2 which belong to M0 = R∩Q0 ∩H(θ1)
are precisely the functions fξ for ξ < δR. By the elementarity of M0, every element
in the Skolem hull of M0∪{ηi | i ≤ ω} can be obtained by applying these functions
to finite tuples contained in {ηi | i ≤ ω}.

Suppose for contradiction that M ∩N ̸⊆ Q0 and fix x ∈M ∩N −Q0 witnessing
this. By the conclusion of the previous paragraph, there is some ξ < δR and some
finite a ⊆ {ηi | i ≤ ω} so that fξ(a) = x. By the elementarity of N , and since

both f⃗ and x belong to N , there must then exist ζ < ω1 and a finite b ⊆ ω<ω
2 ,

both in N , so that x = fζ(b). Note that ζ ∈ R, since N ∩ ω1 = δN < δR. Hence
fζ ∈ R∩Q0∩H(θ1) =M0 ⊆M . Letting c ∈ ω<ω

2 be lexicographically least so that
x = fζ(c) it follows by the elementarity of M and N that c ∈M ∩N .

Since x ̸∈ Q0, and fζ ∈ Q0, it must be that c ̸∈ Q0. Since c ∈ M ∩ N , and c
is a finite tuple of ordinals below ω2, it follows that there is β ∈ ω2 ∩M ∩N with
β ̸∈ ω2 ∩ Q0 = α0. This implies that in fact α0 ∈ M . Certainly this is the case if
β = α0. If β > α0, then letting g be the <-least bijection of ω1 onto β we have by
elementarity of M and N that β ∩N = g′′δN ⊆ g′′δR = g′′(M ∩ ω1) = β ∩M , and
since α0 ∈ N it follows again that α0 ∈M .

But letting h ∈ M1 be a bijection of ω1 onto η0 > α0 we have that η0 ∩M1 =
h′′(M1 ∩ω1) = h′′(M ∩ω1) = η0 ∩M . So α0 ∈M iff α0 ∈M1. Since we picked M1

in such a way that α0 ̸∈M1, this is a contradiction. �
Claim 3.53. {N̄ ∩H(κ), N ∩H(κ),M ∩H(κ)} is partial T -symmetric in the sense
of Definition 2.2 of [1].

Proof. This is clear from the definition, using the isomorphism φN̄,N : N̄ ∩H(κ) →
N ∩ H(κ) that we obtained above, noting that M ∩ ω1 > N ∩ ω1 = N̄ ∩ ω1, and
noting further that, using Claim 3.52, M ∩N ∩H(κ) = N̄ ∩N ∩H(κ). �

Using Fact 3.51 we can now fix q ≤ p which is a master condition for both M
and N (and in fact also for N̄ , but we have no use for this model beyond its use
in obtaining partial T -symmetry above). Letting x = N ∩ ω2 and z = M ∩ ω2 it

follows that q forces both x and z to belong to Ė.
Let α = supi<ω αi = supi<ω ηi. Let λ = min(M ∩ω2−α). Then α ∈ N ∩ω2 = x

since ⟨Qi | i < ω⟩ ∈ N . Since M ∩N ⊆ Q0 and α > α0 = Q0 ∩ ω2 it follows that
α ̸∈ M , and hence λ > α. This in turn implies that cof(λ) ≥ ω1, otherwise M is
cofinal in λ contradicting the fact that M ∩ [α, λ) = ∅. By minimality of λ, and
since {ηi | i < ω} is a subset of M cofinal in α, sup(z ∩ λ) = sup(M ∩ λ) = α. By
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Claim 3.52, x ∩ z = N ∩M ∩ ω2 ⊆ Q0 ∩ ω2 = α0 < α. Thus x and z satisfy the
conditions in the hypothesis of Claim 3.48. This completes the proof of Theorem
3.49. �

The results above do not address the question of whetherMA1.5
ω2

(U) for a coherent
U implies �ω1,n for any n < ω. It seems conceivable that, working over a model
V [G] where G is generic for the poset B of Lemma 3.30 for adding a coherent U ,
constructing master conditions for models as in Remark 3.46 using the methods in
the proof of Theorem 3.41, and then arguing as in Remark 3.47 using a variant of
Fact 3.51 to give enough of the needed abstraction of the consequences of Lemmas
3.15 and 3.23, one could reach an extension of V [G] where MA1.5

ω2
(U) holds and

�ω1,n fails for every n < ω. But Fact 3.51 itself is not sufficient, because of its
restriction to symmetric systems. Indeed this scenario would not work if forcing
MA1.5

ω2
(U) over V [G] using the poset indicated in the proof of Fact 3.28. Using

the symmetry of the side conditions in that poset, the fact that they involve only
models whose intersection with ω2 belongs to U , and the coherence of U , one can
check that the poset adds a �ω1 sequence.

4. Specializing

Let T be a tree of height ω2. Let θ > ω2 with T ∈ H(θ), A ⊆ H(θ)<ω, and
C ⊆ ω2 club. Let E be the set of nodes of T that are extensively overlapped (relative
to θ, A, and C). We describe a poset which weakly specializes the restriction of T
to nodes outside E on a club of levels, while preserving ω1 and ω2.

We allow trees T which have cofinal branches. But the next claim and corollary
show that for any cofinal branch h, for a club of levels α, the node of h on level α
is extensively overlapped. These nodes are therefore left out of the domain of the
weak specializing function that we force to add.

Claim 4.1. Let P ⊆ H(θ)<ω and let D be the set of β < ω2 so that cof(β) = ω1 and
for every countable a ⊆ β, and every γ < ω2, there is a countable M ≺ (H(θ);A,P )
with a ⊆M , M ∩ ω2 ̸⊆ β, and min(M − β) ≥ γ. Then D is stationary.

Proof. Suppose not. Then Z = {X ≺ (H(θ);A,P ) | X is internal on a club and
sup(X ∩ ω2) ̸∈ D} is stationary. For each X ∈ Z fix aX and γX witnessing that
sup(X ∩ ω2) ̸∈ D. Increasing aX if needed, using the fact that X is internal on a
club, we may assume aX ∈ X. Then the function X 7→ aX is pressing down, and
thinning Z if necessary we may assume it takes a constant value, call it a.

Let B = {β | (∃X ∈ Z) sup(X ∩ ω2) = β}, and for β ∈ B let γβ = γX for some
X ∈ Z with sup(X∩ω2) = β. Let δ < ω2 in Limit(B) be a closure point, of cofinality
ω1, of the map β 7→ γβ . Let M ≺ (H(θ);A,P ) be countable with δ, a ∈ M . Fix
β ∈ B between sup(M ∩ δ) and δ. Let X ∈ Z be such that sup(X ∩ ω2) = β and
γβ = γX . Then M ⊇ a = aX and min(M − β) = δ > γX , contradicting the fact
that aX and γX witness sup(X ∩ ω2) ̸∈ D. �

The proof of Claim 4.1 in fact shows that there is a club of X ≺ H(θ) so that
sup(X ∩ ω2) ∈ D if X is internal on a club.

Corollary 4.2. Suppose h is a cofinal branch of T . Then for a club of α < ω2, the
node of h on level α is extensively overlapped.
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Proof. Recall that extensive overlaps are relative to fixed θ, A, and C. Let D be
the set in Claim 4.1 for P = h. Let α < ω2, and let β ≤ α belong to D ∩ C. We
prove that β is an extensive overlap point for the unique node of b on level α. If
α ∈ Limit(D ∩ C) this implies that the node is extensively overlapped.

Fix a ⊆ β and b ⊆ ω2 − β both countable. Let γ < ω2 be above max{sup(b), α}.
By Claim 4.1, there is countable M ≺ (H(θ);A, h) with a ⊆ M , M ∩ ω2 ̸⊆ β, and
min(M − β) ≥ γ. The latter implies in particular that (M ∪ Limit(M)) ∩ b = ∅.
Let µ be the least ordinal in M above β. Let u be the restriction of b to levels up
to µ. Then u ∈ M by elementarity of M relative to b. Since µ > α and α ̸∈ M , u
witnesses that M overlaps the node of b on level α. �

We work throughout with S and T satisfying conditions (ST1)–(ST9) in Section
2. As in Section 3, conditions (ST6)–(ST9) are included for simplicity and to obtain
the ω2-chain condition. We could manage with just conditions (ST1)–(ST5), by
prefixing our poset with a preparatory forcing by A = Pside, as described before
Claim 2.5. The combination can be written as a single poset with finite conditions,
and the results we obtain below hold for the combined poset, except for the claims
related to the ω2-chain condition. As in Section 3 we use Ot to denote {sup(W ∩
Ord) | W ∈ T }, and rely on the fact that in Pside, this set is forced to be equal to

{sup(W ∩ Ord) | W occurs in Ġ}. This fact uses conditions (ST6)–(ST9). For a
combined poset under conditions (ST1)–(ST5) one has to replace the use of Ot in

Definition 4.3 with a name Ȯt for the set consisting of sup(W ∩Ord) for W which
occur in the side conditions part of the poset.

For simplicity we may assume that |T | = ω2; if not then the preliminary poset
A can be arranged to collapse |T | to ω2, for example using a poset as in Neeman
[16, Subsection 5.3]. Passing to an isomorphic copy of T we may assume T ⊆
K. Restricting S and T if necessary we may assume that sup(W ∩ Ord) ∈ C
for all W ∈ T , and that each Q ∈ S ∪ T expands to Q∗ ≺ (H(θ);A, T ) with
Q∗ ∩K = Q. Then for every x ∈ T and W ∈ T so that sup(W ∩Ord) ≤ height(x)
and sup(W ∩ Ord) is not an extensive overlap point for x, there exists countable
a ⊆ sup(W ∩Ord) and countable b ⊆ ω2 −W , so that for every M ∈ S, if M ⊇ a
and (M ∪ Limit(M)) ∩ b = ∅ then M does not overlap x.

If x ∈ T −E then there is some β < height(x) so that no ordinal in [β,height(x)]
is an extensive overlap point for x. Let βx denote the least such. Restricting the
class S we may assume that everyM ∈ S is elementary relative to T −E and closed
under the function x 7→ βx.

We use Level(α) to denote level α of T , namely the set {x ∈ T | height(x) = α}.
For x ∈ Level(α) and β < α, we use Proj(x, β) to denote the <T predecessor of x
on level β of T . More generally, if u is a (non cofinal) branch of T height α, and
β < α, then we use Proj(u, β) to denote the unique node in u ∩ Level(β). If u can
be capped by some node x ∈ T then this is the same as Proj(x, β), but we use the
notation also in cases where u is not capped in T .

Recall from Definition 1.1 that M ∈ S overlaps x ∈ T if there is a (non cofinal)
branch u of T so that u ∈M , x ∈ u, and x ̸∈M . In this case in fact height(x) ̸∈M ,
since otherwise x, which is definable from u and height(x), would belong to M .
There are ordinals in M above height(x), since the height of u is such an ordinal.
For α the least ordinal of M above height(x), there is a unique branch z of T of
height α that belongs toM with x ∈ z. The reason is that any two distinct branches
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of height α, that both belong to M , must diverge below sup(M ∩ α) < Level(x),
and hence cannot both extend x. Define Lift(x,M) to denote this unique z.

If M overlaps x, and is elementary relative to a weakly specializing function φ,
then φ(x) must be outside M . (If ξ = φ(x) ∈ M then x would belong to M by
elementarity, being the only element of u on which φ takes value ξ.) This motivates
condition (8) in Definition 4.3. We noted already in Section 1 that φ(x) cannot
drop below an extensive overlap point for x, and this motivates condition (3).

Definition 4.3. Specialize = Specialize(T,S, T ) consists of pairs ⟨s, φ⟩ where:
(1) s ∈ Pside.
(2) (Domain) φ is a finite partial function on T − E. For every x ∈ dom(φ),

height(x) ∈ Limit(Ot), there is M ∈ s with height(x) ≤ sup(M ∩ Ord),
and for the least such M , either height(x) = sup(M ∩ Ord), or else M is
countable, height(x) ∈M , and (height(x), sup(M ∩Ord)) ∩Ot = ∅.

(3) (Lower bound) For all x ∈ dom(φ), φ(x) ≥ βx.
(4) (Pressing down) For all x ∈ dom(φ), φ(x) < height(x).
(5) (Chain injectivity) If x, y ∈ dom(φ) are comparable in T then φ(x) ̸= φ(y).
(6) (Interior) If M ∈ s and x ∈ dom(φ) ∩M , then φ(x) ∈M .
(7) (Space) LetM ∈ s be countable, and let U ∈ s with sup(U∩ω1) > sup(M∩

ω1). Then there exists countable e ∈ U so that e ⊇ U ∩{Proj(z, α) | z ∈M
and α ∈ Limit(M)}.

(8) (Overlap) Suppose x ∈ dom(φ) is overlapped by M ∈ s. Then φ(x) ̸∈M .

The ordering on Specialize is given by ⟨s∗, φ∗⟩ ≤ ⟨s, φ⟩ iff s∗ ⊇ s and φ∗ ⊇ φ.

Claim 4.4. For transitive nodes, the interior condition (6) of Definition 4.3 follows
from the pressing down condition (4).

Proof. If x ∈ dom(φ) ∩W for transitive W , then by elementarity height(x) ∈ W ,
hence by condition (4), φ(x) < sup(W ∩ Ord), and by transitivity of W , φ(x) ∈
W . �

Claim 4.5. The space condition of Definition 4.3 follows from its restriction to
countable U which occur before M .

Proof. Note first that the condition holds automatically for transitive U , since
U ∩ {Proj(z, α) | z ∈ M and α ∈ Limit(M)} is a countable subset of U , and U
is internal on a club, meaning in particular that every countable subset of U is
contained in a countable element of U .

If U is countable and M ∈ U , then {Proj(z, α) | z ∈M and α ∈ Limit(M)} ∈ U
and the space condition is clear.

If U is countable, U occurs above M in s, and M ̸∈ U , then there must be some
transitive W ∈ U occurring in s above M . Since U ∩W occurs in s before U , we
may by induction assume that the space condition holds for U ∩W and M . Let
e ∈ U ∩ W witness this. Since {Proj(z, α) | z ∈ M and α ∈ Limit(M)} ⊆ W ,
we have U ∩ {Proj(z, α) | z ∈ M and α ∈ Limit(M)} ⊆ U ∩ W , and hence
U ∩ {Proj(z, α) | z ∈ M and α ∈ Limit(M)} ⊆ e. So e also witnesses the space
condition for U and M . �

The universe of a condition ⟨s, φ⟩, denoted v(s, φ), is the smallest set that con-
tains s ∪ dom(φ) ∪ range(φ) and is closed under the following operations: M 7→
sup(M ∩Ord); x 7→ height(x) (for x ∈ T ); z, β 7→ Proj(z, β); x,Q 7→ Lift(x,Q). It
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is easy to check that v(s, φ) is finite, using the facts that s and φ are finite and that
closure under the first two operators by itself produces all the ordinals in v(s, φ).

We say that two conditions ⟨s, φ⟩ and ⟨t, χ⟩ are isomorphic if there is a bijec-
tion i : v(s, φ) → v(t, χ) which preserves the truth values of each of the following
statements (meaning that truth value is preserved when applying i to the variables
of the statement and replacing s and φ by t and χ): M ∈ s; M occurs before N
in s; M ∩W = N ; M ⊇ N ; x ∈ M ; α ∈ M ; α = sup(M ∩ Ord); α < β; x <T y;
height(x) = α; Proj(z, β) = y; M overlaps x; Lift(x,M) = u; φ(x) = ξ.

⟨s, φ⟩ and ⟨t, χ⟩ are isomorphic at ⟨Q, Q̄⟩ if in addition i(Q) = Q̄ and i�Q and
i−1�Q̄ are both identity. i is then called an isomorphism at ⟨Q, Q̄⟩. Since Q̄ is
determined uniquely from the other objects, we sometimes omit it from the notation
and say that ⟨t, χ⟩ is isomorphic to ⟨s, φ⟩ at Q. For a ⊆ Q we say that ⟨t, χ⟩ is
isomorphic to ⟨s, φ⟩ at Q above a if in addition Q̄ ⊇ a.

The type of a condition ⟨s, φ⟩ is its isomorphism class. Since v(s, φ) is finite
and only finitely many formulas have to be preserved by isomorphisms, the type
is completely determined by a finite truth table, and can therefore be coded by a
natural number. The type at Q of a condition ⟨s, φ⟩ with Q ∈ s is the class of
⟨t, χ⟩ which are isomorphic to ⟨s, φ⟩ at Q. The type of ⟨s, φ⟩ at Q is completely
determined by a finite subset of Q and a finite truth table, and can therefore be
coded by an element of Q.

Lemma 4.6. Let ⟨s, φ⟩ ∈ Specialize and let Q ∈ s. Then there is a finite a ⊆ Q
so that for every ⟨t, χ⟩ ∈ Q ∩ Specialize which is isomorphic to ⟨s, φ⟩ at Q above
a, either ⟨t, χ⟩ is compatible with ⟨s, φ⟩, or else there is y ∈ dom(χ)− dom(φ) and
x ∈ v(s, φ) so that y <T x and χ(y) ∈ v(s, φ).

Proof. Let a ⊆ Q be a finite set containing witnesses e for all instances of the space
condition of Definition 4.3 for ⟨s, φ⟩ with U = Q.

Let i witness that ⟨s, φ⟩ and ⟨t, χ⟩ are isomorphic at Q above a. Since i�Q = id,
resQ(s) ⊆ t. It follows by Lemma 2.3 that s and t are compatible, and in fact there
is r witnessing this which is equal to s∪t if Q is transitive, and to the closure of s∪t
under intersections if Q is countable. Since i�Q is the identity, x ∈ Q→ φ(x) ∈ Q,
and ⟨t, χ⟩ ∈ Q, the maps φ and χmust agree on their common domain. So υ = φ∪χ
is a function. υ inherits the lower bound and pressing down conditions, (3) and
(4), of Definition 4.3 from χ and φ. We work toward establishing the remaining
conditions, and in cases where an argument for one of these conditions fails, show
that there are y, x as in the lemma.

Claim 4.7. The domain condition (2) of Definition 4.3 holds for ⟨r, υ⟩.

Proof. The only cases of the condition which do not automatically transfer from
⟨s, φ⟩ and ⟨t, χ⟩ to ⟨r, υ⟩ are ones where height(x) ∈M (as opposed to height(x) =
sup(M ∩Ord)). We work only on these cases.

Let x ∈ dom(χ), let M witness condition (2) of Definition 4.3 for x in ⟨t, χ⟩,
and suppose height(x) ∈ M . To see that M continues to witness the condition in
⟨r, υ⟩, it is enough to prove that there is no node M̄ ∈ r before M with height(x) ≤
sup(M̄ ∩Ord). But if such a node exists, then the predecessor of M in r is such a
node, and this is impossible since the predecessor ofM in r is an element ofM ⊆ Q,
hence itself a node in t.

Let x ∈ dom(φ) − dom(χ). If height(x) ∈ Q, then height(i(x)) = height(x),
and since by the previous paragraph condition (2) holds for i(x) in ⟨r, υ⟩, it holds
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also for x. Suppose height(x) ̸∈ Q. Let M witness condition (2) for x in s, and
suppose height(x) ∈ M . Then M ̸∈ Q. If the predecessor of M in r is the same
as its predecessor in s, then as in the previous paragraph M witnesses condition
(2) for x in ⟨r, υ⟩. Since M ̸∈ Q the only other possibility is that M is either Q
or the bottom node Q ∩W of a residue gap of s in Q. But in each of these cases
height(x) ∈M → height(x) ∈ Q, contradicting an earlier assumption. �
Claim 4.8. If the chain injectivity condition (5) of Definition 4.3 fails for ⟨r, υ⟩,
then there is y ∈ dom(χ) − dom(φ) and x ∈ v(s, φ) so that y <T x and χ(y) ∈
v(s, φ).

Proof. Suppose y <T x are both in dom(υ) and υ(y) = υ(x). x and y cannot both
belong to dom(φ), and cannot both belong to dom(χ), since the chain injectivity
condition holds for each of ⟨s, φ⟩ and ⟨t, χ⟩. If x ∈ dom(φ) − dom(χ) and y ∈
dom(χ)−dom(φ), then x and χ(y) = φ(x) both belong to v(s, φ), and we are done.
Suppose instead that x ∈ dom(χ) − dom(φ) and y ∈ dom(φ) − dom(χ). Then in
particular x ∈ Q and y ̸∈ Q (as y ∈ dom(φ) ∩ Q → y = i(y) ∈ dom(χ)). Since
y <T x it follows that Q overlaps y. By the overlap condition (8) of Definition 4.3
for ⟨s, φ⟩ it follows that φ(y) ̸∈ Q. But then since χ(x) ∈ Q it follows in particular
that υ(y) = φ(y) ̸= χ(x) = υ(x). �
Claim 4.9. The interior condition (6) of Definition 4.3 holds for ⟨r, υ⟩.

Proof. It is enough to verify the condition for nodes in s ∪ t, since the interior
condition for any two nodes implies the same condition for their intersection. By
Claim 4.4 it is enough to verify the condition for countable M ∈ s ∪ t. Fix M ,
and let x ∈ dom(υ) ∩M . If M ∈ s ∧ x ∈ dom(φ) or M ∈ t ∧ x ∈ dom(χ) then
the interior condition for M and x is directly inherited from the same condition in
⟨s, φ⟩ and ⟨t, χ⟩. The case that M ∈ t− s and x ∈ dom(φ)− dom(χ) is impossible,
since x ∈M ∈ t→ x ∈ Q, and x = i(x) ∈ dom(χ) for any x ∈ dom(φ) ∩Q.

The only remaining case is that M ∈ s− t and x ∈ dom(χ)− dom(φ). We work
on this case, first with transitive Q, and then with countable Q.

If Q is transitive, then M occurs above Q. Let W be the largest transitive node
of s at or above Q. Then x ∈ dom(χ) ⊆ Q ⊆ W . Hence x ∈ M ∩W . The interior
condition for M and x therefore reduces to the same condition for M ∩W and x,
which we may assume holds by induction.

Suppose Q is countable, and M occurs at or above Q. If there are no transitive
nodes of s between Q and M , then Q ⊆M , hence χ(x) ∈M , as required. If there
are transitive nodes of s between Q and M , then letting W be the largest one,
we have that M ∩W is a node of s occurring before M , and as in the previous
paragraph, the interior condition for M and x reduces to the same condition for
M ∩W and x, since x ∈ Q ⊆W . The case that Q is countable and M occurs in a
residue gap [Q∩R,R) of s in Q is similar, but using Q∩R instead of Q. The only
additional observations needed for this case are that x ∈ Q∩R (since x ∈M ⊆ R)
and χ(x) ∈ Q ∩R (since χ(x) < height(x) < sup(R ∩Ord)). �
Claim 4.10. The space condition (7) of Definition 4.3 holds for r.

Proof. It is enough to establish the weak space condition in Claim 4.5. Suppose
first that Q is transitive. We prove the condition in Claim 4.5 by induction on
U . The only instances which are not directly inherited from the space condition
for s and t are instances where M ∈ s − t and U ∈ t − s. M must then occur
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above Q, and U must occur above i(Q). The latter in particular implies that there
is a transitive node W ∈ U that occurs at or above i(Q). By our definition of
a above, there is a witness e for the space condition for M and Q (standing for
U) in a. This witness then belongs to i(Q). So U ∩ {Proj(z, α) | z ∈ M and
α ∈ Limit(M)} ⊆ Q ∩ {Proj(z, α) | z ∈ M and α ∈ Limit(M)} ⊆ e ⊆ i(Q) ⊆ W .
It follows that the space condition for M and U reduces to the space condition for
M and U ∩W , which holds by induction.

Suppose next that Q is countable. The countable nodes of r are the ones in s,
in t, and in tacked-on sequences. The latter have the form P ∩W for countable
P ∈ s − t and transitive W ∈ t − s. The space condition for M = P ∩W and
any U is an immediate consequence of the same condition for M ′ = P and U ,
since {Proj(z, α) | z ∈ P ∩W and α ∈ Limit(P ∩W )} ⊆ {Proj(z, α) | z ∈ P and
α ∈ Limit(P )}. The space condition for M and U = P ∩W is a consequence of
the same condition for M and U ′ = P , since given e′ ∈ P witnessing the latter, by
elementarity of P and the fact that W is internal on a club, one can find countable
e ∈ P ∩W with e ⊇ e′ ∩W . It is therefore enough to verify instances of the space
condition for nodes in s ∪ t. We do this by induction on U . We consider only the
cases that M ∈ s− t ∧ U ∈ t− s or M ∈ t− s ∧ U ∈ s− t. For other instances the
condition is directly inherited from the space condition for s and t.

Suppose M ∈ s − t and U ∈ t − s. Let Û = i−1(U). Then Û ∈ s − Q.

Suppose for definitiveness that Û occurs in a residue gap [Q ∩W,W ) of s in Q.

The case that Û occurs above Q is similar. By assumption of the space condition,
sup(U ∩ω1) > sup(M ∩ω1). Since U ∈ Q this implies sup(Q∩ω1) > sup(M ∩ω1).
By the space condition for M and Q in s, there is countable e ∈ Q containing
Q ∩ {Proj(z, α) | z ∈ M and α ∈ Limit(M)}. By our choice of a, such e can be
found in a, and hence in i(Q). By elementarity of i(Q) and since W is internal
on a club, there exists some countable e′ ∈ i(Q) ∩ W with e′ ⊇ e ∩ W . Note
e′ ⊇ U ∩ {Proj(z, α) | z ∈ M and α ∈ Limit(M)} since U ⊆ Q ∩W . If there are

no transitive nodes in s between Q∩W and Û , then Û ⊇ Q∩W , and since i is an
isomorphism, U ⊇ i(Q) ∩ i(W ) = i(Q) ∩W . So e′ belongs to U , and witnesses the
space condition for M and U . If there are transitive nodes in s between Q∩W and
Û , then since i is an isomorphism, there are transitive nodes in t between i(Q)∩W
and U . Let R be the largest one. Then R ∈ U , and e′ ⊆ i(Q) ⊆ R. The latter
implies that U ∩{Proj(z, α) | z ∈M and α ∈ Limit(M)} ⊆ U ∩R. Hence the space
condition for M and U reduces to the space condition for M and U ∩ R, which
holds by induction.

Suppose M ∈ t − s and U ∈ s − t. Since U occurs before M , it must occur
before Q. So U belongs to a residue gap of s in Q, say [Q ∩ W,W ). Let e =
W ∩ {Proj(z, α) | z ∈ M and α ∈ Limit(M)}. By elementarity of Q and since
W,M ∈ Q, we have e ∈ Q. Since W is internal on a club, and again using the
elementarity of Q, there is countable e′ ∈ Q ∩W so that e′ ⊇ e. If there are no
transitive nodes in s between Q ∩W and U , then e′ belongs to U , and witnesses
the space condition for M and U since U ⊆ W . If there are transitive nodes in
s between Q ∩W and U , let R be the largest one. Then e′ ⊆ R. It follows that
U ∩{Proj(z, α) | z ∈M and α ∈ Limit(M)} ⊆ R, so the space condition for M and
U reduces to the space condition for M and U ∩R, which holds by induction. �
Claim 4.11. The overlap condition (8) of Definition 4.3 holds for ⟨r, υ⟩ in the case
that x ∈ dom(φ) and M ∈ t.
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Proof. Let u ∈M witness that M overlaps of x. Note u ∈ Q since M ⊆ Q.
If x ∈ Q then x = i(x) ∈ dom(χ), and condition (8) for x and M is inherited

from ⟨t, χ⟩. Suppose x ̸∈ Q. Since u ∈ Q this implies that Q overlaps x. (Q must
be countable, since otherwise u ⊆ Q and x ∈ u → x ∈ Q.) Hence φ(x) ̸∈ Q by
condition (8) of Definition 4.3 applied to ⟨s, φ⟩. In particular φ(x) ̸∈M . �
Claim 4.12. The overlap condition (8) of Definition 4.3 holds ⟨r, υ⟩ in the case
that x ∈ dom(χ), M ∈ s, and sup(M ∩ ω1) ≥ sup(Q ∩ ω1).

Proof. Since sup(M ∩ ω1) ≥ sup(Q ∩ ω1), Q is countable. The fact that sup(M ∩
ω1) ≥ sup(Q ∩ ω1) also implies that either M ⊇ Q or there is some transitive node
W ∈ Q so that M ⊇ Q ∩W and (M ∪ Limit(M)) ∩ (Q −W ) = ∅. To see this,
suppose otherwise, and let M be a minimal counterexample. If M occurs at or
above Q, then since M ̸⊇ Q there is transitive R ∈ M occurring above Q. But
in this case M ∩ R gives a smaller counterexample. If M occurs in a residue gap
[Q ∩W,W ) of s in Q, and there is a transitive R ∈ M above Q ∩W , then again
M ∩ R gives a smaller counterexample. If there is no such R, then M ⊇ Q ∩W ,
and (M ∪ Limit(M)) ∩ (Q−W ) = ∅.
M ⊇ Q is impossible here since x ∈ Q is overlapped by M and therefore x ̸∈M .

So there is a transitive W ∈ Q so that M ⊇ Q ∩ W , and (M ∪ Limit(M)) ∩
(Q − W ) = ∅. Let β = sup(W ∩ Ord). Note β ≤ height(x), since otherwise
height(x) ∈ Q ∩W ⊆M , contradicting the fact that M overlaps x.

We show below that β is an extensive overlap point for x. This is enough to
establish the current claim, since it implies that βx > β, hence χ(x) > β by
condition (3) of Definition 4.3, and in particular χ(x) ̸∈ M , since χ(x) ∈ Q and
M ∩ (Q−W ) = ∅.

Suppose for contradiction that β is not an extensive overlap point for x, and let
a ⊆ β and b ⊆ ω2 − β witness this. By elementarity of Q, we may pick a, b ∈ Q.
Then a, b ⊆ Q. So M ⊇ Q ∩ W ⊇ Q ∩ β ⊇ a, and (M ∪ Limit(M)) ∩ b ⊆
(M ∪Limit(M))∩ (Q−W ) = ∅ using the properties ofM obtained above. SinceM
overlaps x this contradicts the fact that a and b witness that β is not an extensive
overlap point. �
Claim 4.13. If the overlap condition (8) of Definition 4.3 fails for ⟨r, υ⟩, then there
exists y ∈ dom(χ)− dom(φ) and x ∈ v(s, φ) so that y <T x and χ(y) ∈ v(s, φ).

Proof. Let y ∈ dom(υ) and let M ∈ r overlap y. Let u = Lift(y,M) ∈ M witness
the overlap. Without loss of generality we may assume that M ∈ s ∪ r. (The
only other possibility is that M belongs to a tacked-on sequence. Then M has the
form M∗ ∩W for some M∗ ∈ s and transitive W ∈ t, and we may replace M by
M∗.) Suppose y andM witness the failure of the overlap condition for ⟨r, υ⟩. Then
y ∈ dom(χ)−dom(φ),M ∈ s−t, and sup(M ∩ω1) < sup(Q∩ω1), since in the other
configurations, the overlap condition is either inherited from the same condition for
⟨s, φ⟩ and ⟨t, χ⟩, or given by Claims 4.11 and 4.12.

We work to prove that u ∈ v(s, φ). From u we will then derive x >T y in v(s, φ),
and the structure we obtain for the proof will allow us show that χ(y) ∈ v(s, φ).

Let R0 be the least transitive node of s with R0 ∈M and height(y) < sup(R0 ∩
Ord). Such a node must exist: otherwise all nodes P of s before M with sup(P ∩
Ord) > height(y) are countable, hence they all belong to M . Then since M ̸∈ Q,
sup(Q ∩ ω1) > sup(M ∩ ω1), and sup(Q ∩ Ord) > height(y), it must be that M
occurs inside a residue gap [Q ∩W,W ) of s in Q for some W above M , and that
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sup(Q ∩W ∩ Ord) ≤ height(y). But this is impossible since height(y) ∈ Q and
height(y) < sup(M ∩Ord) < sup(W ∩Ord).

Suppose, for contradiction, that sup(M ∩ R0 ∩Ord) > height(y). Then it must
be that M ∩ R0 ∈ Q, since otherwise an argument as in the previous paragraph
produces a transitive R ∈ M ∩ R0 with height(y) < sup(R ∩ Ord), contradicting
the minimality of R0. In particular i(M ∩ R0) = M ∩ R0, M ∩ R0 ∈ t, and
M ∩ R0 ⊆ i(Q). Let P ∈ t witness condition (2) of Definition 4.3 for height(y).
Since height(y) ̸∈M ∩R0 it must be that P occurs in a residue gap of t in M ∩R0,
say [M ∩R′, R′) for R′ ∈M ∩R0 a node of t. Since i−1 is identity on i(Q) we have
i−1(R′) = R′ and therefore R′ is a node of s. But this contradicts the minimality
of R0.

By the previous paragraph, sup(M∩R0∩Ord) ≤ height(y). Working inductively
define a descending sequence of transitive nodes of s in M , starting from R0, as
follows. If M ∩ Rn ∈ Q, end the definition. Otherwise, M ∩ Rn must belong to a
residue gap of s in Q, say [Q∩Wn,Wn). Since sup(M∩Rn∩ω1) < sup(Q∩Wn∩ω1)
there must be a transitive node of s in M ∩ Rn above Q ∩Wn. Let Rn+1 be the
least such.

Let k be largest so that Rk is defined. Then M ∩ Rk ∈ Q. Let γn = sup(M ∩
Rn ∩ Ord) and γ∗n = sup(Rn ∩ Ord) for n ≤ k. Let βn = sup(Q ∩Wn ∩ Ord) and
β∗
n = sup(Wn ∩Ord) for n < k. Then β∗

n+1 < βn < γ∗n+1 < γn < β∗
n.

Note that height(u) = γ∗0 as γ∗0 is the first ordinal of M above height(y).
Note further that β∗

0 ≤ height(y), since height(y), being an element of Q, can-
not belong to the interval [β0, β

∗
0). By closure of v(s, φ) under lifting, and using

the facts that y ∈ Q and u ∈ M to see that the relevant lifts are defined, we
have Proj(u, γn) ∈ v(s, φ) → Proj(u, γ∗n) = Lift(Proj(u, γn),M) ∈ v(s, φ) and
Proj(u, βn) ∈ v(s, φ) → Proj(u, β∗

n) = Lift(Proj(u, βn), Q) ∈ v(s, φ). We also
have Proj(u, γ∗n+1) ∈ v(s, φ) → Proj(u, βn) ∈ v(s, φ) and Proj(u, β∗

n) ∈ v(s, φ) →
Proj(u, γn) ∈ v(s, φ), by closure of v(s, φ) under projections. Putting these to-
gether, it follows that Proj(u, γk) ∈ v(s, φ) → u = Proj(u, γ∗0) ∈ v(s, φ). We
continue to show that Proj(u, γk) ∈ v(s, φ).

By the space condition (7) of Definition 4.3, there is a countable e ∈ Q so that
e ⊇ Q∩ {Proj(z, α) | z ∈M and α ∈ Limit(M)}. By our choice of a at the start of
the proof of Lemma 4.6, e ∈ a ⊆ i(Q). Since γk and y both belong to Q we have
Proj(y, γk) ∈ Q. As Proj(y, γk) = Proj(u, γk) it follows that Proj(y, γk) ∈ e, and
therefore Proj(y, γk) ∈ i(Q).
M ∩ Rk is a node of s that belongs to Q, so i(M ∩ Rk) = M ∩ Rk and hence

M ∩Rk ∈ t. Since y ∈ dom(χ) it follows that Proj(y, γk) ∈ v(t, χ). Combining this
with the conclusion of the previous paragraph and the fact that i−1 is identity on
i(Q), we get Proj(y, γk) = i−1(Proj(y, γk)) ∈ v(s, φ).

We have so far established that u = Lift(y,M) belongs to v(s, φ). We also saw
that height(u) = γ∗0 = sup(R0 ∩ Ord). If R0 belongs to a residue gap of s in Q,
then let P be the bottom node of the gap, and let α = sup(P ∩Ord). If R0 occurs
above Q in s, then let α = sup(Q∩Ord). If R0 ∈ Q, then let P be the largest node
of s below R0 and let α = sup(P ∩Ord). In each of these cases we have α ∈ v(s, φ)
and height(y) ≤ α < γ∗0 . So letting x = Proj(u, α) we have x ∈ v(s, φ) and y <T x.

By construction,M∩γ∗n ⊆ γn andQ∩β∗
n ⊆ βn. It follows using the inequalities on

these ordinals established above that Q∩M ∩γ∗0 ⊆ γk. Since χ(y) < height(y) < γ∗0
belongs to both Q and M (the latter because y and M witness failure of the
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overlap condition for ⟨r, υ⟩) we therefore have χ(y) < γk, and this implies that
χ(y) ∈M ∩Rk. Since M ∩Rk is a node of s that belongs to Q we have M ∩Rk =
i(M ∩ Rk) ⊆ i(Q). So χ(y) ∈ i(Q). This implies that χ(y) = i−1(χ(y)) and hence
in particular χ(y) ∈ v(s, φ). �

Claim 4.13 completes the proof of Lemma 4.6. �

Remark 4.14. The proof of Lemma 4.6 gives more information on the obstructions
for compatibility than is stated in the lemma. For ⟨t, χ⟩ as in the lemma the proof
establishes one of the following conditions:

(1) ⟨s, f⟩ and ⟨t, χ⟩ are compatible, and moreover there is a condition ⟨r, υ⟩
witnessing this so that r = s ∪ t if Q is transitive, and r is equal to the
closure of s ∪ t under intersections if Q is countable.

(2) There is x ∈ dom(φ) − dom(χ) and y ∈ dom(χ) − dom(φ) so that y <T x
and χ(y) = φ(x).

(3) There is y ∈ dom(χ)− dom(φ) and M ∈ s overlapping y, so that sup(M ∩
ω1) < sup(Q ∩ ω1), Lift(y,M) ∈ v(s, φ), and χ(y) ∈M .

Conditions (2) and (3) were obtained in the proofs of Claims 4.8 and 4.13, from
failure of one of the conditions of Definition 4.3 for ⟨r, υ⟩.

Claim 4.15. Let ⟨s, φ⟩ ∈ Specialize, let W be a transitive node, and suppose that
either s ⊆ W or there exists Q ∈ s so that resQ(s) ⊆ W ∈ Q. Then there is
⟨r, φ⟩ ≤ ⟨s, φ⟩ with W ∈ r.

Proof. If s ⊆ W , then ⟨s ∪ {W}, φ⟩ is easily seen to be a condition in Specialize.
Suppose resQ(s) ⊆ W ∈ Q for Q in s. By Lemma 2.3, resQ(s) ∪ {W} and s are
compatible. Let r be a side condition witnessing this. If Q is transitive, we can
take r = s ∪ {W} and it is easy to check that ⟨r, φ⟩ ∈ Specialize. Suppose Q is
countable. Then we can take r to be the closure of s ∪ {W} under intersections,
and by the discussion following Lemma 2.3, r is obtained from s ∪ {W} by adding
one tacked-on sequence, the sequence FW associated to W , right before W . The
lowest element of this sequence is Q ∩W .

The space condition (7) of Definition 4.3 holds for r by an argument similar to
parts of the proof of Claim 4.10. The interior condition transfers from countable
M to intersections M ∩W , and hence transfers from the countable nodes of ⟨s, φ⟩
to all countable nodes of ⟨r, φ⟩. By Claim 4.4 it then holds for ⟨r, φ⟩. The overlap
condition similarly transfers from countable M ∈ s to M ∩W , and hence holds
for ⟨r, φ⟩. The lower bound, pressing down, and chain injectivity conditions do not
involve any nodes, and hold for φ. Finally, all instances of the domain condition
trivially transfer from ⟨s, φ⟩ to ⟨r, φ⟩ except when M = Q, since for M ̸= Q, the
predecessor of M in r is the same as its predecessor in s. In case M = Q the
condition again transfers trivially if height(x) = sup(M ∩ Ord). If height(x) <
sup(M ∩Ord) then by the domain condition, (height(x), sup(M ∩Ord)) ∩Ot = ∅,
so it must be that height(x) ≥ sup(W ∩ Ord). In the case of strict inequality M
continues to witness the condition in ⟨r, φ⟩, and in the case of equality the condition
is witnessed by W . This establishes that ⟨r, φ⟩ ∈ Specialize. �

Corollary 4.16. Let ⟨s, φ⟩ ∈ Specialize and let W be a transitive node. Then there
is ⟨r, φ⟩ ≤ ⟨s, φ⟩ with W ∈ s.
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Proof. Immediate by an argument similar to the proof of Claim 2.5. The proof
relies on the two properties stated in Remark 2.6. Both these properties hold for
Specialize, by Claim 4.15. �

Claim 4.17. Let ⟨s, φ⟩ ∈ Specialize, let Q be a countable node, and suppose ⟨s, φ⟩ ∈
Q. Then there is ⟨r, φ⟩ ≤ ⟨s, φ⟩ with Q ∈ r.

Proof. By Lemma 2.3, and since s ∈ Q and s ≤ resQ({Q}), there is r ≤ s with
Q ∈ r. Moreover we can take r to be the closure of s ∪ {Q} under intersections.
By the discussion following Lemma 2.3, r is generated from s∪ {Q} by adding, for
each transitive W ∈ s, the node Q ∩W right before W . (The tacked-on sequence
associated to W consists of just this one node.) The lower bound, pressing down,
and chain injectivity conditions of Definition 4.3 transfer from ⟨s, φ⟩ to ⟨r, φ⟩ since
they are phrased with no reference to nodes. Instances of the overlap condition
with M ∈ s transfer trivially to ⟨r, φ⟩, and the remaining instances hold vacuously
in ⟨r, φ⟩ because all x ∈ dom(φ) belong to Q and hence are not overlapped by Q
or by any of the nodes Q ∩ W . Instances of the interior condition with M ∈ s
similarly transfer from ⟨s, φ⟩ to ⟨r, φ⟩, the instance with M = Q holds because
φ(x) ∈ Q for all x ∈ dom(φ), and instances with M = Q ∩W hold because for
every x ∈ dom(φ) ∩W , φ(x) ∈ Q ∩ height(x) ⊆ Q ∩W . The domain condition
transfers from ⟨s, φ⟩ to ⟨r, φ⟩ since for every countable nodeM ∈ s, the predecessor
of M in r is its predecessor in s. This implies that for every x ∈ dom(φ), the node
M witnessing the domain condition for x in ⟨s, φ⟩ continues to witness it in ⟨r, φ⟩.

It remains to consider the space condition. Fix U and M as in the condition.
By Claim 4.5 we need only consider instances where U is countable. In all these
instances sup(M ∩ω1) < sup(U ∩ω1) ≤ sup(Q∩ω1), and in particular then M ∈ s.
Instances with U ∈ s transfer trivially to ⟨r, φ⟩ from ⟨s, φ⟩. Instances with U = Q
hold because the set {Proj(z, α) | z ∈ M and α ∈ Limit(M)} belongs to Q by
elementarity. For instances with U = Q∩W , apply the space condition for M and
W in ⟨s, φ⟩, and note that by elementarity of Q, a set e witnessing the condition
can be found in Q. The same e then witnesses the condition for M and Q∩W . �

With Lemma 4.6 at hand we can proceed to establish properness of Specialize for
models, countable and of size ω1, which restrict to elements of S ∪ T . Work below
with some fixed regular θ∗ so that T , S, T , and Specialize all belong to H(θ∗).

Lemma 4.18. Let Q∗ ≺ H(θ∗) with T,S, T , Specialize ∈ Q∗. Let Q = Q∗∩K and
suppose Q ∈ T . Let ⟨s, φ⟩ ∈ Specialize. Let D ∈ Q∗ be a subset of Specialize so
that ⟨s, φ⟩ ∈ D. Suppose Q ∈ s. Then there is ⟨t, χ⟩ ∈ D ∩ Q which is compatible
with ⟨s, φ⟩.

Proof. Let tp be the type of ⟨s, φ⟩ at Q. Let X be the set of W ∈ T so that there
exists ⟨sW , φW ⟩ ∈ D with W ∈ sW and the type of ⟨sW , φW ⟩ at W equal to tp.

By elementarity of Q∗ and since tp can be coded by an element of Q, we have
X ∈ Q∗ and may pick the map W 7→ ⟨sW , φW ⟩ in Q∗.

By the lemma assumptions, Q ∈ X. It follows that for every b ∈ K ∩ Q∗ = Q,
there is W ∈ X with b ∈ W . By elementarity of Q∗, the same is true for every
b ∈ K. The sets {W ∈ X | b ∈ W}, for b ∈ K, generate a filter. Let U be an
extension of this filter to an ultrafilter. By elementarity of Q∗ we can pick U ∈ Q∗.
Below we write (∀∗UW ) to mean (∃Z ∈ U)(∀W ∈ Z).
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Fix some W̄ ∈ X ∩ Q, and let ⟨s̄, φ̄⟩ = ⟨sW̄ , φW̄ ⟩. For each W ∈ X let
iW : v(sW , φW ) → v(s̄, φ̄) be an isomorphism at ⟨W, W̄ ⟩. By elementarity we can

arrange that W 7→ iW belongs to Q∗. Let î : v(s, φ) → v(s̄, φ̄) be an isomorphism
at ⟨Q, W̄ ⟩. Such isomorphisms exist since the types of ⟨sW , φW ⟩ at W , ⟨s, φ⟩ at Q,
and ⟨s̄, φ̄⟩ at W̄ are all the same.

Let k = |v(s̄, φ̄)|2 + 1. Let a ⊆ Q be the finite set witnessing Lemma 4.6 for
⟨s, φ⟩. Working in Q∗, fix a sequence Wn, n < k, of elements of X, so that the
following holds:

(i) a ∈Wn and (∀m < n)v(sWm , φWm) ⊆Wn

(ii) (∀m < n)(∀ȳ ∈ v(s̄, φ̄)) Wn belongs to a set in U that witnesses either
(∀∗UW )(i−1

Wm
(ȳ) <T i−1

W (ȳ)) or (∀∗UW )(i−1
Wm

(ȳ) ̸<T i−1
W (ȳ)), depending on

which of the two holds.
(iii) (∀ȳ ∈ v(s̄, φ̄))Wn belongs to a set in U that witnesses (the first quantifier in)

either (∀∗UV )(∀∗UW )(i−1
V (ȳ) <T i−1

W (ȳ)) or (∀∗UV )(∀∗UW )(i−1
V (ȳ) ̸<T i−1

W (ȳ)),
depending on which of the two holds.

(iv) (∀m < n)(∀ȳ ∈ v(s̄, φ̄)) if (∀∗UW )(βi−1
W (ȳ) ≥ sup(Wm ∩ Ord)) then Wn

belongs to a set in U that witnesses this. (Recall that, for each x ∈ T
which is not extensively overlapped, βx is an ordinal witnessing this.)

This can be done using the finite completeness of U , and the fact that the sets
{W ∈ X | b ∈ W} for b ∈ K all belong to U . Let ⟨sn, φn⟩ = ⟨sWn , φWn⟩ and let
in = iWn . Note that ⟨sn, φn⟩ ∈ Q since the construction above is done inside Q∗.

If there is some n < k so that ⟨sn, φn⟩ is compatible with ⟨s, φ⟩ then Lemma
4.18 holds with ⟨t, χ⟩ = ⟨sn, φn⟩ and we are done. Suppose no such n exists. We
will derive a contradiction.

By Lemma 4.6 there is, for each n < k, is some yn ∈ dom(φn) − dom(φ) and
xn ∈ v(s, φ) so that yn <T xn and φn(yn) ∈ v(s, φ).

If yn ∈ Wn then yn = in(yn) ∈ W̄ as in�Wn is identity, and therefore yn =

î−1 ◦ in(yn) as î−1�W̄ is identity. But then yn ∈ dom(φn) → yn ∈ dom(φ),
contradicting the fact that yn ∈ dom(φn)− dom(φ). So it must be that yn ̸∈Wn.

Let ȳn = i−1
n (yn). By choice of k, there are m < n < k so that ȳm = ȳn and

xm = xn. Let ȳ and x denote the common values. ym and yn are then comparable in
<T , as both are <T x. Since yn ̸∈Wn and ym ∈Wn, it must be that height(yn) >
height(ym). So ym <T yn. It follows by condition (ii) that (∀∗UW )(i−1

m (ȳ) <T

i−1
W (ȳ)). It then follows using condition (iii) that (∀∗UV )(∀∗UW )(i−1

V (ȳ) <T i−1
W (ȳ)).

Let Z ∈ U witness the first quantifier in this statement.
We finish the proof of the lemma by showing that the nodes i−1

V (ȳ), V ∈ Z, form
a cofinal branch of T , then using the extensive overlaps that result from this by
Corollary 4.2 to obtain a contradiction to condition (iv) above and the lower bound
condition (3) in Definition 4.3.

The proof that the nodes {i−1
V (ȳ) | V ∈ Z} form a cofinal branch of T is stan-

dard, similar to the final part of the ultrafilters proof that the standard poset for
specializing trees of height ω1 has the countable chain condition. Note first that
height(i−1

V (ȳ)) ̸∈ V . (Otherwise using the fact that iV is an isomorphism at ⟨V, W̄ ⟩,
we have height(ȳ) ∈ W̄ . This in turn implies that height(ym) = height(yn) =
height(ȳ) since im and in are isomorphism at ⟨Wm, W̄ ⟩ and ⟨Wn, W̄ ⟩ respectively.
But then ym = yn, contradicting the fact that ym ∈ Wn and yn ̸∈ Wn.) Since the
sets {W ∈ X | ξ ∈ W}, ξ < ω2, all belongs to U , and since ξ ∈ W → ξ ⊆ W , it
follows that {height(i−1

V (ȳ)) | V ∈ Z} is cofinal in ω2. It remains to show that every
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two elements of {i−1
V (ȳ) | V ∈ Z} are comparable in T . Fix V1, V2 ∈ Z. Then the

sets {W ∈ X | i−1
V1

(ȳ) <T i−1
W (ȳ)} and {W ∈ X | i−1

V2
(ȳ) <T i−1

W (ȳ)} both belong
to U by definition of Z. Their intersection is therefore non-empty. Fixing any W
that belongs to both we have i−1

V1
(ȳ) <T i−1

W (ȳ) and i−1
V2

(ȳ) <T i−1
W (ȳ). So i−1

V1
(ȳ)

and i−1
V2

(ȳ) are comparable.

Let h be the cofinal branch of T generated by {i−1
V (ȳ) | V ∈ Z}. The proof of

Corollary 4.2 shows that for unboundedly many β < ω2, for all α ≥ β, the node
of h on level α has an extensive overlap point at β. In particular for all V ∈ Z
with sup(V ∩ Ord) sufficiently large, i−1

V (ȳ) has an extensive overlap point above
sup(Wm ∩ Ord), and hence βi−1

V (ȳ) > sup(Wm ∩ Ord). By condition (iv) above it

follows that βyn = βi−1
Wn

(ȳ) > sup(Wm ∩Ord). By condition (3) of Definition 4.3 it

then follows that φn(yn) > sup(Wm ∩Ord).
But on the other hand, our use of Lemma 4.6 above to obtain yn and xn gave

φn(yn) ∈ v(s, φ). This means that φn(yn) ∈ dom(i−1
n ◦ î). Since i−1

n ◦ î is an
isomorphism at ⟨Q,Wn⟩, and since φn(yn) ∈ Q, it follows that φn(yn) = (i−1

n ◦
î)(φn(yn)) ∈ Wn. Since i−1

m ◦ in is an isomorphism at ⟨Wn,Wm⟩ this implies that
φn(yn) ∈Wm, and hence φn(yn) < sup(Wm ∩Ord), a contradiction. �
Corollary 4.19. Let Q∗ ≺ H(θ∗) with T,S, T , Specialize ∈ Q∗ and Q∗ ∩K ∈ T .
Then any ⟨s, φ⟩ ∈ Specialize with Q∗ ∩K ∈ s is a master condition for Q∗.

Hence Specialize is proper on T , meaning that for a club of Q∗ ≺ H(θ∗), if
Q∗ ∩K ∈ T , then every condition in Specialize∩Q∗ extends to a master condition
for Q∗ in Specialize.
Proof. The second part is immediate from the first using Claim 4.15. Suppose the
first part fails. Extending ⟨s, φ⟩ we may fix a specific dense open D ∈ Q∗ so that
⟨s, φ⟩ is not compatible with any element of D ∩ Q∗. Extending further, we may
assume ⟨s, φ⟩ ∈ D. But then by Lemma 4.18, ⟨s, φ⟩ is compatible with an element
of D ∩Q∗. �

Since T is stationary, Corollary 4.19 implies that Specialize does not collapse ω2.
Lemma 4.18 can be used further, to show that in fact Specialize is ω2-c.c.

Corollary 4.20. Specialize is ω2-c.c.

Proof. Suppose not, and let ⟨sξ, φξ⟩, ξ < ω2, be an antichain. Let Q∗ ≺ H(θ∗) be
as in Lemma 4.18 with ⟨sξ, φξ | ξ < ω2⟩ ∈ Q∗. Such Q∗ can be found since T is
stationary. Let α = sup(Q∗ ∩ ω2). By Corollary 4.16, there is ⟨s, φ⟩ ≤ ⟨sα, φα⟩
with Q∗ ∩K ∈ s. By Lemma 4.18 there is ⟨r, χ⟩ ≤ ⟨sξ, φξ⟩, for some ξ ∈ Q, which
is compatible with ⟨s, φ⟩. But then ⟨sξ, φξ⟩ is compatible with ⟨sα, φα⟩, and since
ξ < α this is a contradiction. �
Lemma 4.21. Let Q∗ ≺ H(θ∗) with T,S, T , Specialize ∈ Q∗ and Q∗ ∩ K ∈ S.
Suppose further that for every a ∈ Q∗, there isW ∗ ∈ Q∗ so that T,S, T , Specialize ∈
W ∗ ≺ H(θ∗) and W ∗ ∩ K ∈ T . Let Q = Q∗ ∩ K. Let ⟨s, φ⟩ ∈ Specialize. Let
D ∈ Q∗ be a subset of Specialize so that ⟨s, φ⟩ ∈ D. Suppose Q ∈ s. Then there is
⟨t, χ⟩ ∈ D ∩Q which is compatible with ⟨s, φ⟩.
Proof. Fix W ∗ ∈ Q∗ as in the assumption of the lemma, with D ∈ W ∗. Let
W = W ∗ ∩ K. Without loss of generality we may assume that D is open in
Specialize. Extending s if necessary we may by Corollary 4.16 assume that W ∈ s.
By closure of s under intersections we also have Q ∩W ∈ s.
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Let D̂ be the set of ⟨ŝ, φ̂⟩ ∈ D so that Q∩W ∈ ŝ and there is no ⟨t, χ⟩ ∈ D∩Q∩W
which is compatible with ⟨ŝ, φ̂⟩. If ⟨s, φ⟩ ̸∈ D̂ then any ⟨t, χ⟩ witnessing this also

witnesses the lemma, and there is nothing further to prove. Suppose that ⟨s, φ⟩ ∈ D̂.
We will derive a contradiction.

Note that D̂ ∈W ∗, since it is defined using the parameters Q∩W and D, which
belong to W ∗. By Lemma 4.18 and using the assumption that ⟨s, φ⟩ ∈ D̂, there is

⟨ŝ, φ̂⟩ ∈ D̂ ∩W which is compatible with ⟨s, φ⟩. Then:

(i) ⟨ŝ, φ̂⟩ ∈ D.
(ii) There is no ⟨t, χ⟩ ∈ D ∩Q ∩W which is compatible with ⟨ŝ, φ̂⟩.
(iii) ⟨ŝ, φ̂⟩ ∈W .

Since ŝ ⊆ W and Q ∩W ∈ ŝ, ŝ ∪ {W,Q} is a side condition. For any condition
⟨r, υ⟩ witnessing that ⟨ŝ, φ̂⟩ is compatible with ⟨s, φ⟩, we have r ⊇ ŝ ∪ {W,Q} and
υ ⊇ φ̂. It follows that ⟨ŝ ∪ {W,Q}, φ̂⟩ is a condition in Specialize.

For every residue gap [Q ∩ R,R) of ŝ ∪ {W,Q} in Q, and every x ∈ T ∩ v(ŝ, φ̂)
with height(x) ≥ sup(Q ∩ R ∩ Ord), if there is a branch u through T , of height
sup(R∩Ord), with u ∈ Q and Proj(u, γ) = Proj(x, γ) for all γ < sup(Q∩R∩Ord),
then there is a unique such branch. (The reason is that by elementarity of Q, any
disagreement between branches u1, u2 ∈ Q of height sup(R ∩ Ord) must occur at
a level below sup(Q ∩ R ∩ Ord).) Let u(x,R) denote the unique such u, when it
exists.

Let a ⊆ Q be a finite set large enough to witness Lemma 4.6 for ⟨ŝ∪{W,Q}, φ̂⟩,
and large enough that u(x,R) ∈ a for all x,R ∈ v(ŝ, φ̂) so that u(x,R) is defined.

Since W is internal on a club, we may write W =
∪

ξ<ω1
Pξ where ⟨Pξ | ξ < ω1⟩

is an increasing continuous sequence of countable models. By elementarity of Q∗

we can pick ⟨Pξ | ξ < ω1⟩ ∈ Q∗. Let α = sup(Q∗ ∩ ω1). Then Q
∗ ∩W = Q ∩W is

exactly equal to Pα.
Let tp be the type of ⟨ŝ∪{W,Q}, φ̂⟩ at Q. LetX be the set of ξ < ω1 so that there

is ⟨sξ ∪{W,Qξ}, φξ⟩ ∈ Specialize with Qξ ∩W = Pξ, the type of ⟨sξ ∪{W,Qξ}, φξ⟩
at Qξ equal to tp, Qξ ⊇ a, and ⟨sξ, φξ⟩ ∈ D. Note that in particular this implies
⟨sξ, φξ⟩ ∈ W , since ⟨ŝ, φ̂⟩ ∈ W . By elementarity of Q∗ we have X ∈ Q∗, and
can also arrange that the map ξ 7→ ⟨sξ, φξ, Qξ⟩ belongs to Q∗. Let ξ̄ be the
least element of X and let Q̄ = Qξ̄, s̄ = sξ̄, and φ̄ = φξ̄. For each ξ ∈ X let

iξ : v(sξ ∪ {W,Qξ}, φξ) → v(s̄ ∪ {W, Q̄}, φ̄) be an isomorphism at ⟨Qξ, Q̄⟩. By

elementarity we can arrange that ξ 7→ iξ belongs to Q∗. Let î : v(ŝ ∪ {W,Q}, φ̂) →
v(s̄ ∪ {W, Q̄}, φ̄) be an isomorphism at ⟨Q, Q̄⟩.

Since ⟨ŝ, φ̂⟩ ∈ D and Q ∩W = Pα, we have α ∈ X. Using the elementarity of
Q∗ it follows that X is unbounded in ω1. Let U be an ultrafilter on X, with the
sets X − ζ in U for all ζ < ω1. By elementarity of Q∗ we can pick U ∈ Q∗.

Let k = |v(s, φ)|2 +1. Working inductively construct ξn ∈ Q, for n < k, so that:

(v) (∀m < n)v(sξm , φξm) ⊆ Qξn ∩W .
(vi) (∀m < n)(∀ȳ ∈ v(s̄, φ̄)) ξ belongs to a set in U that witnesses either

(∀∗Uξ)(i
−1
ξm

(ȳ) <T i−1
ξ (ȳ)) or (∀∗Uξ)(i

−1
ξm

(ȳ) ̸<T i−1
ξ (ȳ)), depending on which

of the two holds.
(vii) (∀ȳ ∈ v(s̄, φ̄)) ξn belongs to a set in U that witnesses (the first quantifier

in) either (∀∗Uζ)(∀∗Uξ)(i
−1
ζ (ȳ) <T i−1

ξ (ȳ)) or (∀∗Uζ)(∀∗Uξ)(i
−1
ζ (ȳ) ̸<T i−1

ξ (ȳ)),
depending on which of the two holds.
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(viii) (∀x ∈ v(s, φ))(∀ȳ ∈ v(s̄, φ̄)) if there is a set Z ∈ U ∩ Q∗ so that (∀ξ ∈
Z ∩Q)(i−1

ξ (ȳ) ̸<T x) then ξn belongs to such a set.

In contrast with the situation in Lemma 4.18 where we had
∪

W∈X∩Q = Q, here

we do not have
∪

ξ∈X∩Q(Qξ) = Q. But we do have
∪

ξ∈X∩QQξ ∩W = Q∩W , and
this is all we need to ensure that any sufficiently large ξn ∈ X ∩Q = X ∩α satisfies
condition (v). Conditions (vi)–(viii) require ξn to belong to each set in some finite
list of sets in U ∩Q∗, and can be secured using the finite completeness of U . That
the elements of U involved can all be picked in Q∗ is clear from the statement in the
case of condition (viii), and uses the elementarity of Q∗ in the case of conditions
(vi) and (vii).

Let Qn = Qξn , sn = sξn , φn = φξn , and in = iξn . We have ⟨sn, φn⟩ ∈ D∩Q∩W
by construction. It follows by condition (ii) that ⟨sn, φn⟩ is not compatible with
⟨ŝ, φ̂⟩. Hence by Lemma 4.6 there must exist yn ∈ dom(φn) − dom(φ̂) and xn ∈
v(ŝ, φ̂) so that yn <T xn and φn(yn) ∈ v(ŝ, φ̂).

Let ȳn = in(yn). By choice of k, there exist m < n < k so that ȳm = ȳn and
xm = xn. Let ȳ and x denote these common values. Let R be the least transitive
node of resQ(ŝ∪{W,Q}) above î−1(height(ȳ)). (Such a node exists since φ̂ ⊆W . R
may beW itself, or a smaller transitive node of ŝ∩Q.) Adapting the corresponding
arguments in the proof of Lemma 4.18 one can check that height(ym) < sup(Qn ∩
R ∩ Ord) ≤ height(yn), that consequently ym <T yn, and that, using conditions
(vi) and (vii), there is Z ∈ U so that (∀ζ ∈ Z)(∀∗Uξ)(i

−1
ζ (ȳ) <T i−1

ξ (ȳ)). Continuing
to adapt the arguments in the proof of Lemma 4.18 it then follows that the nodes
{i−1

ζ (ȳ) | ζ ∈ Z} form a branch through T , call it u, that sup(Qζ ∩ R ∩ Ord) ≤
height(i−1

ζ (ȳ)) < sup(R ∩ Ord), and that consequently the height of the branch u

is exactly sup(R ∩Ord).
By elementarity of Q∗, the set Z above can be picked inside Q∗. It then follows

that u ∈ Q∗. By condition (viii) and since the sets Z − β for β < α all belong to
U ∩ Q, it must be that (∀ξ ∈ Z ∩ Q)(i−1

ξ (ȳ) <T x). (Otherwise, letting β be the

least counterexample, we have that (∀ξ ∈ Z − β)(i−1
ξ (ȳ) ̸<T x). Then by condition

(viii) it follows that i−1
n (ȳ) ̸<T x. But this is a contradiction since yn <T x.)

Since {height(i−1
ξ (ȳ)) | ξ ∈ Z ∩ Q} is cofinal in sup(Q ∩ R ∩ Ord) it follows that

Proj(u, γ) <T x for all γ < sup(Q ∩ R ∩ Ord). This implies that u is equal to
u(x,R). In particular then u ∈ a, and hence u ∈ Qn (in fact u ∈ Qξ for all ξ).

But this means that yn is overlapped by Qn in ⟨sn∪{W,Qn}, φn⟩. Hence by the
overlap condition (8) of Definition 4.3 for ⟨sn ∪ {W,Qn}, φn⟩, φn(yn) ̸∈ Qn. On
the other hand, by our choice of yn (through an application of Lemma 4.6) we have

φn(yn) ∈ v(ŝ ∪ {W,Q}, φ̂). Since i−1
n ◦ î : v(ŝ ∪ {W,Q}, φ̂) → V (sn ∪ {W,Qn}, φn)

is an isomorphism at ⟨Q,Qn⟩, and since φn(yn) ∈ Q, this implies that φn(yn) =

i−1
n ◦ î(φn(yn)) ∈ Qn, a contradiction. �

Corollary 4.22. Specialize is proper on S. Moreover, for a club of Q∗ ≺ H(θ∗),
if Q∗ ∩K ∈ S then every ⟨s, φ⟩ ∈ Specialize with Q∗ ∩K ∈ s is a master condition
for Q∗.

Proof. Fix any Q∗ ≺ H(θ∗) which is sufficiently closed to satisfy the initial assump-
tions of Lemma 4.21. Suppose Q∗ ∩K ∈ S. Let ⟨s, φ⟩ ∈ Q∗ ∩ Specialize. By Claim
4.17, there is ⟨s′, φ′⟩ ≤ ⟨s, φ⟩ with Q∗ ∩ K ∈ s′. By Lemma 4.21, and using an
argument as in the proof of Corollary 4.19, ⟨s′, φ′⟩ is a master condition for Q∗. �
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Claim 4.23. Forcing with Specialize adds a weak specializing function on the re-
striction of T to nodes outside E on a club of levels. (Recall that E consists of the
extensively overlapped nodes of T .)

Proof. Immediate by the definition of Specialize and genericity. The function is∪
{φ | (∃s)⟨s, φ⟩ ∈ G}, where G is generic for Specialize, and the club of levels is

Limit(Ot). We only note that for every α ∈ Limit(Ot) there is some M occurring
in G satisfying condition (2) of Definition 4.3. The proof of this uses Corollary 4.16,
unboundedness of the countable nodes of G in K, and an argument as in the proof
of Claim 2.5 to show that for every countable M and every α ∈ Limit(Ot) below
sup(M ∩Ord), if α ̸∈M then the first ordinal of M above α belongs to Ot . �

We end the section with a brief example showing that in some cases there are
ω2 Aronszajn trees for which no forcing that preserves ω1 and ω2 can add a total
weak specializing function.

Recall from Fact 3.25 that �ta
ω1,ω implies the existence of an ω2 Aronszajn tree

T with an ascent path, namely a sequence ⟨x̄α | α < ω2⟩ where x̄α = ⟨xαn | n < ω⟩
with xαn for n < ω distinct elements of Level(α), so that for every α < β < ω2, for
all but finitely many n, xαn <T xβn. The existence of an ascent path persists to all
generic extensions. In light of this and Claim 1.2, the following lemma establishes
that it is impossible to add a total weakly specializing function on a tree with
an ascent path without collapsing one of ω1 and ω2. More precisely the lemma
shows that, without collapsing one of ω1 and ω2, it is impossible to add a weak
specializing function f so that for stationarily many δ ∈ ω2 of cofinality ω1, for
stationarily many α in δ, for infinitely many n, xαn ∈ dom(f).

Lemma 4.24. Let T be a tree of height ω2 with an ascent path, given by x̄α =
⟨xαn | n < ω⟩ for α < ω2. Then (relative to any θ, A, and C as in Definition 1.1)
for a club of δ < ω2 of cofinality ω1, for a club of α < δ, for all sufficiently large n,
xαn is extensively overlapped in T .

Proof. Fix θ, A, and C. Let D be the set in Claim 4.1 for P that codes the ascent
path. Let δ ∈ Limit(D∩C) have cofinality ω1. Let S be the set of α < δ so that for
infinitely many n, xαn is not extensively overlapped in T . Suppose for contradiction
that S is stationary in δ. Shrinking S if needed we may assume S ⊆ Limit(D ∩C).
We will be done if we can show that for some α ∈ S, for all sufficiently large n, for
arbitrarily large β < α in D ∩ C, β is an extensive overlap point for xαn.

For each β ∈ D ∩ δ, each countable a ⊆ β, and each γ < ω2, let Mβ,a,γ ≺
H(θ,A, P ) be countable with Mβ,a,γ ⊇ a, Mβ,a,γ ∩ ω2 ̸⊆ β, and min(Mβ,a,γ −
β) ≥ max{γ, δ}. Such a model exists by the definition of D in Claim 4.1. Let
ν(β, a, γ) = min(Mβ,a,γ − β). Let kβ,a,γ < ω be such that for all n ≥ kβ,a,γ ,

xδn <T x
ν(β,a,γ)
n . Such k exists by the properties of an ascent path.

Claim 4.25. For each β ∈ D ∩ δ there is kβ so that for cofinally many countable
a ⊆ β, and cofinally many γ < ω2, kβ,a,γ = kβ.

Proof. Suppose not. Then for every k < ω there is ak and γk so that for all
countable a ⊆ β with a ⊇ ak, and all γ < ω2 with γ ≥ γk, kβ,a,γ ̸= k. But then
letting a∗ =

∪
k<ω ak and γ∗ = supk<ω γk we have that (∀k < ω)kβ,a∗,γ∗ ̸= k,

contradiction. �
Fix a specific k < ω so that the set X = {β ∈ D ∩C ∩ δ | kβ = k} is unbounded

in δ. Such k exists since δ ∈ Limit(D ∩ C) and cof(δ) = ω1.
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Now take any α ∈ S ∩Limit(X). Let l < ω be such that for all n ≥ l, xαn <T xδn.
We claim that for every β ∈ X∩α, and any n ≥ max{l, k}, β is an extensive overlap
point for xαn. This will complete the proof of the lemma.

Fix β ∈ X ∩ α and n ≥ max{l, k}. Let a ⊆ β and b ⊆ ω2 − β be countable. Let
γ < ω2 be greater than sup(b). Let M = Mβ,a,γ . We have a ⊆ M , and as in the
proof of Corollary 4.2, (M ∪ Limit(M)) ∩ b = ∅. Increasing a and γ if necessary,
we may by Claim 4.25 assume that kβ,a,γ = kβ , and hence kβ,a,γ = k since β ∈ X.

Since n ≥ k we have xδn <T x
ν(β,a,γ)
n . Since n ≥ l we also have xαn <T xδn. So

xαn <T x
ν(β,a,γ)
n . Since M is elementary relative to the ascent path, and since

ν(β, a, γ) ∈M , we have x
ν(β,a,γ)
n ∈M . So M overlaps xαn. �
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