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Abstract. A Σ2
1 truth for λ is a pair 〈Q,ψ〉 so that Q ⊆ Hλ, ψ is a first order

formula with one free variable, and there exists B ⊆ H
λ+ such that (H

λ+ ;∈, B) |= ψ[Q].

A cardinal λ is Σ2
1 indescribable just in case that for every Σ2

1 truth 〈Q,ψ〉 for λ, there

exists λ̄ < λ so that λ̄ is a cardinal and 〈Q ∩Hλ̄, ψ〉 is a Σ2
1 truth for λ̄. More generally,

an interval of cardinals [κ, λ] with κ ≤ λ is Σ2
1 indescribable if for every Σ2

1 truth 〈Q,ψ〉

for λ, there exists κ̄ ≤ λ̄ < κ, Q̄ ⊆ Hλ̄, and π : Hλ̄ → Hλ so that λ̄ is a cardinal, 〈Q̄, ψ〉 is

a Σ2
1 truth for λ̄, and π is elementary from (Hλ̄;∈, κ̄, Q̄) into (Hλ;∈, κ,Q) with π↾ κ̄ = id.

We prove that the restriction of the proper forcing axiom to c-linked posets requires

a Σ2
1 indescribable cardinal in L, and that the restriction of the proper forcing axiom

to c
+-linked posets, in a proper forcing extension of a fine structural model, requires a

Σ2
1 indescribable 1-gap [κ, κ+]. These results show that the respective forward directions

obtained in Hierarchies of Forcing Axioms I by Neeman and Schimmerling are optimal.

It is a well-known conjecture that the large cardinal consistency strength of
PFA is a supercompact cardinal. This paper is the second in a pair of papers
connecting a hierarchy of forcing axioms leading to PFA with a hierarchy of large
cardinal axioms leading to supercompact.

Recall that a forcing notion P is λ-linked if it can be written as a union of
sets Pξ, ξ < λ, so that for each ξ, the conditions in Pξ are pairwise compatible.
PFA(λ-linked) is the restriction of PFA to λ-linked posets. The forcing axioms
form a hierarchy, with PFA of course equivalent to the statement that PFA(λ-
linked) holds for all λ. The following theorem deals with consistency strength at
the low end of this hierarchy.

Theorem A. The consistency strength of PFA(c-linked) is precisely a Σ2
1 in-

describable cardinal. More specifically:

1. If κ is Σ2
1 indescribable in a model M satisfying the GCH then there is

a forcing extension of M , by a proper poset, in which c = ω2 = κ and
PFA(c-linked) holds.

2. If PFA(c-linked) holds then (ω2)
V is Σ2

1 indescribable in L.

The statement that c = ω2 in part (1) is redundant, as PFA(c-linked) implies
c = ω2. This was proved by Todorčević (see Bekkali [2]) and Veličković [15].

Part (1) is joint with Schimmerling: Neeman–Schimmerling [7] proves its
semi-proper analogue, producing a semiproper forcing extension of M in which
SPFA(c-linked) holds, and the proof of (1) is identical except for the routine
change of replacing semi-proper by proper throughout. It follows from part (2)
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and the semiproper analogue of part (1) proved in [7] that PFA(c-linked) and
SPFA(c-linked) are equiconsistent, both having the consistency strength of a Σ2

1

indescribable cardinal.
Part (2), which extracts strength from PFA(c-linked), is Theorem 1.10 in this

paper.
Todorčević [13] proved that PFA implies the failure of 2λ for all uncountable

cardinals λ. By results of Dodd–Jensen and Welch [3, 16], this was known at the
time to imply the existence of a model with a measurable cardinal. Derivations of
strength from PFA have since used the failure of square principles under PFA as
an intermediary, deriving the large cardinal strength from the failure of square.
For examples of this we refer the reader to Schimmerling [9], Steel [12], and
finally Schimmerling [8] which shows that already the failure of 2ω2

and related
square principles at ω2 has substantial large cardinal strength. In a different
direction, Goldstern–Shelah [4] measured the consistency strength of BPFA, a
version of PFA restricting the antichains used to size ω1, to be a Σ1 reflecting
cardinal. Miyamoto [6] defined a hierarchy of proper forcing axioms with BPFA at
the bottom, and found the exact strength of the second axiom in the hierarchy,
dealing with antichains of size ω2. Here too the consistency strength can be
derived using Todorčević’s antisquare poset, see [14].

Let κ = ωV
2 . To prove the Σ2

1 indescribability of κ in L we must reflect a
first order statement about a subset B of τ = κ+, namely the witness to the Σ2

1

truth, to a lower cardinal τ̄ = κ̄+ of L. (All successors here are computed in L.)
The main difficulty is in making sure that τ̄ reaches κ̄+. It is precisely for this
that the proof of Miyamoto’s result in Todorčević [14] relies on an antisquare
poset. This route is not available to us here, as the relevant antisquare posets
need not be c-linked. Instead we rely on representations of constructible levels
Lα for α ∈ (κ, τ) as direct limits of systems of canonical embeddings between
levels of L below κ. These representations are related to the existence in L of
a combinatorial object known as a morass, although an actual morass is not
needed for the argument. We define a c-linked poset generating a system of
representations which reach τ , and a witness that the object being reached is
the successor of κ. A pseudo-generic for the poset allows us to reflect the first
order statement from κ and τ to κ̄ and τ̄ , while ensuring that τ̄ is the successor
of κ̄.

Let us move now to higher levels of the forcing and large cardinal hierarchies.
We begin by generalizing Σ2

1 indescribability to gaps of cardinals.
By a Σ2

1 truth for λ we mean a pair 〈Q,ψ〉 so that Q ⊆ Hλ, ψ is a first order
formula with one free variable, and there exists B ⊆ Hλ+ such that (Hλ+ ;∈
, B) |= ψ[Q]. A cardinal λ is then Σ2

1 indescribable just in case that for every
Σ2

1 truth 〈Q,ψ〉 for λ, there exists λ̄ < λ so that λ̄ is a cardinal and 〈Q∩Hλ̄, ψ〉
is a Σ2

1 truth for λ̄. The following definition generalizes this.

Definition. A gap of cardinals [κ, λ] with κ ≤ λ is Σ2
1 indescribable if for

every Σ2
1 truth 〈Q,ψ〉 for λ, there exists κ̄ ≤ λ̄ < κ, Q̄ ⊆ Hλ̄, and π : Hλ̄ → Hλ,

such that:

1. λ̄ is a cardinal and 〈Q̄, ψ〉 is a Σ2
1 truth for λ̄.

2. π is elementary from (Hλ̄;∈, κ̄, Q̄) into (Hλ;∈, κ,Q) with π↾ κ̄ = id.
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We also say that κ is (λ,Σ2
1)-subcompact in this case.

At the lowest end, [κ, κ] is Σ2
1 indescribable just in case that κ is Σ2

1 indescrib-
able. Σ2

1 indescribability for a 1-gap [κ, κ+] is already substantially stronger,
enough to imply the existence of superstrong extenders and many subcompact
cardinals. At the upper end, [κ, λ] is Σ2

1 indescribable for all λ ≥ κ just in case
that κ is supercompact.

Theorem A ties the lower end of the hierarchy of forcing axioms PFA(λ-linked)
to the lower end of the Σ2

1 indescribability hierarchy. The next theorem moves
one step up in both hierarchies:

Theorem B. The large cardinal necessary to obtain PFA(c+-linked) by proper
forcing over a fine structural model is precisely a Σ2

1 indescribable 1-gap. More
specifically:

1. Suppose [κ, κ+] is Σ2
1 indescribable in a model M satisfying GCH. Then

there is a forcing extension of M , by a proper poset, in which c = ω2 = κ

and PFA(c+-linked) holds.
2. Suppose V is a proper forcing extension of a fine structural model M , and

PFA(c+-linked) holds in V. Then [κ, κ+] is Σ2
1 indescribable in M where

κ = (ω2)
V.

Part (1) again is due to Neeman–Schimmerling [7]. Part (2) is Theorem 2.12
in this paper. It shows that the large cardinal assumption used in part (1) is
optimal. This large cardinal assumption involves superstrong extenders. The fine
structure of models with such extenders has been developed, and was applied
for proofs of square in Schimmerling-Zeman [10, 11] and Zeman [17]. But core
model theory is still very far below this level. By core model theory we mean
the construction of a maximal fine structural model inside a given universe V.
In proving part (2) we bypass the lack of core model theory by putting some
assumptions on V that tie it to a fine structural model. Precisely we assume that
V is a proper forcing extension of a fine structural model M . This assumption
lets us work withM as if it were a maximal fine structural model in V. We expect
that the assumption could be easily dropped when core model theory reaches the
level of Σ2

1 indescribable 1-gaps, resulting in an actual equiconsistency.
In light of the results above it is natural to tie the hierarchy of forcing axioms

PFA(λ-linked) to the hierarchy of Σ2
1 indescribability, and conjecture that for

λ ≥ ω2, the large cardinal strength of c = ω2∧PFA(λ-linked) is a Σ2
1 indescribable

gap [ω2, λ]. The forward direction is known, proved in [7]. The reverse direction,
beyond Theorems 1.10 and 2.12, awaits the development of fine structure theory
beyond superstrongs, and core model theory beyond Woodin cardinals.

Remark. The development of the results in the paper owes a great deal to
conversations between Ernest Schimmerling and the author.

§1. A Σ2
1 indescribable cardinal. Throughout this section, cardinal suc-

cessors are computed in L, not in V. A point is a limit ordinal β so that the
following conditions hold, where α is uniquely determined from β by the first
condition:

1. Lβ |=“α is the largest cardinal.”
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2. β is a cardinal in Lβ+1.
3. β < α+ (equivalently, β is not a cardinal in L).

Remark 1.1. The demand that β remains a cardinal in Lβ+1 is not needed
for any arguments in this section, but a parallel demand is useful in Section 2.

We refer to α as the level of the point β, and denote it α(β). Define γ(β) to
be least so that Lγ(β)+1 has a surjection of α onto β. Such a level exists since

β < α+. Since the surjection is coded by a subset of α, and since it does not
belong to Lν for any ν < γ(β) + 1, we have:

Claim 1.2. Every element of Lγ(β)+1 is definable in Lγ(β)+1 from parameters
in α(β). ⊣

Let ᾱ < α. Let X be the Skolem hull of ᾱ in Lγ(β)+1. ᾱ is stable in β just
in case that α ∈ X and X ∩ α = ᾱ. Let M be the transitive collapse of X, let
j : M → Lγ(β)+1 be the anticollapse embedding, and let β̄ be such that j(β̄) = β.

(Note also that j(ᾱ) = α.) We call β̄ the projection of β to level ᾱ, denoted
projᾱ(β). Using the elementarity of j it is easy to check that β̄ is a point on
level ᾱ, and that M is precisely Lγ(β̄)+1. We refer to j : Lγ(β̄)+1 → Lγ(β)+1 as
the antiprojection embedding, denoted jβ̄,β . By Claim 1.2 the embedding is

uniquely determined by β̄ and β.
The following claims are easy to verify using the uniqueness and elementarity

of the embeddings involved:

Claim 1.3. Let ᾱ < α < α∗. Let β̄, β, and β∗ be points on levels ᾱ, α, and
α∗. Suppose that β = projα(β∗) and β̄ = projᾱ(β). Then ᾱ is stable in β∗,
projᾱ(β∗) = β̄, and jβ̄,β∗ = jβ,β∗ ◦ jβ̄,β. ⊣

Claim 1.4. Let ᾱ < α < α∗. Let β̄ be a point on level ᾱ, β a point on level
α, and β∗ a point on level α∗. Suppose that β = projα(β∗) and β̄ = projᾱ(β∗).
Then β̄ = projᾱ(β). ⊣

Claim 1.5. Let β < β∗ be points on the same level α. Let ᾱ < α be stable
in β∗, let β̄∗ = projᾱ(β∗), and let j∗ denote jβ̄∗,β∗ . Suppose that β belongs
to range(j∗) (in other words, it is definable in Lγ(β∗)+1 from parameters in ᾱ).
Then:

1. ᾱ is stable in β.

Let β̄ = projᾱ(β).

2. β̄ = (j∗)−1(β). (In particular projᾱ(β) < projᾱ(β∗).)
3. jβ̄,β = j∗↾ Lγ(β̄)+1. ⊣

A thread in τ is a sequence of points T = 〈βα | α ∈ C〉 so that:

1. C is club in τ , and for each α ∈ C, βα is a point on level α.
2. Let α ∈ C and let ᾱ < α. Then ᾱ ∈ C iff ᾱ is stable in βα.
3. Let ᾱ < α both belong to C. Then βᾱ = projᾱ(βα).

We refer to C as the domain of T , denoted dom(T ), and to τ as the height
of T , denoted ht(T ). By Claim 1.3, the system of models and embeddings
〈Lγ(βα)+1, jβα,βα′

| α, α′ ∈ C ∧ α < α′〉 commutes. We use dlm(T ) to denote the
direct limit of this system, and refer to it as the direct limit of the models
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of T . Let πα,∞ : Lγ(βα)+1 → dlm(T ) be the direct limit embeddings. If dlm(T )
has the form Lγ(β∞)+1 where β∞ = πα,∞(βα) (for some/all α ∈ C) then we say
that β∞ is the limit of T , denoted lim(T ). Notice in this case that the direct
limit embeddings πα,∞ must be equal to the antiprojection embeddings jβα,β∞

by Claim 1.2.

Remark 1.6. Typically we only consider threads with height of uncountable
cofinality. The direct limit of the models of T is then wellfounded. By the
elementarity of the direct limit embeddings dlm(T ) must be a level of L, and in
fact the first level which has a surjection of α onto β∞. It follows that, for every
thread T so that ht(T ) has uncountable cofinality, the limit of T exists.

Claim 1.7. Let β be a point on level τ , with τ a regular cardinal in L. Then
there is thread T ∈ L of height τ with lim(T ) = β.

Proof. The set D of α < τ which are stable in β belongs to L. The set
is closed, and using the regularity of τ a simple Lowenheim–Skolem argument
inside L shows that D is unbounded in τ . The sequence 〈projα(β) | α ∈ D〉
is therefore a thread. It is easy to check that the direct limit of this thread is
Lγ(β)+1 (and that the direct limit embeddings are jβα,β). ⊣

Let β be a point on level α. If the set of levels stable in β is unbounded in α,
then the sequence 〈projᾱ(β) | ᾱ stable in β〉 is a thread with limit β, and is in
fact the unique thread with limit β. We refer to it as the thread leading to β.

Let κ be a regular cardinal of L and let 〈Q,ψ〉 be a Σ2
1 truth for κ. A point β

on level α ≤ κ is said to capture 〈Q,ψ〉 just in case that:

1. Q ∩ Lα belongs to Lβ .
2. There is η < γ(β) and B ⊂ Lβ in Lη+1 so that (Lβ ;∈, B) |= ψ[Q ∩ Lα].

The witness of β, denoted η(β) is the least η witnessing condition (2). Notice
then that there is a subset of Lβ in Lη(β)+1 − Lη(β), and therefore:

Claim 1.8. Every element of Lη(β)+1 is definable in Lη(β)+1 from parameters
in Lβ. ⊣

The definitions in the next two paragraphs are made with reference to a fixed
Σ2

1 truth 〈Q,ψ〉, and apply to points which capture 〈Q,ψ〉.
Two points β < β∗ of the same level α are compatible just in case that

there is an elementary embedding from Lη(β)+1 into Lη(β∗)+1 with critical point
β. By Claim 1.8 the embedding is uniquely determined by β and β∗. We use
ϕβ,β∗ to denote the embedding, and refer to it as a horizontal embedding, to
emphasize that β and β∗ are on the same level. If β, β∗, and β∗∗ are compatible
then using Claim 1.8 it is clear that ϕβ,β∗∗ = ϕβ∗,β∗∗ ◦ ϕβ,β∗ .

For a set X of compatible points on the same level α, we use hlim(X) to
denote the direct limit of the system 〈Lη(β)+1, ϕβ,β′ | β, β′ ∈ X ∧ β < β′〉. We
refer to hlim(X) as a horizontal direct limit. If the direct limit is wellfounded
then it must be a level of L, and by elementarity of the direct limit embeddings
it must be the first level satisfying (∃B ⊂ Lβ∗)(Lβ∗ ;∈, B) |= ψ[Q ∩ Lα], where
β∗ = sup(X).
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Claim 1.9. Work in the settings of Claim 1.5. Suppose further that β and β∗

capture 〈Q,ψ〉, and that ᾱ is large enough that Q ∩ Lα is definable in Lγ(β∗)+1

from parameters in ᾱ. Then:

1. β̄ and β̄∗ capture 〈Q,ψ〉.
2. β̄ and β̄∗ are compatible iff β and β∗ are compatible.
3. (Assuming β and β∗ are compatible.) ϕβ,β∗ is equal to j∗(ϕβ̄,β̄∗).
4. (Again assuming β and β∗ are compatible.) jβ̄∗,β∗ ◦ ϕβ̄,β̄∗ = ϕβ,β∗ ◦ jβ̄,β.

Proof. Note that η(β) and η(β∗) are both smaller than γ(β∗). The fact that
β and β∗ capture 〈Q,ψ〉 can therefore be seen inside Lγ(β∗)+1. Similarly the
question of the compatibility of β and β∗ can be answered inside Lγ(β∗)+1, and
ϕβ,β∗ can be identified inside Lγ(β∗)+1. The first three conditions of the claim
follow directly from these facts and the elementarity of j∗. Condition (4) follows
from condition (3) here and condition (3) in Claim 1.5. ⊣

Theorem 1.10. Suppose that PFA holds for c-linked posets. Then ωV
2 is Σ2

1

indescribable in L.

Proof. Let κ denote ωV
2 . κ is regular in L. Suppose that 〈Q,ψ〉 is a Σ2

1 truth
for κ in L. We aim to find κ̄ < κ so that 〈Q∩Lκ̄, ψ〉 is a Σ2

1 truth for κ̄ in L. Our
plan is to force to add a set K of points below κ, so that the Σ2

1 statement about
Q can be expressed as a Π1

1 statement about K. We then use the forcing axiom
to reflect this statement, finding a system K̄ of points below κ̄ < κ satisfying
the same Π1

1 statement.
We first express the Σ2

1 truth 〈Q,ψ〉 as a statement about a club E of points
on level κ. We shall then force to add the set K so that the limits of threads
through K are precisely the points in E.

Claim 1.11. There is a club E ⊂ κ+ so that every β ∈ E is a point on level
κ and captures 〈Q,ψ〉, so that every two points in E are compatible, and so that
hlim(E) is wellfounded.

Proof. By assumption 〈Q,ψ〉 is a Σ2
1 truth for κ in L. Let η∗ ≥ κ+ be least

so that a B witnessing this exists in Lη∗+1. For each β ∈ (κ, κ+) let Xβ be
the Skolem hull of β ∪ {Q,κ+, η∗} in Lκ++ . Let Mβ be the transitive collapse

of Xβ , let πβ : Mβ → Xβ be the anticollapse embedding, and let ηβ = π−1
β (η∗).

Let E ⊂ κ+ be a club so that for each β ∈ E, Xβ ∩ κ+ = β. Notice then that
πβ(β) = κ+. It is easy to check that each β in E is a point that captures 〈Q,ψ〉
(further, η(β) = ηβ), that any two points β < β∗ in E are compatible (further,

ϕβ,β∗ is precisely π−1
β∗ ◦ πβ), and that hlim(E) = Lη∗+1. ⊣

Define a poset A in V as follows. A condition is a countable set p of points so
that:

(a) All the points in p capture 〈Q,ψ〉, and {β ∈ p | α(β) = κ} ⊂ E.
(b) For every α < κ, all the points in {β ∈ p | α(β) = α} are compatible,

and (assuming there are points in p on level α) hlim(β ∈ p | α(β) = α) is
wellfounded.

(c) The set of {α < κ | p has points on level α} is closed (with a largest
element).
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We refer to {β ∈ p | α(β) < κ} as the stem of p, and to {β ∈ p | α(β) = κ} as
the commitment of p. These sets are denoted stem(p) and cmit(p) respectively.
We use levels(p) to denote the set of α < κ to that p has points on level α. The
ordering of A is defined by setting q ≤ p just in case that:

(d) p ⊂ q.
(e) If α ∈ levels(p) then p and q have the same points on level α. If α ∈

levels(q) − levels(p) then α ≥ sup(levels(p)).
(f) If α ∈ levels(q) − levels(p) then α is stable in every β ∈ cmit(p) and

{projα(β) | β ∈ cmit(p)} ⊂ q.
(g) If α ∈ levels(q)− levels(p) then α is large enough that: (1) for every β < β′

both in cmit(p), β is definable in Lγ(β′)+1 from parameters in α; and (2)
for every β ∈ cmit(p), Q is definable in Lγ(β)+1 from parameters in α.

(h) If α ∈ levels(q) − levels(p), β, β′ ∈ cmit(p), and there are no elements of
E between β and β′, then there are no points in q between projα(β) and
projα(β′). Similarly if there are no elements of E below β, then there are
no points in q on level α below projα(β).

Claim 1.12. Let pn (n < ω) be a sequence of conditions so that pn+1 < pn
for each n. Then there is a condition q so that (∀n)q < pn.

Proof. Let p∞ =
⋃
n<ω pn and let α∞ = sup(levels(p∞)). By condition (f),

α∞ is a limit of ordinals stable in β, and therefore itself stable in β, for each
β ∈ cmit(p∞). We may therefore set a = {projα∞

(β) | β ∈ cmit(p∞)}. By
condition (g), α∞ is large enough that for every β < β′ both in cmit(p∞), Q
and β are definable in Lγ(β′)+1 from parameters in α∞. We may therefore apply
Claim 1.9 and conclude that all the points in a capture 〈Q,ψ〉, that they are all
compatible, and that hlim(a) embeds into hlim(cmit(p∞)), which in turn embeds
into hlim(E), and is therefore wellfounded. q = p∞ ∪ a is therefore a condition
in A. A use of condition (2) in Claim 1.5 shows that if β < β′ both belong to
cmit(p∞) and there are no elements of cmit(p∞) between them, then there are
no elements of a between projα∞

(β) and projα∞
(β′). Since cmit(p) ⊂ E this is

enough to establish the first part of condition (h) for α = α∞ in verifying that
q < pn for each n. The second part of condition (h) is similar, and the other
conditions are easier. ⊣

Remark 1.13. A is countably closed, hence proper. Any two conditions in A

with the same stem are compatible (their union is stronger than both). Since
there are only κω = (ωV

2 )ω = c possible stems, A is c-linked.

A is proper and c-linked, but we are not yet done defining the poset to which
we intend to apply PFA(c-linked). We shall apply the axiom to a poset A ∗ Ḃ

where Ḃ names a c.c.c. poset of size κ in VA.

Claim 1.14. Let p be a condition in A. Let ξ < κ. Then there is q ≤ p so
that q has points on levels above ξ.

Proof. For β < β′ both in cmit(p) let νβ,β′ < κ be large enough that β is
definable in Lγ(β′)+1 from parameters in νβ,β′ . For β ∈ cmit(p) let νβ be large
enough that Q is definable in Lγ(β)+1 from parameters in νβ . For each β ∈
cmit(p) let Tβ be the thread leading to β. The domain of Tβ is club in κ, cmit(p)
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is countable, and κ = ωV
2 has uncountable cofinality. So

⋂
β∈cmit(p) dom(Tβ)

is unbounded in κ. Let α belong to this intersection, with α > ξ, α > νβ ,
and α > νβ,β′ , for all β, β′ ∈ cmit(p). Let a = {projα(β) | β ∈ cmit(p)}. Using
Claim 1.9 it is easy to check that all points in a are compatible, and that hlim(a)
embeds into hlim(E) and is therefore wellfounded. So q = p ∪ a is a condition.
It is easy to check that q ≤ p (condition (h) again uses Claim 1.5). ⊣

Let G be A generic over V. Let K =
⋃
p∈G stem(p), and let K̇ name K. By the

last claim, K has points on unboundedly many levels below κ. For any α < κ,
the restriction of K to points of levels below α belongs to V, due to condition
(e) in the definition of A, and is countable in V. levels(K) is therefore a club of
order type ω1 in κ. In particular κ = ωV

2 is collapsed to ω1 in V[G].
A thread T of height κ is a thread through K if unboundedly many points

of T belong to K.

Claim 1.15. Let T be a thread of height κ and let β = lim(T ). Then T is a
thread through K iff β ∈ E.

Proof. Suppose β ∈ E. By the genericity of G there is some p ∈ G with
β ∈ p. For every α > sup(p) in levels(K), projα(β) belongs to K. Since projα(β)
is a point in T it follows that T is a thread through K. Conversely suppose that
β 6∈ E. Suppose initially that β 6< min(E), and let β1 < β be the largest element
of E below β (recall that E is closed). Let β2 > β be the first element of E
above β (recall that E is unbounded). By the genericity of G there is some
p ∈ G with β1, β2 ∈ p. Let ν < κ be large enough that β is definable in Lγ(β2)+1

from parameters in ν, and β1 is definable in Lγ(β)+1 from parameters in ν. Then
for every α > max{sup(p), ν} in levels(K), projα(β1) < projα(β) < projα(β2),
and using the first part of condition (h) in the definition of A it follows that
projα(β) 6∈ K. Thus T has no points in K on levels above max{sup(p), ν}. The
case that β < min(E) is similar, using the second part of condition (h). ⊣

The proof of the last claim shows that T is a thread throughK iff all sufficiently
large points in T on levels in levels(K) belong to K. Let R1 be the tree of
attempts to contradict this. More precisely, a node in R1 is a point β with
α(β) ∈ levels(K) and so that: (1) for unboundedly many ᾱ < α(β), projᾱ(β)
belongs to K; and (2) for unboundedly many ᾱ < α(β), ᾱ ∈ levels(K) yet
projᾱ(β) 6∈ K (possibly because ᾱ is not stable in β and the projection is not
defined). R1 is ordered through projection: β <R1

β′ iff β = projα(β)(β
′). This

order gives rise to a tree by Claim 1.4. Since a branch of length ω1 through R1

contradicts the fact that a thread T has unboundedly many points in K iff a
tail-end of its points on levels in levels(K) are in K, we have:

Claim 1.16. In V[G], there are no branches of length ω1 through R1. ⊣

Let R2 be the tree of attempts to create a thread with only boundedly many
points of K to its right. More precisely, a node in R2 is a pair 〈ξ, δ〉 so that δ
is a point, α(δ) ∈ levels(K), ξ < α(δ), and for every ᾱ which is stable in δ and
greater than ξ, there are no points β̄ of K on level ᾱ with β̄ > projᾱ(δ). R2 is
ordered through projection on the second coordinate and equality on the first:
〈ξ, δ〉<R2

〈ξ′, δ′〉 iff ξ = ξ′ and δ = projα(δ)(δ
′).
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Claim 1.17. In V[G], there are no branches of length ω1 through R2.

Proof. Suppose for contradiction that 〈〈ξ, δi〉 | i < ω1〉 is a branch through
R2. Since α(δi) ∈ levels(K) for each i, and since levels(K) is a set of order
type ω1 cofinal in κ, sup{α(δi) | i < ω1} is equal to κ. The sequence therefore
generates a thread of height κ. Let δ∗ be the limit of this thread. Let β∗ be an
element of E greater than δ∗. (This is possible since E is unbounded in κ+.)
Let ᾱ < κ be such that ᾱ > ξ, δ∗ is definable in Lγ(β∗)+1 from parameters in ᾱ,

ᾱ is stable in β∗, and β̄ = projᾱ(β∗) ∈ K. (The last requirement is possible by
Claim 1.15 since β∗ ∈ E.) By Claim 1.5, ᾱ is stable in δ∗ and projᾱ(δ∗) < β̄.
But for any i large enough that δi is on a level above ᾱ, this contradicts the fact
that 〈ξ, δi〉 is a node in R2. ⊣

For a point δ define β(δ) to be the smallest β > δ in K on the same level as
δ if there is one, and leave β(δ) undefined otherwise. The previous claim shows
that for any thread T = 〈δα | α ∈ dom(T )〉 of height κ, β(δα) is defined for
unboundedly many α ∈ dom(T ).

Let R3 be the following tree: A node in R3 is a point δ so that α(δ) ∈ levels(K)
and for every ν < α(δ) there are ᾱ 6= ᾱ′ between ν and α(δ) so that β(projᾱ(δ))
and β(projᾱ′(δ)) are both defined, but neither is a projection of the other. R3

is ordered through projection: δ <R3
δ′ iff δ = projα(δ)(δ

′).

Claim 1.18. In V[G], there are no branches of length ω1 through R3.

Proof. Suppose for contradiction that 〈δi | i < ω1〉 is a branch through R3.
The sequence then generates a thread of height κ. Let δ∗ be the limit of this
thread. Let β∗

1 ≤ δ∗ be the largest element of E below δ∗, and let β∗
2 > δ∗

be the first element of E above β∗. An argument similar to that in the proof
of Claim 1.15, using condition (h) in the definition of A, shows that for all
sufficiently large ᾱ ∈ levels(K): projᾱ(β∗

1) ≤ projᾱ(δ∗) < projᾱ(β∗
2); projᾱ(β∗

1)
and projᾱ(β∗

2) belong to K; and there are no elements of K between them. This
implies that for all sufficiently large ᾱ < κ, if β(projᾱ(δ∗)) is defined then it is
equal to projᾱ(β∗

2). It follows that there is ν < κ so that for all ᾱ 6= ᾱ′ between
ν and κ, if β(projᾱ(δ∗)) and β(projᾱ′(δ∗)) are both defined then (they are equal
to projᾱ(β∗

2) and projᾱ′(β∗
2) and hence) one is a projection of the other. But for

any i large enough that δi is on a level above ν, this contradicts the fact that δi
is a node in R3. ⊣

Definition 1.19. A model M is said to satisfy the singular square princi-

ple if there is a map α 7→ Cα, for α ∈ S = {singular cardinals of M}, definable
over M , so that:

(i) Cα is closed in α, contained in S ∩ α, and has order type strictly smaller
than α.

(ii) If cofM (α) > ω then Cα is unbounded in α. (Hence, in light of condition
(i), Cα witnesses the singularity of α.)

(iii) If β ∈ Cα then Cβ = Cα ∩ β.

By Jensen, L satisfies the singular square principle. Let S be the class of
singular cardinals of L and let α 7→ Cα, for α ∈ S, witness the principle. Let
R0 be the tree of attempts to thread the sets Cα for α < sup(levels(K)) = κ.
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Precisely, a node in R0 is a pair 〈ξ, α〉 so that α is a singular cardinal of L above
the ξth element of levels(K). 〈ξ, α〉<R0

〈ξ′, α′〉 iff ξ < ξ′ and α ∈ Cα′ .

Claim 1.20. In V[G], there are no branches of length ω1 through R0.

Proof. Suppose 〈〈ξi, αi〉 | i < ω1〉 ∈ V[G] is a branch through R0. Let

D = {ν < κ | (∃i)ν ∈ Cαi
〉. Then D ∈ V[G] is club in κ. Let Ḋ name D, and

suppose without loss of generality that it is outright forced in A that for any
ν < ν′ both in Ḋ, ν, ν′ are singular in L and ν ∈ Cν′ . Using the fact that A is
countably closed, it is easy to check that there is a club D̂ ∈ V, so that for any
ν < ν′ both in D and of cofinality ω in V, there is a condition in A forcing both
ν and ν′ into Ḋ. It follows that for all ν < ν′ both in D̂ and of cofinality ω, ν, ν′

are singular in L and ν ∈ Cν′ . Using the fact that κ is regular in V fix α ∈ D

of cofinality ω and so that D ∩ α has order type α. Then α is singular in L and
D ∩ α ⊂ Cα. So Cα has order type α, contradicting condition (i) above. ⊣

The trees Ri for i = 0, 1, 2, 3 are defined with reference to K. When we wish
to emphasize this dependence we write Ri(K).

Let B be the poset for specializing the trees Ri, i = 0, . . . , 3. (See Jech
[5, Equation (16.6)] or Baumgartner–Malitz–Reinhardt [1] for the definition. We
are using the poset for specializing the disjoint union of the trees Ri.) Since the
trees do not have branches of length ω1 in V[G], B is c.c.c. in V[G].

Let Ḃ name B and let P be the restriction of A ∗ Ḃ to the set P of conditions
〈p, ḟ〉 in A ∗ Ḃ so that p forces a value for ḟ . The restriction limits the number
of conditions, so that the fact that A is c-linked and the fact that B has size
(ω2)

V together imply that P is c-linked. Since A is countably closed and B is

c.c.c., A ∗ Ḃ is proper and hence so is P. Apply PFA(c-linked) to P. Using an
appropriate choice of dense sets we get a filter Ḡ ∗ H̄ ⊂ P so that:

1. K̄ = K̇[Ḡ] =
⋃
p∈Ḡ stem(p) is a set of points and each of the points in K̄

captures 〈Q,ψ〉.
2. levels(K̄) is a club of order type ω1.
3. For every α ∈ levels(K̄), all the points in K̄ on level α are compatible, and

the horizontal limit of these points is wellfounded.
4. Each of the trees R̄i = Ri(K̄), i = 0, 1, 2, 3, is special, and therefore has no

branches of length ω1.

Standard arguments show that κ is a limit of cardinals of L. (If κ were the car-
dinal successor of some τ in L then the 2τ sequence in L could be used to define
a forcing that contradicts PFA(c-linked). The argument is due to Todorčević.)
We may therefore, through the choice of dense sets in P, also make sure that:

5. κ̄ = sup(levels(K̄)) is a limit of cardinals of L.

By condition (2), κ̄ has cofinality ω1. Threads through K̄ therefore have
wellfounded direct limit models, and so every such thread has a limit. Let Ē be
the set {lim(T ) | T a thread through K̄}. All points in K̄ capture 〈Q,ψ〉, and by
the elementarity of projection embeddings it follows that lim(T ) captures 〈Q,ψ〉
whenever T is a thread through K̄. Thus all points in Ē capture 〈Q,ψ〉. We
intend to show that all these points are compatible, that they have a wellfounded
horizonal limit, and that sup(Ē) = κ̄+. The horizonal limit of Ē then gives rise
to a witness that 〈Q ∩ Lκ̄, ψ〉 is a Σ2

1 truth about κ̄.
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Claim 1.21. Let β, β∗ belong to Ē. Then β and β∗ are compatible.

Proof. β is a limit of a thread through K̄, and so there are unboundedly
many α < κ̄ so that projα(β) ∈ K̄. Using the fact that R̄1 has no branches
of length ω1 it follows that in fact projα(β) ∈ K̄ for all sufficiently large α ∈
levels(K̄). A similar argument applies to β∗. Thus there is ν < κ̄ so that for
all α > ν in levels(K̄), projα(β) and projα(β∗) are defined (meaning that α is
stable in both), and both belong to K̄. Using condition (3) above it follows that
projα(β) and projα(β∗) are compatible.

Let α > ν in levels(K̄) be large enough that β and Q ∩ Lκ̄ are definable in
Lγ(β∗)+1 from parameters in α. By the last paragraph, α is stable in β∗, and
projα(β) and projα(β∗) are compatible. Using Claim 1.9 it follows that β and
β∗ are compatible. ⊣

Claim 1.22. hlim(Ē) is wellfounded.

Proof. Suppose not. Let βi ∈ E and ξi ≤ η(βi) be such that ϕβi,βi+1
(ξi) >

ξi+1 for each i < ω. Let νi < κ̄ be large enough that βi, Q ∩ Lκ̄, and ξi are
definable in Lγ(βi+1)+1 from parameters in νi. Let ν′i < κ̄ be large enough that

projα(βi) is defined and belongs to K̄ for every α > ν′i in levels(K̄). (We are
using here the fact that R1 has no branches of length ω1, as in the previous
claim.)

Let α ∈ levels(K̄) be greater than sup{νi, ν
′
i | i < ω}. Let β̄i = projα(βi) and

let ξ̄i = j−1
β̄i,βi

(ξi) = j−1
β̄i+1,βi+1

(ξi). By Claim 1.9, ϕβ̄i,β̄i+1
(ξ̄i) > ξ̄i+1. But then

since β̄i ∈ K̄, the horizonal limit of the points of K̄ on level α is illfounded. This
contradicts condition (3) above. ⊣

Claim 1.23. κ̄ is regular in L.

Proof. Suppose not. Since κ̄ is a limit of cardinals in L it must then be a
singular cardinal in L. So Cκ̄ is defined, and is club in κ̄. For each ξ < ω1 let
αξ be an element of Cκ̄ greater than the ξth element of levels(K̄), and greater
than sup{αζ | ζ < ξ}. Notice that Cαξ

= Cκ̄ ∩ αξ and therefore αζ ∈ Cαξ

for ζ < ξ < ω1. So 〈〈ξ, αξ〉 | ξ < ω1〉 is a branch of length ω1 through R̄0,
contradicting the fact that the tree is special. ⊣

Having established that κ̄ is regular in L we may apply Claim 1.7 and conclude
that for every point δ on level κ̄, there is a thread of height κ̄ with limit δ. We
will use this in the following claim.

Claim 1.24. Ē is unbounded in κ̄+.

Proof. Fix a point δ ∈ (κ̄, κ̄+). We produce β ∈ Ē with β > δ.
Let C be the set of α < κ̄ which are stable in δ. By Claim 1.7, C is club in κ̄

and 〈projα(δ) | α ∈ C〉 is a thread with limit δ.
Let D be the set of α ∈ levels(K̄) so that there is a point β in K̄ on level α

with β > projα(δ). Let βα be the least such.
Since R2 has no branches of length ω1, D is unbounded in κ̄. Since R3 has no

branches of length ω1, there is ν < κ so that for all α, α′ ∈ D between ν and κ̄,
one of βα, βα′ is a projection of the other. It follows that {βα | α ∈ D ∧ α > ν}
generate a thread. This is a thread through K̄, and using Claim 1.5 it is easy to
see that the limit of this thread is greater than δ. ⊣
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Let M = hlim(Ē). The limit makes sense by Claim 1.21. M is wellfounded
by Claim 1.22, and is therefore a level of L. (If cof(κ̄+) > ω then the wellfound-
edness of M is immediate, but cof(κ̄+) = ω is possible, for example if 0♯ exists.)
Each of the points in Ē captures 〈Q,ψ〉, and so using the elementarity of the
horizonal limit embeddings it follows that M satisfies “there exists B ⊂ Lβ∗ so
that (Lβ∗ ;∈, B) |= ψ[Q∩Lκ̄],” where β∗ stands for sup(Ē), which by Claim 1.24
is equal to κ̄+. Thus in L there exists B ⊂ Lκ̄+ so that (Lκ̄+ ;∈, B) |= ψ[Q∩Lκ̄].
This completes the proof of Theorem 1.10. ⊣

§2. A Σ2
1 indescribable 1-gap. Throughout this section we work with a

class model M = J [ ~E] where ~E is a coherent sequence of short extenders in the

style of Zeman [18]. M‖β below denotes the structure (Jβ [ ~E↾β];Eβ). We only

need a few properties of the inner model J [ ~E], summarized in the following list:

• (Acceptability) If there is a subset of κ in (M‖ γ + 1) − (M‖ γ) then there
is a surjection of κ onto M‖ γ in M‖ γ + 1.

• (Condensation) Suppose that κ is the largest cardinal in M‖ γ+1, X is an
elementary substructure of M‖ γ + 1, and X ∩ κ = κ̄ ≤ κ. Let P be the
transitive collapse of X. Then either there is γ̄ so that P = M‖ γ̄ + 1, or
(if κ̄ indexes an extender in M) there is γ̄ so that P = Ult(M,Eκ̄)‖ γ̄ + 1.

• Acceptability and condensation hold not only for M , but also for ultrapow-
ers of M .

• M satisfies the singular square principle (see Definition 1.19).
• 2κ holds in M for all κ which are not subcompact (and hence certainly for

all singular κ).

The first three conditions are part of the standard theory of fine structural inner
models. The last condition is due to Schimmerling-Zeman [10, 11]. The condition
before last is due to Zeman [17].

The second possibility in the condensation statement forces us to work not
only with initial segments of M , but also with initial segments of ultrapowers of
M . The following lemma helps separate the two cases.

Lemma 2.1. Let β be an ordinal. Then at most one of the following two con-
ditions holds. Moreover, if condition (2) holds then there is exactly one ordinal
α witnessing it. (The same is true, trivially, with condition (1).)

1. There is α < β so that M‖β |=“α is the largest cardinal,” β remains a

cardinal in M‖β + 1, yet β is not a cardinal in J [ ~E].

2. There is α < β so that α indexes an extender in ~E, Ult(M,Eα)‖β |=“α is
the largest cardinal,” β remains a cardinal in Ult(M,Eα)‖β + 1, yet β is
not a cardinal in Ult(M,Eα).

Proof. Suppose condition (2) holds and is witnessed by α. We prove that
condition (1) fails, and that there is no α′ > α witnessing condition (2).

Note that Eα belongs to M‖β+1, and since β < (α+)Ult(M,Eα), from Eα one
can define, inside M‖β + 1, a surjection of (crit(Eα)++)M‖α × spt(Eα) onto β.
So β is not a cardinal in M‖β + 1, in contradiction to condition (1).

Suppose now α′ > α, and α′ is also a witness for condition (2). From M‖α
and Eα one can define a surjection of α onto β, and so certainly onto α′. It
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follows that α′ is not a cardinal in Jα′+1[ ~E↾α′], and therefore cannot index an

extender in ~E. ⊣

A point in this section is an ordinal β for which one of the conditions in
Lemma 2.1 holds. If the first conditions holds for β then we refer to β as a
type one point. If the second condition holds then β is a type two point. By
the lemma, these two cases do not overlap. Again by the lemma, the ordinal α
witnessing the condition is determined uniquely by β. We refer to this ordinal
as α(β).

Remark 2.2. If α is a cardinal of M then it does not index an extender on ~E,
and it follows that all points on level α are of type one. If α indexes an extender

on ~E then it is not a cardinal in M‖β for any β > α and it follows that all points
on level α are of type two.

For β of type one let γ(β) be least so that M‖ γ(β) + 1 has a surjection of α
onto β, and let Mβ and Mγ(β)+1 denote M‖β and M‖ γ(β) + 1. For β of type
two define γ(β) similarly but using Ult(M,Eα) instead of M , and let Mβ and
Mγ(β)+1 denote Ult(M,Eα)‖β and Ult(M,Eα)‖ γ(β) + 1.

Now define the notions stable, projection, antiprojection embedding, thread,
direct limit of the models of a thread, and limit of a thread as in Section 1, but
replacing Lγ(β)+1 by Mγ(β)+1 throughout. Define the capturing of a Σ2

1 truth as
in Section 1, but replacing L by M if β is of type one, and by Ult(M,Eα(β)) if β
is of type two. Define η(β), compatibility, horizontal embeddings, and horizontal
direct limits similarly. Let Mη(β)+1 denote M‖ η(β) + 1 if β is of type one, and
Ult(M,Eα(β))‖ η(β) + 1 if β is of type two.

Claims 1.2 through 1.9 hold in the new settings, as their proofs depend only
on acceptability and condensation. Let us just note that, because of the extra
ultrapower clause in the condensation condition, the projection of a point of type
one may very well be a point of type two, and this is the reason we require the
two types. (It is also true that the projection of a point of type two may be a
point of type one.) For the most part there is no need to distinguish between
the types, as the same claims hold for both, albeit with different meanings for
Mβ , Mη(β)+1, and Mγ(β)+1.

Remark 1.6 need not hold in the new settings. The direct limit model dlm(T ),
even if it is wellfounded and indeed iterable, need not be a level of M as its
extender sequence need not in general agree with that of M . There are a few
ways to get around this problem. One is to assume that M satisfies some “core
model like” maximality principles in V. Another, which we take in this paper,
is to assume that V is a forcing extension of M by a proper poset.

Lemma 2.3. Assume that V is a forcing extension of M by a proper poset.
Let κ be a regular uncountable cardinal of M . Let T be a thread of height κ in
V. Then lim(T ) exists.

Proof. Let P ∈ M and G be such that V = M [G], with P proper in M and

G generic for P over M . Let Ṫ be a name for a thread of height κ. Let T = Ṫ [G].
Let Q = dlm(T ). If Q is a level of M then its first order properties imply that
it has the form Mγ(β)+1 for a point β on level κ, and therefore lim(T ) exists.
Suppose then for contradiction that Q is not a level of M .
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Let δ be largest so that ~EM ↾ δ = ~EQ↾ δ and so that δ is a limit of points

on level κ. ( ~EM and ~EQ agree to κ, and in fact they agree at least to the

successor of κ in L( ~EM ↾κ) = L( ~EQ↾κ). The successor of κ in L( ~EM ↾κ) is a
limit of points on level κ, so δ is well defined and greater than or equal to this
successor.) Without loss of generality we may assume that Q has only finitely
many points on level κ above δ. (By a point of Q we mean an ordinal β satisfying
one of the conditions in Lemma 2.1, but with M replaced by Q.) For if Q had
infinitely many points on level κ above δ, then one of them, η say, would be such

that ~EQ↾ γ(η)+1 6= ~EM↾ γ(η)+1, meaning that already Q‖ γ(η)+1 is not a level
of M . We could then replace T by a thread T ′ so that dlm(T ′) = Q‖ γ(η) + 1.

Let 〈βα | α ∈ dom(T )〉 be the thread T , and let jα : Mγ(βα)+1 → Q be the
embeddings of the direct limit along the thread. Let β = jα(βα) for some/any
α ∈ dom(T ). β is then the largest point of Q on level κ. By the reasoning of
the previous paragraph, there is k < ω so that β is the kth point of Q on level
κ above δ. For each α ∈ dom(T ) let δα = j−1

α (δ). Then:

Claim 2.4. βα is the kth point (in the sense of M) on level α above δα.

Proof. Since jα is elementary, βα = j−1
α (β) is the kth point of Mγ(βα)+1

above δα = j−1
α (δ). Mγ(βα)+1 is an initial segment, either of M or of Ult(M,Eα).

Using this it is easy to verify that being a point on level α is absolute between
Mγ(βα)+1 and M . ⊣

The claim shows that the thread T can be recovered from the sequence 〈δα |
α ∈ dom(T )〉. Our first step is to show that this sequence and the thread T both
belong to M .

For each α < κ let Zα be the Skolem hull of α in Q. Call α stable in Q just
in case that Zα ∩ κ = α. Notice that α ∈ dom(T ) iff α is stable in Q, Mγ(βα)+1

is precisely the transitive collapse of Zα in this case, and jα is precisely the
anticollapse embedding.

Claim 2.5. Let α be stable in Q. Let ξ < ν < δ, with ν a point on level κ and
a member of Zα. Then ξ ∈ Zα iff ξ is definable in Mγ(ν)+1 from parameters in
α.

Proof. The right-to-left direction is immediate from the definitions asMγ(ν)+1

itself is definable in Q from ν. For the left-to-right direction: Suppose ξ ∈ Zα.
Every ordinal below ν, and in fact every element of Mγ(ν)+1, is definable in
Mγ(ν)+1 from parameters in κ. As ν ∈ Zα and Zα is an elementary substructure
of Q, it follows that every ordinal below ν in Zα, and in particular the ordinal
ξ, is definable in Mγ(ν)+1 from parameters in κ ∩ Zα, namely in α. ⊣

Claim 2.6. Suppose δ has countable cofinality (in V = M [G] and therefore
also in M). Then T belongs to M .

Proof. Let U ∈ M be a countable set of points on level κ, cofinal in δ. Fix
τ < κ large enough that every point in U is definable in Q from parameters in
τ . (This is possible since U is countable and κ has uncountable cofinality.)

Set Yα = {ξ < δ | there is a point ν on level κ so that ν > ξ, ν ∈ U , and ξ

is definable in Mγ(ν)+1 from parameters in α}. By Claim 2.5, Yα = Zα ∩ δ for
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every α > τ which is stable in Q. Hence δα is precisely equal to the order type
of Yα.

But notice that Yα is defined in M with no reference to the generic G. Thus
there is a function α 7→ δ∗α, inside M , so that δα = δ∗α for every α > τ which is
stable in Q. Using Claim 2.4 it follows that there is a function α 7→ β∗

α, again
inside M , so that βα = β∗

α for all sufficiently large α ∈ dom(T ). Suppose for
simplicity that βα = β∗

α for all α ∈ dom(T ).
From the fact that every point in T is a projection of every greater point in

T , and that T is closed under projections, it follows that:

β̄ is a point in T ⇐⇒ {α < κ | β̄ is a projection of β∗
α} ⊃ dom(T ) − β̄

⇐⇒ {α < κ | β̄ is a projection of β∗
α} ∩ (dom(T ) − β̄) 6= ∅.

From this, the fact that dom(T ) is club, and the fact that P preserves stationary
subsets of {α < κ | cof(α) = ω} (a consequence of properness), it follows now
that:

β̄ is a point in T ⇐⇒

V |= “{α < κ | β̄ is a projection of β∗
α} contains an ω-club in κ” ⇐⇒

M |= “{α < κ | β̄ is a projection of β∗
α} contains an ω-club in κ.”

The final clause in the equivalence makes implicit use of the map α 7→ β∗
α, and

most importantly the presence of this map in M . It follows from the equivalence
that T belongs to M . ⊣

Claim 2.7. Suppose there is τ < κ so that the set {ξ < δ | ξ is definable in Q

from parameters in τ} is cofinal in δ. Then T belongs to M .

Proof. If δ has countable cofinality then T ∈ M by the previous claim. So
suppose that δ has uncountable cofinality. For i < ω let Zτ,i consist of elements
of Q which are Σi definable in Q from parameters in τ . Fix i large enough that
Zτ,i ∩ δ is cofinal in δ. (This is possible since

⋃
i<ω Zτ,i is cofinal in δ, and δ has

uncountable cofinality.) Let C be the set of limit points of Zτ,i below δ. Then
C is club in δ, and, because Zτ,i itself is definable in Q from the parameters τ
and β, C ⊂ Zα for every α > τ .

For each ξ < δ and α < κ set Sα(ξ) = {η | ξ < η < δ and ξ is definable in
Mγ(ν)+1 from parameters in α, where ν is the first point on level κ above η}.
Notice that the map ξ, α 7→ Sα(ξ) is defined inside M , that is with no reference
to G.

Suppose α > τ is stable in Q. Then by Claim 2.5 and the fact that Zα ⊃ C,

ξ belongs to Zα ⇐⇒ Sα(ξ) ⊃ C − ξ

⇐⇒ Sα(ξ) ∩ (C − ξ) 6= ∅.

Using the fact that the map ξ, α 7→ Sα(ξ) belongs to M , and the fact that P

preserves stationary subsets of {η < δ | cof(η) = ω}, it therefore follows that:

ξ belongs to Zα ⇐⇒ M |=“Sα(ξ) contains an ω-club in δ.”
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Working in M let Yα = {ξ < δ | Sα(ξ) contains an ω-club in δ}. The map
α 7→ Yα belongs to M , and we just saw that Yα = Zα ∩ δ for every α > τ which
is stable in Q. We can now define maps α 7→ δ∗α and α 7→ β∗

α as in the proof of
the previous claim, and follow the argument there to establish that T belongs to
M . ⊣

Claim 2.8. Suppose that δ has uncountable cofinality and that there is no
τ < κ so that the set {ξ < δ | ξ is definable in Q from parameters in τ} is cofinal
in δ. Then T belongs to M .

Proof. Let θ be a regular cardinal much larger than κ. Say that a countable
X ⊂ θ extends to an elementary substructure if there is H ⊂ Vθ so that
κ, T, δ, β,Q ∈ H, H ∩θ = X, and H is elementary in Vθ. Let C = {X ∈ [θ]ω | X
extends to an elementary substructure}. C is club in [θ]ω.

For X ∈ C, note that:

(i) α = sup(X ∩ κ) is stable in Q.
(ii) X ∩ δ ⊂ Zα.
(iii) sup(Zα ∩ δ) ≤ sup(X ∩ δ) (and hence by item (ii) the two are equal).

Item (i) holds since, by elementarity, α is a limit of levels of points in T . Item
(ii) holds since every ξ < δ is definable in Q from parameters in κ, hence by
elementarity every ξ < δ in X is definable in Q from parameters in X ∩κ and so
certainly from parameters in α. Item (iii) uses the assumption in Claim 2.8. For
every τ ∈ X∩κ, sup{ξ < δ | ξ is definable in Q from parameters in τ} belongs to
X and is, by the claim assumption, smaller than δ. This supremum is therefore
smaller than sup(X ∩ δ), and item (iii) follows.

Working in M set, for each X ∈ [θ]ω, αX = sup(X ∩ κ) and YX = {ξ < δ |
(∃ν > ξ) ν is a point on level κ in X ∩ δ and ξ is definable in Mγ(ν)+1 from
parameters in αX}. Let δX be the ordertype of YX , and let βX be the kth point
on level αX above δX . (k here is the number used in Claim 2.4.) Note that the
map X 7→ βX belongs to M .

By Claim 2.5 and items (i)–(iii), YX = ZαX
∩δ whenever X ∈ C, and therefore

δX = δαX
and βX = βαX

. From this, the fact that C is club in [θ]ω, that every
point in T is a projection of every greater point in T , that T is closed under
projections, and that P preserves stationary subsets of [θ]ω, it follows that β̄ is a
point in T iff M |=“{X ∈ [θ]ω | β̄ is a projection of βX} contains a club in [θ]ω.”
So T belongs to M . ⊣

The last three claims together establish that the thread T belongs to M . We
now complete the proof of Lemma 2.3 by showing that Q = dlm(T ) is a level of
M . Fix some regular cardinal θ of M much larger than κ. Working inside M
let X be an elementary substructure of M‖ θ, with T, κ ∈ X, card(X) < κ, and
X∩κ an ordinal. This is possible since κ is a regular cardinal inM . Let M̄ be the
transitive collapse of X and let π : M̄ → M be the anticollapse embedding. By
condensation, M̄ is an initial segment, either of Ult(M,Eα) or of M , depending
on whether α indexes an extender in M . Let α = X ∩κ. It is easy to check that
X ∩Q = Zα, and therefore π−1(Q) is precisely equal to Mγ(βα)+1 (where βα is
the point of T on level α). It follow from this, the meaning of Mγ(βα)+1, and
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the fact that π−1(Q) ∈ M̄ , that π−1(Q) is a level of M̄ . By the elementarity of
π then Q is a level of M . ⊣ (Lemma 2.3)

Claim 2.9. Assume that V is a forcing extension of M by a proper poset. Let
κ be a successor cardinal of M . Let 〈Q,ψ〉 be a Σ2

1 truth in M . Let E be a
set of points in M which capture 〈Q,ψ〉, all on level κ, and pairwise compatible.
Suppose that E is cofinal in (κ+)M . Then the horizonal direct limit hlim(E)
belongs to M .

Proof. Let µ < (κ+)M be large enough that Q∩M‖κ belongs to M‖µ. We
work only with β > µ, even when this is not stated explicitly.

Let N = hlim(E). For each β < (κ+)M let Zβ be the Skolem hull of β in
N . Let C = {β | Zβ ∩ (κ+)M = β}. C is club in (κ+)M . Note that if β ∈ C

then κ is the largest cardinal in M‖β, and since κ is a successor cardinal of
M it follows that β does not index an extender. Thus, by condensation, the
transitive collapse of Zβ is a level of M . It is easy using this to verify that β is
a point on level κ and that Mη(β)+1 is precisely the transitive collapse of Zβ . So
hlim(C) = N = hlim(E) and it is enough to prove that C ∈M . Note that:

(i) If β < β∗ are both in C then there is an elementary embedding from
Mη(β)+1 into Mη(β∗)+1 with critical point β.

(ii) If β∗ ∈ C and there is an elementary embedding fromMη(β)+1 intoMη(β∗)+1

with critical point β, then β ∈ C.

For β < (κ+)M set Sβ = {β∗ < (κ+)M | there is an elementary embedding
from Mη(β)+1 into Mη(β∗)+1 with critical point β}. The map β 7→ Sβ belongs to
M .

Since the poset leading from M to V is proper, (κ+)M has uncountable cofi-
nality in V. From this, conditions (i) and (ii), and the fact that proper forcing
extensions preserve stationary sets of {β < (κ+)M | cof(β) = ω}, it follows that
β ∈ C iff M |=“Sβ contains an ω-club.” So C belongs to M . ⊣

Definition 2.10. Let λ be a regular cardinal of M , of cofinality ω1 in V.
Let u = 〈µξ | ξ < ω1〉 be an increasing sequence of points on level λ. Let
a = 〈λξ | ξ < ω1〉 be increasing and cofinal in λ. Define S = S(a, u) to be the
tree of attempts to create a thread of height λ that dominates u. Precisely, a
node in S is a pair 〈ξ, β〉 so that ξ < ω1, β is a point on a level α(β) above λξ and
below λ, α(β) is stable in each of the points µζ for ζ < ξ, and β > projα(β)(µζ)
for each ζ < ξ. S is ordered through the natural order on the first coordinate
and projection on the second: 〈ξ, β〉<S 〈ξ

′, β′〉 iff ξ < ξ′ and β is a projection of
β′.

Claim 2.11. (Assuming V is an extension of M by a proper poset.) S has a
branch of length ω1 iff sup{µξ | ξ < ω1} < (λ+)M .

Proof. Suppose first that sup{µξ | ξ < ω1} < (λ+)M . Let β be a point on
level λ, greater than sup{µξ | ξ < ω1}. Let T be the thread leading to β. For
each ξ < ω1 let αξ < λ be stable in β, larger than λξ, and large enough that each
of µζ , ζ < ξ, is definable in Mγ(β)+1 from parameters in αξ. Let βξ = projαξ

(β).

Then 〈〈ξ, βξ〉 | ξ < ω1〉 is a branch through S, immediately by the definitions
and by the properties in Claim 1.5.
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Conversely, Suppose that C is cofinal in ω1 and 〈ξ, βξ〉 | ξ ∈ C〉 is a branch
through S. Let T be the thread generated by this branch. Precisely, T consists of
all points which are projections of points in {βξ | ξ ∈ C}. Then T is a thread of
height λ, and by Lemma 2.3 the limit of T exists. Let β = lim(T ). β is collapsed
to λ by a function in dlm(T ), and since dlm(T ) is a level of M , β < (λ+)M .
We claim that sup{µξ | ξ < ω1} ≤ β. Suppose not, and fix ζ so that β < µζ .
Let τ < λ be large enough that β is definable in Mγ(µζ)+1 from parameters in
τ . Let ξ ∈ C be large enough that α(βξ) > τ and ξ > ζ. Using Claim 1.5,
projα(βξ)(β) < projα(βξ)(µζ). But as projα(βξ)(β) = βξ, this contradicts the fact

that 〈ξ, βξ〉 is a node in S. ⊣

Theorem 2.12. Let M be a fine structural inner model. Suppose that there is
a proper forcing extension of M that satisfies PFA(c+-linked). Let τ denote ω2

of the extension. Then [τ, τ+] is Σ2
1 indescribable in M .

Proof. Suppose for definitiveness that the proper forcing extension of M
that satisfies PFA(c+-linked) is V. Throughout this proof, cardinal successors
are computed in M , except that c

+ is computed in V. Similarly Hλ always
denotes (Hλ)

M .

Claim 2.13. τ is a limit cardinal of M .

Proof. Suppose not, and let λ be such that τ = λ+. Note that λ > ω for
otherwise (ω2)

V would be equal to (ω1)
M .

By an argument of Todorčević, 2(ω2) fails under PFA(c+-linked). If λ is
singular in M then 2λ holds in M , see the properties of M listed at the start of
the section. But then 2((λ+)M ) holds in V, in contradiction to PFA(c+-linked)
as (λ+)M = τ = (ω2)

V. We may therefore assume that λ is regular in M . (A
similar argument shows that λ is in fact subcompact in M , but we only need
its regularity.) As ω < λ < (ω2)

V, λ has cofinality ω1 in V. We shall use
PFA(c+-linked) and Claim 2.11 to derive a contradiction.

Let a = 〈λξ | ξ < ω1〉 be increasing and cofinal in λ. Let A be the poset
collapsing ω2 to ω1. Let G be A–generic over V. In V[G] let u = 〈µξ | ξ < ω1〉
be an increasing sequence of points on level λ, cofinal in (ω2)

V = (λ+)M . By
Claim 2.11 the tree S(a, u) has no branches of length ω1. Let B ∈ V[G] be the

poset to specialize this tree, and let Ḃ be the canonical name for B.
Let P be the restriction of A ∗ Ḃ to conditions 〈p, ḟ〉 ∈ A ∗ Ḃ so that p forces

a value to ḟ . P is proper, and has size c. Applying PFA(c+-linked) to this poset
we obtain pseudo generics giving rise to:

1. An increasing sequence of points 〈ηξ | ξ < ω1〉 on level λ.
2. A function f specializing the tree S(a, ~η).

The sequence 〈ηξ | ξ < ω1〉 given by the pseudo generic is of course not cofinal
in (λ+)M = (ω2)

V, since it exists in V. On the other hand from Claim 2.11 and
the fact that S(a, ~η) is special it follows that sup{ηξ | ξ < ω1} is equal to (λ+)M ,
contradiction. ⊣

Let κ = τ+. Suppose that 〈Q,ψ〉 is a Σ2
1 truth for κ in M . We intend to find

τ̄ < τ , Q̄ ⊂ Hκ̄ where κ̄ = τ̄+, and an elementary π : (Hκ̄; Q̄) → (Hκ;Q) inside
M , so that crit(π) = τ̄ , π(τ̄) = τ , and 〈Q̄, ψ〉 is a Σ2

1 truth for κ̄ in M . This will
complete the proof of Theorem 2.12.
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In part we follow the proof of Theorem 1.10, with points reinterpreted subject
to the definition at the start of this section. The initial step, Claim 1.11, adapts
trivially to show that there is a club E ⊂ κ+, consisting of points on level κ,
such that every two points in E are compatible. (There is no need here to note
separately that hlim(E) is wellfounded, as this follows from Claim 2.9. The
underlying cause is the properness of the poset leading from M to V, which
implies that κ+ has uncountable cofinality in V.)

Let F be col(ω1, τ)–generic over V. Working in V[F ], where κ is ω2, define
A following conditions (a)–(h) in the proof of Theorem 1.10, replacing Lγ(β)+1

by Mγ(β)+1 throughout (and removing the requirement of wellfoundedness in
condition (b)). Let G be A generic over V[F ]. Let K =

⋃
p∈G stem(p).

As in the proof of Theorem 1.10, levels(K) is a club of order type ω1 in κ.
κ = τ+ is therefore collapsed to ω1 in V[F ][G]. Fix a function f ∈ V[F ][G], from

ω1 onto M‖κ. Let ḟ ∈ V name f .
Let R1 = R1(K), R2 = R2(K), and R3 = R3(K) be defined as in the proof

of Theorem 1.10. Claims 1.12 through 1.18 all hold in the current context, and
the trees therefore do not have branches of length ω1 in V[F ][G].

Let u = 〈µξ | ξ < ω1〉 enumerate levels(K) in increasing order. The sequence
is then cofinal in κ = τ+. Let a = 〈λξ | ξ < ω1〉 be a normal sequence cofinal in
τ . Let u̇ and ȧ name the sequences u and a.

Let R0 be defined as in the proof of Theorem 1.10, but using τ and a rather
than κ and levels(K). Precisely, S is the class of singular cardinals of M , 〈Cα |
α ∈ S〉 is the sequence given by the singular square principle for M , and R0 =
R0(a) consists of pairs 〈ξ, α〉 so that α is a singular cardinal of M above λξ,
ordered through the relation 〈ξ, α〉 <R0

〈ξ′, α′〉 iff ξ < ξ′ and α ∈ Cα′ . An
argument similar to that of Claim 1.20, using the fact that τ is regular in M ,
shows that there are no branches of length ω1 through R0 in V[F ][G].

Finally, let R4 = R4(a, u) be the tree S(a, u) of Definition 2.10. The sequence
u is cofinal in κ = τ+, and so by claim 2.11, there are no branches of length ω1

through R4 in V[F ][G].
Let B be the poset for specializing the trees Ri, i = 0, . . . , 4. B is c.c.c. in

V[F ][G] since the trees do not have branches of length ω1. Let Ḃ ∈ V name B.

Let P be the restriction of the poset col(ω1, τ) ∗ Ȧ ∗ Ḃ to the set P of conditions

〈p, q̇, ḣ〉 so that p forces a value for q̇ and 〈p, q̇〉 forces a value for ḣ. P is proper,

since col(ω1, τ) ∗ Ȧ is countably closed, and B is c.c.c. in V[F ][G]. col(ω1, τ) has
size c, B has size κ, and A is c

+-linked (since any two conditions with the same
stem in A are compatible). It follows that P is c

+-linked. We apply PFA(c+-
linked) to P.

Through a suitable choice of dense sets we obtain a pseudo generic F̄ ∗ Ḡ ∗ H̄
so that:

1. (range(f̄);Q ∩ range(f̄)) is elementary in (M‖κ;Q), where f̄ = ḟ [F̄ ∗ Ḡ].

(Recall that ḟ names f = ḟ [F ∗G], a surjection of ω1 onto M‖κ.)
2. For each ξ < ω1, if f̄(ξ) < ωV

2 = τ then f̄(ξ) ⊂ range(f̄).
3. ū = u̇[F̄ ∗ Ḡ] is an increasing sequence of ordinals in range(f̄) and sup(ū) =

sup(range(f̄) ∩ κ). Similarly ā = ȧ[F̄ ∗ Ḡ] is an increasing sequence of
ordinals in range(f̄) and sup(ā) = sup(range(f̄) ∩ τ).
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4. K̄ = K̇[F̄ ∗ Ḡ] is a set of points all the points in K̄ belong to range(f̄), and
each of the points in K̄ captures 〈Q,ψ〉.

5. levels(K̄) is a club of order type ω1, enumerated by the sequence ū.
6. For every α ∈ levels(K̄), all the points in K̄ on level α are compatible.
7. The trees Ri(K̄) ∩ range(f̄), i = 1, 2, 3, R0(ā) ∩ range(f̄), and R4(ā, ū) ∩

range(f̄) are special, and therefore have no branches of length ω1.
8. τ̄ = sup(ā) is a limit of cardinals of M .

(For condition (8) notice that τ is a limit of cardinals of M , by Claim 2.13.)
Let N denote M‖κ and let N̄ be the transitive collapse of range(f̄). Let

π : N̄ → N be the anticollapse embedding. By conditions (2) and (3), τ̄ =
τ ∩ range(f̄) and therefore crit(π) = τ̄ and π(τ̄) = τ . Let Q̄ = π−1′′Q. By
condition (1), π is elementary from (N̄ ; Q̄) into (N ;Q).

Since τ̄ a cardinal of M (in fact a limit of cardinals of M), it does not index

an extender in ~E. It follows by condensation that N̄ is a level of M . Letting
κ̄ = N̄ ∩ ON we have N̄ = M‖ κ̄.

Claim 2.14. τ̄ is a regular cardinal of M .

Proof. Similar to the proof of Claim 1.23, using the fact that R0(ā) ∩
range(f̄) = R0(ā) is special. R0(ā) ∩ range(f̄) is equal to R0(ā) because of
condition (2). ⊣

Claim 2.15. κ̄ is the successor of τ̄ in M .

Proof. Let R̄4 = π−1′′(R4(ā, ū) ∩ range(f̄)). Notice that this is precisely
the tree S(ā, π−1′′ū), and that sup(π−1′′ū) = κ̄. By condition (7), R̄4 has no
branches of length ω1. From this, the fact that τ̄ = sup(ā) is regular in M , and
Claim 2.11, it follows that sup(π−1′′u) = (τ̄+)M . ⊣

Claim 2.16. 〈Q̄, ψ〉 is a Σ2
1 truth in M .

Proof. For each i = 1, 2, 3 let R̄i = π−1′′Ri(K̄) ∩ range(f̄). The trees are
special by condition (7), and an argument similar to that in the proof of Theorem
1.10 shows from this that 〈Q̄, ψ〉 is a Σ2

1 truth in M . Let us just comment that
Claims 1.21, 1.23, and 1.24 hold in the current context, in some cases using
Lemma 2.3, and Claim 1.22 is replaced by Claim 2.9. ⊣

Claim 2.17. π belongs to M .

Proof. We show that the range of π can be identified in M .
For each ν between τ and κ let β(ν) be the first point on level κ above ν,

and let γ(ν) denote γ(β(ν)). Suppose for a moment that ν ∈ range(π). Then
β(ν), γ(ν) ∈ range(π) since the range of π is elementary in M‖κ. Since every
ordinal below ν is definable in Mγ(ν)+1 from parameters in τ , it follows again by
elementarity that if an ordinal below ν belongs to range(π) then it is definable
in Mγ(ν)+1 from parameters in τ̄ . The converse is true trivially.

Let δ = sup(range(π)). Then δ has cofinality ω1, and, since V is an extension

of M by a proper subset, stationary subsets of {α < δ | cofM (α) = ω} in M

remain stationary in V. For each ξ let S(ξ) be the set of ν < δ so that ν > ξ and
ξ is definable in Mγ(ν)+1 from parameters in τ̄ . The map ξ 7→ S(ξ) belongs to
M . The argument of the previous paragraph, the fact that range(π) contains an
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ω-club in δ (that is the club levels(K̄)), and the fact that stationarity is preserved
from M to V, combine to imply that ξ ∈ range(π) iff M |=“S(ξ) contains an
ω-club in δ.” So range(π) can be identified in M and hence π ∈M . ⊣

Since κ̄ = τ̄+, the elements of M‖ κ̄ are precisely the elements of Hτ̄+ (all in
the sense of M). We thus have τ̄ < τ , Q̄ ⊂ Hτ̄+ in M so that 〈Q̄, ψ〉 is a Σ2

1 truth
in M , and an elementary embedding π : (Hτ̄+ ; Q̄) → (Hτ+ ;Q), also inside M ,
with crit(π) = τ̄ and π(τ̄) = τ . This completes the proof of Theorem 2.12. ⊣
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