Inner models and ultrafilters in $L(\mathbb{R})$

Itay Neeman

Department of Mathematics University of California Los Angeles Los Angeles, CA 90095-1555 ineeman@math.ucla.edu

Part 3:

- 1. The finite intersection property.
- 2. Correct iterations.
- 3. Uniqueness of the s.c. measure on $\mathcal{P}_{\omega_1}(\lambda), \ \lambda < \delta_1^2.$
- 4. Uniqueness for $\lambda \geq \delta_1^2$.
- 5. Some questions.

Return to definitions from last time. Prove the finite intersection property.

M fine structural over a real $u,\ {\rm satisfying}\ {\rm L.C.}$ assumptions.

 τ least so that $L(M \| \tau) \models ``\tau$ is Woodin.''

Defined $a(M) = \pi_{M,\infty}'' \tau$. Then defined $C_M = \{a(P) \mid P \text{ an iterate of } M\}$.

Want to show the C_M s have the finite intersection property.

Claim: Let M and N be fine structural over reals u and v, satisfying L.C. assumption. Then there are iterations $M \to M^*$ and $N \to N^*$ so that $a(M^*) = a(N^*)$.

Proof: A back-and-forth argument. Create iterations $M \to M_1 \to M_2 \cdots \to M_\omega$ and $N \to N_1 \cdots \to N_\omega$ so that $a(N_{k+1}) \supset a(M_k)$ and $a(M_{k+1}) \supset a(N_k)$. Then take $M^* = M_\omega$, $N^* = N_\omega$.

Suppose now that $v \geq_T M$. The statement

there is an iteration $M \to M^*$ so that $a(M^*) = \pi_{N^*,\infty} {''} \tau^{N^*}$

is true in $L(\mathbb{R})$, hence true in the symmetric collapse of N^* .

By elementarity, the statement

there is an iteration $M \to M^*$ so that $a(M^*) = \pi_{N,\infty}{}'' \tau^N$

is true in the symmetric collapse of N, hence true in $L(\mathbb{R})$.

We proved:

Claim: Let M and N be fine structural over reals u and v, satisfying L.C. assumption. Suppose $v \ge_T M$. Then $a(N) \in C_M$.

The assumption of the claim holds with N replaced by any iterate P of N. So:

Claim: Let M and N be fine structural over reals u and v, satisfying L.C. assumption. Suppose $v \ge_T M$. Then $C_N \subset C_M$.

From this get the finite intersection property.

Discussion so far suppressed correctness of iterations.

Recall: iteration trees involve choices at limits. M is iterable if the choices can be made in a way that secures wellfoundedness. An iteration of M is **correct** if it sticks to these choices.

M fine structural over *u*; has ω Woodin cardinals δ_0 , δ_1 , ..., with sup δ ; $\mathcal{P}(\delta)^M$ is ctbl in V; and *M* is iterable.

Let $\kappa < \delta_0$ be least cardinal strong to δ_0 .

Let τ be least so that $L(M \| \tau) \models ``\tau$ is Woodin.'' $(\tau < \kappa \text{ then.})$

Theorem (Woodin): $\pi_{M,\infty}(\tau) = \aleph_{\omega}$.

Theorem (Steel): $\pi_{M,\infty}(\kappa) = \delta_1^2$.

Theorem (Woodin): $\pi_{M,\infty}(\delta_0) = \Theta$.

Correctness for trees using extenders below τ is roughly $\Pi^1_2.$

Correctness gets more complicated as we allow extenders higher in M. Stays in $L(\mathbb{R})$ up to κ (meaning that $L(\mathbb{R})$ can identify correct iterations for trees using extenders below the image of κ).

Arguments so far therefore work for $\lambda < \delta_1^2$, recovering the supercompactness measure on $\mathcal{P}_{\omega_1}(\lambda)$ (Solovay), on $\mathcal{P}_{\omega_2}(\lambda)$ (Becker), on $\mathcal{P}_{\delta_n^1}(\lambda)$ (Becker-Jackson), and producing ultra-filters on $[\mathcal{P}_{\omega_1}(\lambda)]^{<\omega_1}$.

Theorem (Woodin, using inner models): ω_1 is Θ -supercompact in L(\mathbb{R}). (Have a s.c. measure on $\mathcal{P}_{\omega_1}(\lambda)$ for each $\lambda < \Theta$, and a sequence $\langle \mu_{\lambda} \mid \lambda < \Theta \rangle$ of such measures in L(\mathbb{R}).)

Theorem (Woodin): For $\lambda < \delta_1^2$, the s.c measure on $\mathcal{P}_{\omega_1}(\lambda)$ is unique.

Woodin (\approx 1980) defined a filter \mathcal{F} on $\mathcal{P}_{\omega_1}(\lambda)$ and showed that $\mathcal{F} \subset \mu$ for every s.c. measure μ on $\mathcal{P}_{\omega_1}(\lambda)$.

Using Kechris–Harrington determinacy for games on λ , \mathcal{F} is an ultrafilter. From this and $\mathcal{F} \subset \mu$ get $\mathcal{F} = \mu$.

Kechris–Harrington determinacy holds for games on $\lambda < \delta_1^2.$

Get uniqueness of the s.c. measure on $\mathcal{P}_{\omega_1}(\lambda)$, $\lambda < \delta_1^2$.

Arguments of previous talks work for $\lambda < \delta_1^2$. Adapt them now to work for $\lambda < \Theta$. (Main issue is correctness.) Then adapt Woodin's uniqueness argument to work for the filter \mathcal{F} generated by the C_M s.

To reach Θ , must allow trees with extenders reaching to δ_0 .

An iteration tree is *normal* if it uses extenders of increasing lengths. An iteration tree is *full* if it is normal, and if the extenders used by the tree have lengths cofinal in the image of δ_0 .

Let \mathcal{T} be a full iteration tree. Let b and c be cofinal branches through \mathcal{T} , with direct limit models M_b and M_c , and direct limit maps j_b and j_c . Then $j_b(\delta_0) = j_c(\delta_0)$, and $M_b || j_b(\delta_0) =$ $M_c || j_c(\delta_0)$.

Refer to $M_b \| j_b(\delta_0)$ as $\Delta(\mathcal{T})$. Does not depend on last branch of \mathcal{T} .

Correctness for all branches of a full tree *except* the last one can be identified in $L(\mathbb{R})$.

Inside $L(\mathbb{R})$ can*not* identify the correct final branch *b*, the final model M_b , or the final embedding j_b . (Can identify $M_b || j_b(\delta_0) = \Delta(\mathcal{T})$.)

Call a full tree k-correct if it is correct up to the final branch, and the embedding of its last branch moves the type of k indiscernibles for $L(\mathbb{R})$ correctly.

M is k-iterable if choice of branches at limits can be made so that all models on the tree are k-iterable.

For a fixed k, k-correctness and k-iterability can be identified in $L(\mathbb{R})$.

Woodin defined a directed system of k-iterable models. Showed that it agrees with the true directed system up to an ordinal λ_k , with $\langle \lambda_k | k < \omega \rangle$ cofinal in Θ .

We are interested in a s.c. measure on $\mathcal{P}_{\omega_1}(\lambda)$ for some fixed $\lambda < \Theta$.

Fix k so that $\lambda_k > \lambda$.

Can now replace the true directed system with the directed system of k-iterable models (which can be identified inside L(\mathbb{R})). By a nice sequence over M we mean a sequence $\langle \mathcal{T}_k, \overline{M}_{k+1} | k < \omega \rangle$ which can be expanded to an iteration $\langle M_k, \mathcal{T}_k, b_k | k < \omega \rangle$ with $M_0 = M$, each \mathcal{T}_k a full iteration tree on M_k , and $\overline{M}_{k+1} = \Delta(\mathcal{T})_k$.

Define $a(\bar{M}_k \mid k < \omega)$ to be

$$\bigcup_{k<\omega}\pi_{\bar{M}_k,\infty}{''(\bar{\lambda}_k)}$$

where now $\pi_{\bar{M}_k,\infty}$ comes from the k--correct directed system.

 $a(\overline{M}_k \mid k < \omega)$ represents what previously was $a(M_\omega)$.

Set now $C_M = \{a(\overline{M}_k \mid k < \omega) \mid \langle \overline{M}_k \mid k < \omega \rangle \text{ a nice sequence over } M\}.$

Let \mathcal{F} be the filter generated by the sets C_M .

Previous argument adapts to show \mathcal{F} is a s.c. measure.

Woodin's argument for uniqueness (From Cabal 79-81, adapted to current definitions):

Let μ be a s.c. measure on λ . Suppose $\mu \neq \mathcal{F}$. Have a set A assigned different measures by \mathcal{F} and μ . Switching to the complement of A if needed we may assume that $\mu(A) = 1$, and $A \notin \mathcal{F}$. Have then some M so that $A \cap C_M = \emptyset$.

For each $x \in \mathcal{P}_{\omega_1}(\lambda)$ consider the following game G_x :

Rule for I: $\alpha_k \in x$.

Rule for II: $\alpha_k \in (\pi_{\overline{M}_k,\infty}"\overline{\lambda}_k) \subset x$ for each k; and $\overline{M}_{k+1} = \Delta(\mathcal{T}_k)$ with \mathcal{T}_k a full tree (or finite comp. of full trees) on \overline{M}_k (on M if k = 0).

Infinite runs won by player II.

Using definition of C_M , can check that:

(1) II has a w.q.s. $\Rightarrow x \in C_M$.

(2) $x \in C_M \Rightarrow$ II has a w.q.s.

Recall, have a set A of μ measure 1, with $A \cap C_M = \emptyset$.

I wins G_x for each $x \in A$. Let σ_x be a w.s.

For each x, $\sigma_x(\emptyset) \in x$.

By normality of μ , can find $A_1 \subset A$ of measure 1, and an ordinal α_1 , so that $\sigma_x(\emptyset) = \alpha_1$ for all $x \in A_1$.

Now fix \overline{M}_1 so that $\alpha_1 \in \pi_{\overline{M}_1,\infty} "\overline{\lambda_1}$.

Repeat for $\sigma_x(\langle \alpha_1, \overline{M}_1 \rangle)$.

Continue this way. Get A_k , α_k , \overline{M}_k so that

$$\alpha_1, \bar{M}_1, \ldots, \alpha_k, \bar{M}_k$$

is according to σ_x for each $x \in A_k$.

 μ is ctbly additive. So $\cap_{k<\omega}A_k$ has measure 1.

Let
$$y = \bigcup_{k < \omega} \pi_{\bar{M}_k, \infty} {'' \bar{\lambda}_k}.$$

 μ is fine, so within each measure 1 set can find some $x \supset y$.

Fix
$$x \in \bigcap_{k < \omega} A_k$$
 with $x \supset y$.

Then $\langle \alpha_1, \overline{M}_1, \ldots \rangle$ is an infinite play according to σ_x , and won by player II, contradiction.

Theorem: (In L(\mathbb{R}), assuming L.C.) For each $\lambda < \Theta$, there is a unique s.c. measure on $\mathcal{P}_{\omega_1}(\lambda)$.

Harrington–Kechris determinacy:

Let λ be an ordinal. Let $\rho \colon \mathbb{R} \to \lambda$ be a norm. Let $A \subset \lambda^{\omega}$.

Let G(A) be the game where players I and II alternate playing *reals* x_n . Player I wins if $\langle \rho(x_n) \mid n < \omega \rangle \in A$. Otherwise player II wins.

Theorem (H-K): For $\lambda < \delta_1^2$, G(A) is determined.

There is a simple proof of this theorem using the directed system and proofs of determinacy from large cardinals.

Works for $\lambda \leq \delta_1^2$.

Question: Is H-K determinacy true above δ_1^2 ?

Perhaps more interesting:

Got ultrafilters on $[\cdots]^{<\omega_1}$.

Is it possible to get ultrafilters on sets of longer sequences? An u.f. on $[\mathcal{P}_{\omega_2}(\aleph_{\omega})]^{<\omega_2}$ for example? (Not in L(\mathbb{R}), which doesn't satisfy ω_1 -DC, but in L(\mathbb{R})[G] where G is generic for $col(\omega, <\omega_1)$.)

Could have interesting applications to forcing over $L(\mathbb{R})$.

Got an u.f. on $[\omega_1]^{<\omega_1}$. Is there a similar large cardinal construction of an u.f. on $[\delta_3^1]^{<\delta_3^1}$?

Does it subsume the weak partition property for δ^1_3 ?

Does it lead to a L.C. proof of the strong partition property for δ_3^1 ?