Inner models and ultrafilters in $L(\mathbb{R})$

Itay Neeman

Department of Mathematics University of California Los Angeles
Los Angeles, CA 90095-1555 ineeman@math.ucla.edu

Part 3:

1. The finite intersection property.
2. Correct iterations.
3. Uniqueness of the s.c. measure on $\mathcal{P}_{\omega_{1}}(\lambda), \lambda<\delta_{1}^{2}$.
4. Uniqueness for $\lambda \geq \delta_{1}^{2}$.
5. Some questions.

Return to definitions from last time. Prove the finite intersection property.
M fine structural over a real u, satisfying L.C. assumptions.
τ least so that $\mathrm{L}(M \| \tau) \models$ " τ is Woodin."
Defined $a(M)=\pi_{M, \infty^{\prime \prime}} \tau$. Then defined $C_{M}=$ $\{a(P) \mid P$ an iterate of $M\}$.

Want to show the $C_{M} \mathrm{~s}$ have the finite intersection property.

Claim: Let M and N be fine structural over reals u and v, satisfying L.C. assumption. Then there are iterations $M \rightarrow M^{*}$ and $N \rightarrow N^{*}$ so that $a\left(M^{*}\right)=a\left(N^{*}\right)$.

Proof: A back-and-forth argument. Create iterations $M \rightarrow M_{1} \rightarrow M_{2} \cdots \rightarrow M_{\omega}$ and $N \rightarrow N_{1} \cdots \rightarrow N_{\omega}$ so that $a\left(N_{k+1}\right) \supset a\left(M_{k}\right)$ and $a\left(M_{k+1}\right) \supset a\left(N_{k}\right)$. Then take $M^{*}=M_{\omega}$, $N^{*}=N_{\omega}$.

Suppose now that $v \geq_{T} M$. The statement
there is an iteration $M \rightarrow M^{*}$ so that $a\left(M^{*}\right)=\pi_{N^{*}, \infty^{\prime \prime}} \tau^{N^{*}}$
is true in $L(\mathbb{R})$, hence true in the symmetric collapse of N^{*}.

By elementarity, the statement
there is an iteration $M \rightarrow M^{*}$ so that $a\left(M^{*}\right)=\pi_{N, \infty}{ }^{\prime \prime} \tau^{N}$
is true in the symmetric collapse of N, hence true in $L(\mathbb{R})$.

We proved:

Claim: Let M and N be fine structural over reals u and v, satisfying L.C. assumption. Suppose $v \geq_{T} M$. Then $a(N) \in C_{M}$.

The assumption of the claim holds with N replaced by any iterate P of N. So:

Claim: Let M and N be fine structural over reals u and v, satisfying L.C. assumption. Suppose $v \geq_{T} M$. Then $C_{N} \subset C_{M}$.

From this get the finite intersection property.

Discussion so far suppressed correctness of iterations.

Recall: iteration trees involve choices at limits. M is iterable if the choices can be made in a way that secures wellfoundedness. An iteration of M is correct if it sticks to these choices.
M fine structural over u; has ω Woodin cardinals $\delta_{0}, \delta_{1}, \ldots$, with sup $\delta ; \mathcal{P}(\delta)^{M}$ is ctbl in V ; and M is iterable.

Let $\kappa<\delta_{0}$ be least cardinal strong to δ_{0}.
Let τ be least so that $\mathrm{L}(M \| \tau) \vDash " \tau$ is Woodin." ($\tau<\kappa$ then.)

Theorem (Woodin): $\pi_{M, \infty}(\tau)=\aleph_{\omega}$.
Theorem (Steel): $\pi_{M, \infty}(\kappa)=\delta_{1}^{2}$.
Theorem (Woodin): $\pi_{M, \infty}\left(\delta_{0}\right)=\Theta$.

Correctness for trees using extenders below τ is roughly Π_{2}^{1}.

Correctness gets more complicated as we allow extenders higher in M. Stays in $\mathrm{L}(\mathbb{R})$ up to κ (meaning that $L(\mathbb{R}$) can identify correct iterations for trees using extenders below the image of κ).

Arguments so far therefore work for $\lambda<\delta_{1}^{2}$, recovering the supercompactness measure on $\mathcal{P}_{\omega_{1}}(\lambda)$ (Solovay), on $\mathcal{P}_{\omega_{2}}(\lambda)$ (Becker), on $\mathcal{P}_{\boldsymbol{\delta}_{n}^{1}}(\lambda)$ (Becker-Jackson), and producing ultrafilters on $\left[\mathcal{P}_{\omega_{1}}(\lambda)\right]^{<\omega_{1}}$.

Theorem (Woodin, using inner models): ω_{1} is Θ-supercompact in $L(\mathbb{R})$. (Have a s.c. measure on $\mathcal{P}_{\omega_{1}}(\lambda)$ for each $\lambda<\Theta$, and a sequence $\left\langle\mu_{\lambda} \mid \lambda<\Theta\right\rangle$ of such measures in $L(\mathbb{R})$.)

Theorem (Woodin): For $\lambda<\delta_{1}^{2}$, the s.c measure on $\mathcal{P}_{\omega_{1}}(\lambda)$ is unique.

Woodin (≈ 1980) defined a filter \mathcal{F} on $\mathcal{P}_{\omega_{1}}(\lambda)$ and showed that $\mathcal{F} \subset \mu$ for every s.c. measure μ on $\mathcal{P}_{\omega_{1}}(\lambda)$.

Using Kechris-Harrington determinacy for games on λ, \mathcal{F} is an ultrafilter. From this and $\mathcal{F} \subset \mu$ get $\mathcal{F}=\mu$.

Kechris-Harrington determinacy holds for games on $\lambda<\delta_{1}^{2}$.

Get uniqueness of the s.c. measure on $\mathcal{P}_{\omega_{1}}(\lambda)$, $\lambda<\delta_{1}^{2}$.

Arguments of previous talks work for $\lambda<\delta_{1}^{2}$. Adapt them now to work for $\lambda<\Theta$. (Main issue is correctness.) Then adapt Woodin's uniqueness argument to work for the filter \mathcal{F} generated by the $C_{M} \mathrm{~s}$.

To reach Θ, must allow trees with extenders reaching to δ_{0}.

An iteration tree is normal if it uses extenders of increasing lengths. An iteration tree is full if it is normal, and if the extenders used by the tree have lengths cofinal in the image of δ_{0}.

Let \mathcal{T} be a full iteration tree. Let b and c be cofinal branches through \mathcal{T}, with direct limit models M_{b} and M_{c}, and direct limit maps j_{b} and j_{c}. Then $j_{b}\left(\delta_{0}\right)=j_{c}\left(\delta_{0}\right)$, and $M_{b} \| j_{b}\left(\delta_{0}\right)=$ $M_{c} \| j_{c}\left(\delta_{0}\right)$.

Refer to $M_{b} \| j_{b}\left(\delta_{0}\right)$ as $\Delta(\mathcal{T})$. Does not depend on last branch of \mathcal{T}.

Correctness for all branches of a full tree except the last one can be identified in $L(\mathbb{R})$.

Inside $\mathrm{L}(\mathbb{R}$) cannot identify the correct final branch b, the final model M_{b}, or the final embedding j_{b}. (Can identify $M_{b} \| j_{b}\left(\delta_{0}\right)=\Delta(\mathcal{T})$.)

Call a full tree k-correct if it is correct up to the final branch, and the embedding of its last branch moves the type of k indiscernibles for $\mathrm{L}(\mathbb{R})$ correctly.
M is k-iterable if choice of branches at limits can be made so that all models on the tree are k-iterable.

For a fixed k, k-correctness and k-iterability can be identified in $L(\mathbb{R})$.

Woodin defined a directed system of k-iterable models. Showed that it agrees with the true directed system up to an ordinal λ_{k}, with $\left\langle\lambda_{k}\right|$ $k<\omega\rangle$ cofinal in Θ.

We are interested in a s.c. measure on $\mathcal{P}_{\omega_{1}}(\lambda)$ for some fixed $\lambda<\Theta$.

Fix k so that $\lambda_{k}>\lambda$.

Can now replace the true directed system with the directed system of k-iterable models (which can be identified inside $L(\mathbb{R})$).

By a nice sequence over M we mean a sequence $\left\langle\mathcal{T}_{k}, \bar{M}_{k+1} \mid k<\omega\right\rangle$ which can be expanded to an iteration $\left\langle M_{k}, \mathcal{T}_{k}, b_{k} \mid k<\omega\right\rangle$ with $M_{0}=M$, each \mathcal{T}_{k} a full iteration tree on M_{k}, and $\bar{M}_{k+1}=\Delta(\mathcal{T})_{k}$.

Define $a\left(\bar{M}_{k} \mid k<\omega\right)$ to be

$$
\bigcup_{k<\omega} \pi_{\bar{M}_{k}, \infty}{ }^{\prime \prime}\left(\bar{\lambda}_{k}\right)
$$

where now $\pi_{\bar{M}_{k}, \infty}$ comes from the k-correct directed system.
$a\left(\bar{M}_{k} \mid k<\omega\right)$ represents what previously was $a\left(M_{\omega}\right)$.

Set now $C_{M}=\left\{a\left(\bar{M}_{k} \mid k<\omega\right) \mid\left\langle\bar{M}_{k} \mid k<\omega\right\rangle\right.$ a nice sequence over $M\}$.

Let \mathcal{F} be the filter generated by the sets C_{M}.

Previous argument adapts to show \mathcal{F} is a s.c. measure.

Woodin's argument for uniqueness (From Cabal 79-81, adapted to current definitions):

Let μ be a s.c. measure on λ. Suppose $\mu \neq \mathcal{F}$. Have a set A assigned different measures by \mathcal{F} and μ. Switching to the complement of A if needed we may assume that $\mu(A)=1$, and $A \notin \mathcal{F}$. Have then some M so that $A \cap C_{M}=\emptyset$.

For each $x \in \mathcal{P}_{\omega_{1}}(\lambda)$ consider the following game G_{x} :

I	α_{1}					

Rule for I: $\alpha_{k} \in x$.
Rule for II: $\alpha_{k} \in\left(\pi_{\bar{M}_{k}, \infty}{ }^{\prime \prime} \bar{\lambda}_{k}\right) \subset x$ for each k; and $\bar{M}_{k+1}=\Delta\left(\mathcal{T}_{k}\right)$ with \mathcal{T}_{k} a full tree (or finite comp. of full trees) on \bar{M}_{k} (on M if $k=0$).

Infinite runs won by player II.

Using definition of C_{M}, can check that:
(1) II has a w.q.s. $\Rightarrow x \in C_{M}$.
(2) $x \in C_{M} \Rightarrow$ II has a w.q.s.

Recall, have a set A of μ measure 1 , with $A \cap C_{M}=\emptyset$.

I wins G_{x} for each $x \in A$. Let σ_{x} be a w.s.

For each $x, \sigma_{x}(\emptyset) \in x$.

By normality of μ, can find $A_{1} \subset A$ of measure 1 , and an ordinal α_{1}, so that $\sigma_{x}(\emptyset)=\alpha_{1}$ for all $x \in A_{1}$.

Now fix \bar{M}_{1} so that $\alpha_{1} \in \pi_{\bar{M}_{1}, \infty}{ }^{\prime \prime} \overline{\lambda_{1}}$.
Repeat for $\sigma_{x}\left(\left\langle\alpha_{1}, \bar{M}_{1}\right\rangle\right)$.

Continue this way. Get $A_{k}, \alpha_{k}, \bar{M}_{k}$ so that

$$
\alpha_{1}, \bar{M}_{1}, \ldots, \alpha_{k}, \bar{M}_{k}
$$

is according to σ_{x} for each $x \in A_{k}$.
μ is ctbly additive. So $\cap_{k<\omega} A_{k}$ has measure 1 .
Let $y=\cup_{k<\omega} \pi_{\bar{M}_{k}, \infty}{ }^{\prime \prime} \bar{\lambda}_{k}$.
μ is fine, so within each measure 1 set can find some $x \supset y$.

Fix $x \in \bigcap_{k<\omega} A_{k}$ with $x \supset y$.
Then $\left\langle\alpha_{1}, \bar{M}_{1}, \ldots\right\rangle$ is an infinite play according to σ_{x}, and won by player II, contradiction.

Theorem: (In $L(\mathbb{R})$, assuming L.C.) For each $\lambda<\Theta$, there is a unique s.c. measure on $\mathcal{P}_{\omega_{1}}(\lambda)$.

Harrington-Kechris determinacy:

Let λ be an ordinal. Let $\rho: \mathbb{R} \rightarrow \lambda$ be a norm. Let $A \subset \lambda^{\omega}$.

Let $G(A)$ be the game where players I and II alternate playing reals x_{n}. Player I wins if $\left\langle\rho\left(x_{n}\right)\right| n\langle\omega\rangle \in A$. Otherwise player II wins.

Theorem ($\mathrm{H}-\mathrm{K}$): For $\lambda<\delta_{1}^{2}, G(A)$ is determined.

There is a simple proof of this theorem using the directed system and proofs of determinacy from large cardinals.

Works for $\lambda \leq \delta_{1}^{2}$.
Question: Is H-K determinacy true above δ_{1}^{2} ?

Perhaps more interesting:
Got ultrafilters on $[\cdots]^{<\omega_{1}}$.
Is it possible to get ultrafilters on sets of longer sequences? An u.f. on $\left[\mathcal{P}_{\omega_{2}}\left(\aleph_{\omega}\right)\right]^{<\omega_{2}}$ for example? (Not in $L(\mathbb{R})$, which doesn't satisfy $\omega_{1}-\mathrm{DC}$, but in $\mathrm{L}(\mathbb{R})[G]$ where G is generic for $\operatorname{col}\left(\omega,<\omega_{1}\right)$.)

Could have interesting applications to forcing over $L(\mathbb{R})$.

Got an u.f. on $\left[\omega_{1}\right]^{<\omega_{1}}$. Is there a similar large cardinal construction of an u.f. on $\left[\delta_{3}^{1}\right]<\delta_{3}^{1}$?

Does it subsume the weak partition property for δ_{3}^{1} ?

Does it lead to a L.C. proof of the strong partition property for δ_{3}^{1} ?

