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Part 2:

1. Review.

2. Iteration trees and directed systems.

3. Supercompactness measure on Pω1(ℵω).

4. Ultrafilter on [P(ω1)]
<ω1.

5. Forcing over L(R) to collapse ℵω to ω1.
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Large cardinal assumption:

For each u ∈ R there is a class model M s.th.

(1) u ∈M ;

(2) M has ω Woodin cardinals, say with sup δ;

(3) P(δ)M is countable in V; and

(4) M is iterable.

Any statement (with real parameters)

forced to hold in the symmetric collapse

of M , holds in the true L(R).

(∗)

Ultrafilter on ω1:

a(M) = first measurable of M .

CM = {a(P ) | P a linear iterate of M}.

Used (∗) to show that for every X ⊂ ω1 in L(R),

have M so that either CM ⊂ X or CM ⊂ ¬X.
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Ultrafilter on [ω1]
<ω1:

κ the first measurable limit of measurables inM .

〈τξ | ξ < γ〉 lists the measurables of M below κ

in increasing order.

a(M) = 〈τξ | ξ < γ〉.

CM as before.

The sets CM generate an ultrafilter. Used (∗)

to get bddness. Used bddness in forcing.

Next, aim to do the same with ℵω instead of

ω1.
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In general iterations

may be non-linear.

Non-linear iterations

are called iteration

trees.

Iteration trees involve

some choices at limit

stages. M is iter-

able if these choices

can be made in a way

which secures well-

foundedness.

A correct iteration

tree on an iterable M

is one which follows

the limit choices

needed to secure

wellfoundedness.
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Already at the level of linear iterations there

is an implicit notion of correctness: A linear

iteration of “length α” is “correct” if α is well-

founded.

This “correctness” for linear iterations is Π
1
1.

In the claim of boundedness last time it was the

contribution of correctness to the complexity

of the set

(∃ an iterate P of M)(ψ[a(P ), x, u] holds in a

symmetric collapse of P ).

that made it Σ
1
2.

For iteration trees the complexity of correct-

ness is higher. How high depends on the large

cardinals involved in the iteration.

Let M be iterable and let τ ∈M be least such

that L(M‖ τ) |=“τ is Woodin.”

For iteration trees on M using extenders from

below τ , correctness is roughly Π
1
2.
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Let M now be fine-structural over a real u.

Any two correct iterates of M can be com-

pared.

In other words, for any two correct iterations

j1 : M → P1 and j2 : M → P2 there are further

iterations h1 : P1 → Q1 and h2 : P2 → Q2 so

that Q1 = Q2.

Q1 = Q2

P1

h1
>>||||||||

P2

h2
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Further, the embeddings given by correct iter-

ations are unique, by the Dodd–Jensen lemma.

k1 : M → Q and k2 : M → Q both iteration em-

beddings, then k1 = k2.

Use πM,Q for the iteration emb from M to Q.

In the situation of the comparison above the

uniqueness implies that h1 ◦ j1 equals h2 ◦ j2.
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By iteration from now on we mean a correct

iteration of countable length.

Comparisons allow considering the directed sys-

tem of all iterates of M .

Let D be the set of pairs 〈P, x〉 so that P is a

an iterate of M , and x belongs to P .

For 〈P, x〉 and 〈P ′, x′〉 both in D set

〈P, x〉 ∼ 〈P ′, x′〉 iff in the comparison of P and

P ′ get h(x) = h′(x′).

∼ is an equivalence relation on D.

Define further 〈P, x〉 ∈∗ 〈P ′, x′〉 iff in the com-

parison of P and P ′ get h(x) ∈ h(x′).

∈∗ induces a wellfounded relation on D/∼. Set

M∞ = transitive collapse of (D/∼ ; ∈∗).

M∞ is the direct limit of all (countable) iterates

of M . Have πM,∞ from M into M∞ defined by

πM,∞(x) = equivalence class of 〈M,x〉.
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We are working in L(R). ω2 is equal to δ
1
2. ω3,

ω4, etc. are all singular cardinals of cofinality

ω2. ℵω is the size of a homogeneous tree for

Π
1
2 sets. ℵω+1 is equal to δ

1
3.

Suppose M is iterable, τ = τ(M) is least such

that L(M‖ τ) |=“τ is Woodin,” and τ is count-

able in V.

Theorem (Woodin): πM,∞(τ) is equal to ℵω.

This is connected to the fact that correctness

for trees below τ is roughly Π
1
2.
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Recall our scheme for getting ultrafilters:

Define a(M) somehow.

Set CM = {a(P ) | P is an iterate of M}.

Use the CMs to generate an ultrafilter.

Here we want an ultrafilter on Pω1(ℵω). So we

need a(M) ∈ Pω1(ℵω).

Natural attempt: set a(M) = πM,∞
′′τ(M).

Then a(M) ∈ Pω1(ℵω) and CM ⊂ Pω1(ℵω).

As before the sets CM generate an ultrafilter.∗

It’s the supercompactness measure on Pω1(ℵω).

∗The finite intersection property takes more work here than in the
case of ω1. More on this in the next talk.
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Proof of normality:

Fix f ∈ L(R) on Pω1(ℵω) such that f(X) ∈ X

for all X.

Wlog, f is definable from a real u. Fix ϕ so

that f(X) = α iff L(R) |= ϕ[u,X, α].

Take M satisfying L.C. assumption with u ∈

M . Let τ be least so that L(M‖ τ) |=“τ is

Woodin.”

Look at α = f(a(M)).

α belongs to a(M) = πM,∞
′′τ .
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Have ᾱ < τ in M so that

f(πM,∞
′′(τ)) = πM,∞(ᾱ).

This statement (about M , τ , and ᾱ) is true

in L(R); hence true in the symmetric collapse

of M ; hence true in the symmetric collapse of

every iterate P of M , about P , πM,P (τ), and

πM,P (ᾱ); hence true in L(R) about P , πM,P (τ),

and πM,P (ᾱ).

So

f(a(P )) = f(πP,∞
′′πM,P (τ))

=∗ πP,∞(πM,P (ᾱ))

= πM,∞(ᾱ)

= α

for every iterate P of M .

In other words, f(X) = α for all X ∈ CM .
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An ultrafilter on [Pω1(ℵω)]
<ω1:

Let M be an iterable fine-structural model over

a real u.

Say that τ ∈M is good if M‖ τ |=“τ is Woodin.”

Suppose M has a measurable limit of good

cardinals, and let κ = κ(M) be the least such.

Suppose κ is countable in V.

Let 〈τξ | ξ < γ〉 list the good cardinals of M
below κ, in increasing order.

For each α < γ let gα be generic over M for col-

lapsing sup{τξ | ξ < α}. Let Mα denote M [gα].

τα is the first good cardinal of Mα = M [gα].

Set aα = πMα,∞
′′τα, and a(M) = 〈aα | α < γ〉.

Then each aα belongs to Pω1(ℵω), and a(M)

belongs to [Pω1(ℵω)]
<ω1.
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Set CM = {a(P ) | P is an iterate of M}.

Our earlier proofs all carry over to the current

settings.

The sets CM generate an ultrafilter on

[Pω1(ℵω)]
<ω1, call it F.

The ultrafilter concentrates on long sequences.

The projection of F to [Pω1(ℵω)]
1 is precisely

our earlier filter, namely the supercompactness

measure, on Pω1(ℵω)

The projection of F to [Pω1(ℵω)]
α is the α-

length iteration of the supercompactness mea-

sure.
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The proof of boundedness for the filter on

[ω1]
<ω1 also carries over to current settings.

Recall that in that proof we defined E to be

the set of reals x so that:

(∃ an iterate P of M)(ψ[a(P ), x, u] holds in a

symmetric collapse of P ).

E was Σ
1
2, and this allowed proving bounded-

ness for functions into ω2 = δ
1
2.

In the current settings being a (correct) iterate

is Π
1
2. E is therefore Σ

1
3, and the proof of

boundedness works for δ
1
3 = ℵω+1. We get:

Claim: Let g : [Pω1(ℵω)]
<ω1 → ℵω+1. Then

there is a set X ∈ F so that g�X is bounded

below ℵω+1.

For the s.c. measure on Pω1(ℵω) (as opposed

to the iterated measure on [Pω1(ℵ1)]
<ω1) bound-

edness is due to Becker (1979) by classical

methods.
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An application to forcing over L(R):

Recall: can use F to define a forcing notion.

Conditions are pairs (t, Y ) where: t belongs to

[Pω1(ℵω)]
<ω1; Y is a set of extensions of t; and

{s | t_s ∈ Y } is nice.

(X ⊂ [Pω1(ℵω)]
<ω1 is nice if: X ∈ F; X is ctbly

closed; and {r | s_r ∈ X} ∈ F for each s ∈ X.)

The order on conditions is defined in the natu-

ral way: (t′, Y ′) < (t, Y ) if t′ extends t, Y ′ ⊂ Y ,

and t′ ∈ Y .

Let A be this poset. Let H be A–generic over

L(R).

A is countably closed. So it does not add reals.

It follows ω1 is not collapsed by A, and that δ
1
3

is not changed.
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H introduces a sequence 〈aξ | ξ < ω1〉, with

each aξ a countable subset of ℵω.

The genericity of H implies that
⋃

ξ<ω1

aξ = ℵω.

Thus, H collapses ℵω to ω1.

Boundedness implies that ℵω+1 is not collapsed.

So ℵω+1 becomes ω2 in the generic extension.

ℵω+1 − δ
1
3

ω2 − δ
1
3

ℵω −

...

ω3 −

ω2 − δ
1
2 − δ

1
2

ω1 − _

H

_

ω1 −

L(R) L(R)[H]

Since δ
1
3 does not change, we have:

L(R)[H] |= “δ
1
3 = ω2.”
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Steel–VanWesep–Woodin (≈1980) show how

to force over L(R) and introduce the axiom of

choice without collapsing ω2. Their methods

adapt to forcing over L(R)[H], giving:

Theorem (N., Woodin independently): It is

consistent with ZFC (and AD
L(R)) that

δ
1
3 = ω2.

Same argument works for higher levels.

Can get the s.c. measure on Pω1(λ) for any

λ ≤ δ
2
1.

Can collapse α < δ
1
n to ω1 without collapsing

δ
1
n. Get the consistency of ZFC + AD

L(R) +

δ
1
n = ω2.
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With a modification, can recover results by

Becker–Jackson on the supercompactness of

the δ
1
ns.

For example, to get the supercompactness mea-

sure on Pω2(ℵω):

Let M be a model with a cardinal τ so that

L(M‖ τ) |=“τ is Woodin.” Define

a(M) =
⋃

Q an iterate of M via a
tree in L(M‖ τ) (except
for final branch).

πQ,∞
′′πM,Q(τ).

Then define CM as before.

a(M) here has size ℵ1. Get an ultrafilter on

Pω2(ℵω).
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