
Monadic theories of wellorders

Itay Neeman∗

February 24, 2008

This article is a partial survey of work on the monadic second order the-
ory of wellorders, concentrating on connections with finite state automata.
We present a progression of results, starting with the case of finite wellorders
and ending with a general connection between monadic truth and automata
on all ordinals. We give proofs and proof sketches at the initial levels, to
illustrate some of the ideas in the work connecting automata and monadic
truth. At higher levels the proofs are substantially more complicated and
beyond the scope of this article. Our exposition follows the most direct math-
ematical route, and should not be taken as either a complete or an historical
account. We refer the reader to Gurevich [7] for a survey on monadic theo-
ries, to Khoussainov–Nerode [9] for a comprehensive account of fundamental
results on finite state automata, and to the papers by Vardi and Thomas in
this volume for specific applications of automata theory in computer science.

Recall that the monadic second order language, monadic language for short
below, has two kinds of variables: first order variables which range over ele-
ments of the structure, and second order variables which range over subsets
of the structure. The atomic formulas in the monadic language are the usual
first order atomic formulas (in first order variables), and formulas of the form
v ∈ U where v is a first order variable and U is a second order variable. Gen-
eral formulas are built from atomic formulas using negations, conjunctions,
and existential quantifications over both first and second order variables. In
many cases the monadic language provides a nice balance of expressivity and
feasibility. Feasibility here is a vague term, and can mean many different
things, for example that the corresponding theory is decidable, that the the-
ory can be described in terms of a theory in a more limited language, or that
definability can be described. It is in proving these kinds of feasibility that we
make use of finite state automata.

We are concerned specifically with theories of wellorders, namely of struc-
tures of the form (α;<), where < is a wellorder of the set α. Without loss
of generality we may assume that α is an ordinal, and < is the membership
relation restricted to α.

∗This material is based upon work supported by the National Science Foundation under

Grant No. DMS-0556223.

1

Finite ordinals

Consider to begin with the case of finite α. This case serves as a simple
illustration of the connection between the monadic theory and finite state
automata.

The basic core of a finite state automaton with (finite) alphabet Σ is a
finite set of states S, a smaller set I ⊆ S of initial states, and a transition table
T ⊆ S × Σ × S. The automaton takes as input a string X : α → Σ. A run of
the automaton on X is a string of states s : α+1 → S which satisfies the rules

s(0) ∈ I, and (Initial)

〈s(ξ), X(ξ), s(ξ + 1)〉 ∈ T (Succ)

for all ξ < α.
The automaton is deterministic if I is a singleton and the transition table

is the graph of a function from S × Σ into S, meaning that for each b ∈ S

and σ ∈ Σ there is a unique b∗ ∈ S so that 〈b, σ, b∗〉 ∈ T . Abusing notion we
then refer to I as a state and to T as a function. In the case of a deterministic
automaton, for finite α at least, conditions (Initial) and (Succ) determine a
unique run of the automaton on X. The run is produced by setting s(0) = I

and then successively setting s(n + 1) = T (s(n), X(n)). Non-deterministic
automata in contrast may have many runs on an input X, and may also have
none.

In addition to the basic core, the automaton has a set F of accepting final
states. A run s : α + 1 → S is accepting if s(α) ∈ F . The automaton accepts
input X : α→ Σ just in case that there is an accepting run of the automaton
on X. Note the existential quantifier that is built into the definition. We shall
make good use of it with a non-deterministic automaton soon. But first let us
quickly describe a coding of elements and subsets of α by strings which may
be taken as inputs for automata.

For a set A ⊆ α define χA : α → 4 by χA(ξ) = 1 if ξ ∈ A and χA(ξ) = 0
otherwise. For an ordinal a ∈ α define χa : α → 4 by χa(ξ) = 3 if ξ = a

and χa(ξ) = 2 otherwise. For a tuple 〈e1, . . . , ek〉 with each ei either an
element of α or a subset of α, define χ〈e1,...,ek〉 : α → k4 by χ〈e1,...,ek〉(ξ) =
〈χe1(ξ), . . . , χek

(ξ)〉. χ〈e1,...,ek〉 is then a string of length α in the alphabet

Σ = k4, and codes the tuple 〈e1, . . . , ek〉. The domain α is suppressed in the
notation, and is typically understood from the context.

The coding above lets us view tuples of elements and subsets of α as
possible inputs for automata. We say that an automaton with alphabet Σ = k4
accepts the tuple 〈e1, . . . , ek〉 iff it accepts χ〈e1,...,ek〉.

An automaton A is equivalent to a monadic formula ϕ(v1, . . . , vk) on struc-
ture (α;<) just in case that for every tuple 〈e1, . . . , ek〉 of elements and sub-
sets of α which match the orders of variables of ϕ, A accepts 〈e1, . . . , ek〉 iff
(α;<) |= ϕ[e1, . . . , ek].

Theorem 1. For every monadic formula ϕ, there is a deterministic automa-
ton A which is equivalent to ϕ on all structures (α;<) with α finite.

2

The theorem is part of a large body of work analyzing finite state au-
tomata and regular languages. Its proof given below is very direct. For a
more complete account which includes the related work we refer the reader to
Khoussainov–Nerode [9, Chapter 2].

Proof of Theorem 1. The proof is by induction on the complexity of ϕ.
If ϕ is atomic then it is easy to explicitly define an automaton witnessing

the theorem. Let us only go over one example, the formula v1 ∈ v2, with v1 a
first order variable and v2 a second order variable. The following automaton is
equivalent to this formula on finite structures: The automaton has three states,
true, false, and unknown. The initial state is unknown, and the only accepting
state is true. T (unknown, 〈3, 2〉) = false, so that if a ξ is reached so that ξ = e1
and ξ 6∈ e2 the automaton falls into the state false. T (unknown, 〈3, 1〉) = true,
so that if a ξ is reached so that ξ = e1 and ξ ∈ e2 the automaton falls into the
state true. T (unknown, σ) = unknown for all other σ, and T (false, σ) = false

and T (true, σ) = true for all σ.
If ϕ is a negation ¬ψ, take an automaton Ā witnessing the theorem for

ψ, and define the automaton A to have the same set of states, the same
transition table, the same initial state, and the inverse set of final states,
namely F = S − F̄ . Then A witnesses the theorem for ϕ. Notice that it is
important here that we are dealing with deterministic automata, so that every
input string leads to a final state uniquely determined by the string. Ā accepts
if this final state belongs to F̄ , and A accepts if it does not.

If ϕ is a conjunction ψ1 ∧ ψ2, take automata A1 and A2 witnessing the
theorem for ψ1 and ψ2, and define an automaton A which simulates a simul-
taneous run of A1 and A2. The set of states S of A is S1 × S2, the transition
function T is defined by T (〈b1, b2〉, σ) = 〈T (b1, σ), T (b2, σ)〉, the initial state I
is 〈I1, I2〉, and the set of final states F is F1 × F2. It is clear that A accepts
X iff both A1 and A2 accept X.

Suppose finally that ϕ is an existential formula (∃vk)ψ(v1, . . . , vk). Let
Ā witness the theorem for ψ. It is easy, modifying Ā, to define a non-
deterministic automaton And which is equivalent to ϕ. The automaton And

uses non-determinism to guess the characteristic function of vk. Suppose for
definitiveness that vk is second order. Define Snd to be S̄×{0, 1} where S̄ is the
set of states of Ā. Set 〈〈b, i〉, σ, 〈b∗, i∗〉〉 ∈ Tnd just in case that T (b, σ⌢〈i〉) =
b∗. The definition is such that if snd is a run of And on 〈e1, . . . , ek−1〉, then
snd(ξ) has the form 〈s̄(ξ), iξ〉 where, setting ek = {ξ < α | iξ = 1}, s̄ is a
run of the original automaton Ā on 〈e1, . . . , ek−1, ek〉. In that sense the part
〈iξ | ξ < α〉 of a run of And is a guess by the non-deterministic automaton for
a characteristic function of a set that can be substituted for vk.

Continuing to define And, set the initial states to be 〈Ī , 0〉 and 〈Ī , 1〉, and let
the set of final states Fnd be F̄ ×{0, 1}. Recall that existential quantification
over runs was built into the definition of acceptance for automata. Inspecting
that definition and the definition of And it is easy to check that the non-
deterministic And accepts 〈e1, . . . , ek−1〉 iff there exists ek ⊆ α so that Ā

3

accepts 〈e1, . . . , ek−1, ek〉, namely iff there exists ek ⊆ α so that (α;<) |=
ψ[e1, . . . , ek−1, ek]. It follows that And is equivalent to ϕ = (∃vk)ψ.

Of course And is not deterministic. To complete the proof of the theorem
we have to convert it to a deterministic automaton, and this can be done
using:

Lemma 2 (Rabin–Scott [17]). Every non-deterministic automaton is equiv-
alent to a deterministic automaton on finite domains. Precisely, for every
non-deterministic automaton And there is a deterministic automaton A, so
that for every input string X of finite length, A accepts X iff And accepts X.

Proof. Runs of A keep track of all possible states which may be reached by
runs of And, from each initial state. More precisely, states of A are subsets W
of Ind×Snd, the initial state I is the set {〈b0, b0〉 | b0 ∈ Ind}, and the transition
function T is defined by T (W,σ) = {〈b0, b

∗〉 ∈ Ind × Snd | (∃b ∈ Snd)(〈b0, b〉 ∈
W ∧ 〈b, σ, b∗〉 ∈ Tnd)}. With this definition it follows by induction on α that,
if s is a run of A on an input string X of finite length α, then 〈b0, b〉 ∈ s(α)
iff there is a run snd of And on X with snd(0) = b0 and snd(α) = b. Setting
F = {W ⊆ Ind × Snd | W ∩ (Ind × Fnd) 6= ∅} it then easy to check that A
accepts X iff And accepts X. � (Lemma 2, Theorem 1)

Theorem 1 is constructive, and gives rise to a recursive map ϕ 7→ Aϕ which
assigns to each monadic formula ϕ an equivalent automaton Aϕ. Already at
the level of finite domains this association can be used to prove decidability
results, for example:

Corollary 3. The set of monadic sentences ϕ so that (∃α < ω)(α;<) |= ϕ is
decidable.

For a stronger result, on the decidability of the fragment of the monadic
theory of ω involving only finite sets, see Büchi [1] and Elgot [6].

Proof of Corollary 3. Fix a sentence ϕ. We describe how to decide whether
or not (∃α < ω)(α;<) |= ϕ. Consider the automaton Aϕ. Since ϕ has no free
variables, the alphabet of this automaton is 04 = {∅}. Its transition function
Tϕ may therefore be viewed simply as a directed graph. The vertices are
states, and the graph has an edge from b to b∗ iff the automaton transitions
from b to b∗, namely if Tϕ(b, ∅) = b∗. The automaton accepts the (unique)
input string of length α iff the graph has a path of length α from Iϕ to a vertex
in Fϕ. So (∃α < ω)(α;<) |= ϕ iff there is a vertex in Fϕ which is reachable
from Iϕ. The graph is finite, and the question of reachability in finite graphs
is decidable.

Countable ordinals

Büchi [2] discovered that there is a parallel of Theorem 1 to α = ω. Let A be
a finite state automaton with alphabet Σ. Let X : ω → Σ be an input string

4

of length ω. Conditions (Initial) and (Succ) give rise to a notion of runs of
the automaton on X, but of length ω rather than ω + 1. A run is a sequence
s : ω → S which satisfies condition (Initial), and satisfies condition (Succ) for
each ξ < ω. Since the run does not provide a final state s(ω), the notion
of acceptance requires an additional definition. Büchi equipped each of his
automata with a set G of states, which we call good states, and defined a run
s to be accepting iff {ξ < ω | s(ξ) ∈ G} is infinite. He then proved:

Theorem 4 (Büchi). For every monadic formula ϕ, there is a (non-deterministic)
Büchi automaton which is equivalent to ϕ on domain α = ω.

Proof sketch. Again the proof is by induction on the complexity of ϕ. The
cases of atomic ϕ and of conjunctions are similar to the corresponding cases
in the proof of Theorem 1. Since the automata in Theorem 4 are non-
deterministic, the case of existential quantification is easy, similar to the cor-
responding case in the proof of Theorem 1 but without the need to prove the
equivalence in Lemma 2. (This equivalence fails for Büchi automata.) It is
the case of negations which is difficult. The proof in this case makes a clever
use of Ramsey’s theorem.

Say ϕ = ¬ψ. Let Ā be a Büchi automaton witnessing the theorem for ψ,
consisting of a set of states S̄, a set of initial states Ī, a transition table T̄ ,
and a set of good states Ḡ. Suppose X : ω → Σ is an input string for Ā. We
have to define A (independently of X) so that A accepts X iff Ā does not.

For n < m < ω let CX(n,m) be the set of pairs 〈b, b∗〉 ∈ S̄×S̄ so that Ā can
get from state b at n to state b∗ at m. Precisely, 〈b, b∗〉 ∈ CX(n,m) if there is
a sequence s : [n,m] → S̄ which satisfies condition (Succ) for ξ ∈ [n,m), with
s(n) = b and s(m) = b∗. Let CgX(n,m) be the set of pairs 〈b, b∗〉 so that Ā
can get from state b at n to state b∗ at m, with the additional requirement of
passing through the set of good states Ḡ. Precisely, 〈b, b∗〉 ∈ C

g
X(n,m) if there

is s as above with the added requirement that s(k) ∈ Ḡ for some k ∈ [n,m).
CX and C

g
X are functions from ω2 into the finite set P(S̄ × S̄). By appli-

cations of Ramsey’s theorem there is an infinite set H ⊆ ω, and fixed D, E,
and Eg, so that CX(0, n) = D, CX(n,m) = E, and C

g
X(n,m) = Eg for all

n,m ∈ H.
Note that knowledge of D and Eg suffices to determine whether Ā has an

accepting run on X. Such a run exists iff there are states b0 ∈ Ī and b ∈ S̄ so
that 〈b0, b〉 ∈ D, and 〈b, b〉 ∈ Eg. (Given such b0 and b one can construct an
accepting run s̄ of Ā on X with s̄(0) = b0 and s̄(n) = b for n ∈ H. Conversely,
given an accepting run s̄, set b0 = s̄(0) and set b equal to any state which s̄

repeats infinitely many time on the infinite set H.)
Let J be the set of all triples 〈D,E,Eg〉 ∈ P(S̄×S̄)3 so that 〈b0, b〉 as above

do not exist. Define a non-deterministic automaton A so that a run of A on
X does the following: (a) guess, in the very first state, a triple 〈D,E,Eg〉 ∈ J ;
(b) guess, during the entire infinite run, a characteristic function χH of a set
H ⊆ ω; and (c) verify that CX(0, n) = D, CX(n,m) = E, and CgX(n,m) = Eg

for all n < m both in H. If all three condition can be achieved for input X

5

with the set H infinite, then X is not accepted by the original automaton Ā,
and vice versa. This follows from the conclusion of the previous paragraph.
Let G, the set of good states for the new automaton A, be the set of states at
which A guesses value 1 for χH , so that a run of A is accepting iff the set H
it guesses is infinite. Then A accepts X iff Ā does not, completing the proof.

As for the actual construction of the automaton A, conditions (a) and
(b) are simple, and an automaton whose runs verify the part CX(0, n) = D

in condition (c) can be defined using ideas similar to those in the proof of
Lemma 2. The verification that CX(n,m) = E and C

g
X(n,m) = Eg for

all n < m both in H must be done indirectly, since a finite state automaton
cannot at stagem keep track of CX(n,m) and CgX(n,m) for unboundedly many
n < m. One defines the automaton to only verify the simpler requirement that
CX(n,m) = E and CgX(n,m) = Eg for n equal to the immediate predecessor of
m in H, and adds the initial demand that the guess of E and Eg for condition
(a) must satisfy compositional properties which give the full requirement from
the simpler one, and conversely follow from the full requirement. For example,
the initial guess must satisfy (∃b∗)(〈b, b∗〉 ∈ E ∧ 〈b∗, b∗∗〉 ∈ E) iff 〈b, b∗∗〉 ∈ E.
It is the use of the compositional properties that forces us to involve E and
CX in the definition of the automaton, as the properties for Eg rely on E.

With Theorem 4 at hand, Büchi obtained the following Corollary. Its proof
is similar to that of Corollary 3, relying on Theorem 4 instead of Theorem 1.

Corollary 5 (Büchi). The monadic theory of (ω;<) is decidable.

The result can be extended to all countable ordinals. But first let us pass
to a class of automata which is more flexible already in the case of inputs of
length ω. With the more flexible class we will be able to recover the equivalence
between deterministic and non-deterministic automata. The equivalence fails
in the case of Büchi automata, and in fact Theorem 4 would fail if “Büchi
automaton” were replaced by “deterministic Büchi automaton.”

Given s : γ → S, with γ a limit ordinal, define cf(s) to be the set of states
which occur cofinally along s. Precisely, b ∈ cf(s) iff (∀ξ < γ)(∃δ)(ξ < δ <

γ ∧ s(δ) = b). cf(s) is an element of P(S).
A finite state automaton with a countable-limit condition consists of the

usual core, S, I, and T as before, and a function Ψctbl : P(S) → S. A run
of the automaton on input X : α → Σ of countable length α is a sequence
s : α+ 1 → S which satisfies conditions (Initial), (Succ) for all ξ < α, and

s(γ) = Ψctbl(cf(s↾ γ)) (LimCtbl)

for all limit ordinals γ ≤ α.
As usual the automaton is deterministic if I is a singleton and the transi-

tion table is the graph of a function. In the case of a deterministic automaton,
for countable input length α, conditions (Initial), (Succ), and (LimCtbl) de-
termine a unique run of the automaton on X. The run is produced by setting
s(0) = I, using condition (Succ) to uniquely determine s(ξ + 1) for successor

6

ordinals ξ+ 1 ≤ α, and using condition (LimCtbl) to uniquely determine s(γ)
for limit ordinals γ ≤ α.

Reverting to the initial approach to acceptance, we equip the automaton
with a set F ⊆ S of accepting final states. A run s on input X : α → Σ is
accepting if s(α) ∈ F , and the automaton accepts X if it has an accepting run
on X.

Acceptance in the case of α = ω is determined via a table on the basis of
cf(s↾ω); accepting runs are those with cf(s↾ω) ∈ Ψ−1(F). This method is due
to Muller. A Muller automaton consists of the usual core, S, I, and T , and
an acceptance table B ⊆ P(S). A run of the automaton on input X : ω → Σ
is a sequence s : ω → Σ satisfying conditions (Initial) and (Succ) for n < ω.
The run is accepting iff cf(s) ∈ B.

It is clear that every Büchi automaton is equivalent to a Muller automaton.
It is not hard to see that the converse is also true, for the non-deterministic
case. But deterministic Muller automata are more expressive than deter-
ministic Büchi automata. Indeed, the more flexible acceptance condition in
Muller automata allows a determinising construction, due to McNaughton [13],
producing a deterministic automaton equivalent to a given non-deterministic
automaton.

Theorem 6 (McNaughton). Every Muller automaton is equivalent to a de-
terministic Muller automaton.

The proof is very intricate, substantially more intricate than the proofs
given above. We refer the reader to Khoussainov–Nerode [9, §3.8]. The de-
terminism construction has an element of uniformity that is not present in
Büchi’s original proof of decidability of the monadic theory of (ω;<). That
uniformity allowed Büchi [3] to generalize the construction to all countable
domains:

Theorem 7 (Büchi). Every automaton with countable-limit condition is equiv-
alent to a deterministic automaton with countable-limit condition on countable
domains. (The equivalent automaton is independent of the domain.)

Using Theorem 7 one can very directly imitate the proof of Theorem 1 and
obtain:

Theorem 8 (Büchi). For every monadic formula ϕ, there is a deterministic
automaton with a countable-limit condition, A, which is equivalent to ϕ on
countable domains.

Corollary 9 (Büchi). The set of monadic sentences ϕ so that (∃α < ω1)
(α;<) |= ϕ is decidable.

Proof sketch. Similar to the proof of Corollary 9, but this time searching for
generalized paths in the directed graph of the automaton. A generalized path
is a sequence of vertices {bi} so that for each i either (1) the graph has an
edge from bi to bi+1; or (2) bi = bk for k ≤ i (this gives rise to a loop)

7

and bi+1 = Ψctbl({bk, . . . , bi}). The second condition corresponds to a use of
condition (LimCtbl), which allows the automaton to reach state bi+1 if it had
generated a limit-length sequence of states that repeats {bk, . . . , bi}.

With a more careful analysis one can prove further that for each (non-zero)
countable ordinal α, the monadic theory of (α;<) is decidable, and depends
only on the remainder obtained when dividing α by ωω.

The first and second uncountable cardinals

When dealing with monadic theories of uncountable ordinals one has to take
into account notions from set theory including clubs, stationarity, and to some
extent cofinality.

Recall that an ordinal β is a limit point of a set of ordinals A if A ∩ β is
unbounded in β, meaning that (∀ξ < β)(∃δ)(ξ < δ < β ∧ δ ∈ A). A set C ⊆ κ

is closed unbounded in an ordinal κ, club in κ or simply club for short, if: (a)
C is unbounded in κ, and (b) C is closed in κ, meaning that every limit point
β < κ of C is an element of C.

A function on ordinals f : τ → κ is cofinal in κ if its range {f(ξ) | ξ < τ}
is unbounded in κ. The cofinality of κ, denoted cof(κ), is the smallest ordinal
τ so that there is a function f : τ → κ cofinal in κ. An ordinal τ is regular if
cof(τ) = τ . Regular ordinals are in fact cardinals, and if τ = cof(κ) then τ is
regular. Thus the cofinality of an ordinal κ is always a cardinal.

For κ of uncountable cofinality, any two club subsets of κ have non empty,
and in fact club, intersection. For such κ we say that a set A ⊆ κ is stationary
in κ if it meets—meaning it has non-empty intersection with—every club sub-
set of κ. The notion is non trivial as every club in κ is stationary. Using the
axiom of choice every stationary set can be split into two disjoint sets which
are both stationary, so there are stationary sets which are not club.

For τ ≥ ω1, if κ has cofinality ≥ τ then every club in κ has points of all
cofinalities < τ , and vice versa. In the next paragraph we write (∗) to refer to
this equivalence.

The notions limit point, club, and stationary are clearly expressible in
the monadic language. Cofinality need not be expressible in the monadic
language, since its definition uses functions. But using the equivalence (∗),
and the fact that cof(κ) ≥ ω0 iff κ is a limit ordinal, it is easy to define by
recursion, for finite n, monadic formulas ϕcof≥ωn

so that (On;<) |= ϕcof≥ωn
[κ]

iff cof(κ) ≥ ωn.
Work with a cardinal κ of cofinality ≥ ω1. For sets A,B ⊆ κ define A ∼ B

iff A and B are equal on a club, meaning that there is a club C ⊆ κ so that
A∩C = B∩C. Since the intersection of two club subsets of κ is itself club, ∼ is
an equivalence relation. We write [A] to denote the equivalence class of A. Let
Bκ be the set of equivalence classes of ∼. The basic operations on sets, union,
intersection, and difference, extend naturally to operations on the equivalence
class. Abusing notation slightly we use the same symbols to denote these

8

operations on classes, writing for example [A] ∩ [B] = [C] if A ∩ B = C. The
structure (Bκ;∪,∩,−, ∅, κ) is a Boolean algebra, and since the notions used to
define it are all expressible in the monadic language, the first order theory of
(Bκ;∪,∩,−, ∅, κ) is computable from the monadic theory of (κ;<).

In fact much more may be computed from the monadic theory. For A ⊆ κ

define R(A) to be the set of α < κ so that A ∩ α is stationary in α. Such α

are reflection points of A. R is trivial in the case of κ = ω1, but its behavior
is highly non-trivial, and indeed independent of ZFC, already at κ = ω2. R

extends to act on ∼ equivalence classes, and it is clear that the theory of
(Bκ;R,∪,∩,−, ∅, κ) is also computable from the monadic theory of (κ;<).

Shelah [18] used intricate model theoretic arguments to provide converses
to these observations. He showed that the monadic theory of (ω1;<) can be
reduced to the first order theory of (Bκ;∪,∩,−, ∅, κ), and the monadic the-
ory of (ω2;<) can be reduced to the first order theory of (Bκ;R,∪,∩,−, ∅, κ).
His results are more general, and reduce the monadic theories of higher cardi-
nals κ to first order theories of structures that extend (Bκ;∪,∩,−, ∅, κ) with
operations additional to R, collecting more operations as κ increases.

(Bω1
;∪,∩,−, ∅, ω1) is an atomless Boolean algebra and its theory is de-

cidable. Thus it follows from Shelah’s reduction that the monadic theory of
(ω1;<) is decidable. This had been proved previously by Büchi [4], using au-
tomata that he defined acting on sequences of length ω1. In later work Büchi–
Zaiontz [5] proved the following theorem, and in fact characterized completely
the monadic theories of ordinals below ω2.

Theorem 10 (Büchi–Zaiontz). For every α < ω2, the monadic theory of
(α;<) is decidable.

At ω2 matters change drastically. Shelah’s reduction shows that the monadic
theory of (ω2;<) and the first order theory of (Bω2

;R,∪,∩,−, ∅, ω2) are each
computable from the other. But the complexity of the first order theory of
(Bω2

;R,∪,∩,−, ∅, ω2) is independent from ZFC.
It is helpful to divide ω2 into two parts, C0 and C1, with Ci consisting of

the ordinals α < ω2 of cofinality ωi. Both are stationary. Subsets of C1 do not
reflect, so in analyzing the operation R on Bω2

we are concerned only with its
behavior on subsets of C0.

Assuming mild large cardinals Magidor [12] showed it is consistent to have
R(A) = C1 (modulo the equivalence relation ∼) for every A ⊆ C0. In this
case R is trivial on Bω2

, and the first order theory of (Bω2
;R,∪,∩,−, ∅, ω2) is

decidable.
There are other behaviors of R that result in a decidable theory. Shelah [19]

shows, assuming just the consistency of ZFC, that it is consistent that for every
A ⊆ C0 and every stationary B̂, Ĉ with B̂ ∪ Ĉ = R(A), there are stationary
B,C ⊆ A so that R(B) = B̂ and R(C) = Ĉ. (Again equality is modulo ∼.)
From this principle too it follows that the theory of (Bω2

;R,∪,∩,−, ∅, ω2) is
decidable, though R is not trivial.

9

On the other hand Gurevich–Magidor–Shelah [8] construct models where
the theory of (Bω2

;R,∪,∩,−, ∅, ω2) has arbitrary Turing degree, assuming
mild large cardinals. Lifsches–Shelah [10] construct models, assuming just the
consistency of ZFC, where the theory is arbitrarily complicated.

In short, the theory of (Bω2
;R,∪,∩,−, ∅, ω2), and equivalently the monadic

theory of (ω2;<), cannot be determined from ZFC, and:

Theorem 11 (Shelah, Gurevich–Magidor–Shelah, Lifsches–Shelah). The de-
cidability of the monadic theory of (ω2;<) is independent of ZFC.

Reflection principles may affect not just decidability, but also definabil-
ity. Using the monadic formulas ϕcof≥ωn

defined above it is easy to see that
each of the cardinals ωn, for finite n, is definable by a monadic formula over
(On;<): ωn is the least ordinal of cofinality ≥ ωn. Magidor [12] construct from
large cardinals a model in which ωn+1 is also definable. In Magidor’s model
every stationary subset of ωω+1 reflects. This universal reflection fails on the
cardinals ωn (the set of points of cofinality ωn−1 does not reflect), and since
the property is expressible in the monadic language, one can write a monadic
formula which in Magidor’s model defines ωω+1. Then using the equivalence
(∗) above and a recursive definition similar to the definition of the formulas
ϕcof≥ωn

, it follows that ωω+1+n is definable for each finite n.
One can build on this argument to construct models where other regular

cardinals are definable. Note that the argument skips the singular cardinal ωω.
We shall see in the next section that singular cardinals can never be defined
by a monadic formula over (On;<).

Automata capturing monadic truth on all domains

The almost-all language, which we shall use below, is obtained from the
monadic language by removing the first order quantifiers, and adding instead
the quantifiers (∀∗ξ) and (∀∗ξ < δ). The semantics of the first quantifier is
given by the following condition: (α;<) |= (∀∗ξ)ϕ(ξ) iff

1. cof(α) ≥ ω1; and

2. There is a club C ⊆ α so that (α;<) |= ϕ[ξ] for all ξ ∈ C.

(In writing the condition we suppressed the instantiated variables of (∀∗ξ)ϕ(ξ),
for notational simplicity.) The semantics of the second quantifier is given by a
similar condition requiring that cof(δ) ≥ ω1, and that (α;<) |= ϕ[ξ] on a club
C ⊆ δ.

We saw already that the properties of having uncountable cofinality and
of being club can be expressed in the monadic langauge. It follows from this
that the almost-all language is a fragment of the monadic language. The
almost-all language is strictly less expressive than the monadic language. For
example, the truth value of an almost-all formula about sets A1, . . . , Ak ⊆ α

depends only on the restriction of these sets to a club in α. In other words

10

the language cannot distinguish between tuples 〈A1, . . . , Ak〉 and 〈A′
1, . . . , A

′
k〉

provided Ai = A′
i on a club. In particular the almost-all language cannot

express equality on sets. (In the full monadic language equality can be ex-
pressed: A = B iff (∀ξ)(ξ ∈ A↔ ξ ∈ B).) Nonetheless it is expressive enough
to capture an important essence of the monadic truth. For example, the re-
sults in the previous section may be viewed as reducing full monadic truth on
ω1 and ω2 to truth in the almost-all language, and then reasoning about the
decidability or undecidability of this almost-all truth.

More uniformly, almost-all truth can be used as a foundation for decision
making at limit stages, in a class of automata that capture monadic truth on
all domains. In this section we define the class, and see how it is connected to
monadic truth on ordinals.

We begin with some preliminary definitions. The notation f : α ⇀ S

indicates that f is a partial function from α into S. Assuming S is finite the
function can be coded by a tuple of subsets of α as follows. Let b0, . . . , bn−1

be the elements of S, and let Ai = {ξ < α | f(ξ) = bi} for i < n. Then
〈A0, . . . , An−1〉 codes f . When we write ϕ(. . . , f, . . .) below, with ϕ an almost-
all formula and f : α ⇀ S, we mean ϕ(. . . , A0, . . . , An−1, . . .).

Define cd(f) : α ⇀ P(S), the cofinal-state derivative of f , by cd(f)(γ) =
cf(f↾ γ) for each limit ordinal γ < α, and cd(f)(γ) undefined otherwise. cd(f)
too can be coded by a tuple 〈D0, . . . , Dn−1〉 of n subsets of α, setting γ ∈ Di

iff bi ∈ cd(f)(γ) iff bi ∈ cf(f↾ γ). When we write ϕ(. . . , cd(f), . . .), with ϕ an
almost-all formula and f : α ⇀ S, we mean ϕ(. . . , D0, . . . , Di−1, . . .).

Given a finite sequence of formulas ~ψ = 〈ψ0, . . . , ψl−1〉 in the almost-all
language, and functions s : α → S and r : α ⇀ S, define Tf ~ψ(s, r), the ~ψ

fragment of the almost-all truth table of s, cd(s), and r, to be the set of i < l

so that (α;<) |= ψi[s, cd(s), r]. This is the restriction of the set of almost-all
formulas which are true of 〈s, cd(s), r〉, to the finite fragment specified by ~ψ.
Given further a function Ψ: P(l) → S, define (Ψ⊕ ~ψ)(s, r) to be Ψ(Tf ~ψ(s, r)).

We are ready now to define our final class of finite state automata. We
work as usual with a an alphabet Σ. A finite state automaton with full-limit
condition, A, consists of the following objects. The objects in conditions (A1)
and (A2) are similar to objects we have seen before, for the basic core of an
automaton, and for countable limits which in our context will generalize to all
limits of countable cofinality. The objects in condition (A3) will be used to
determine the state s(λ) for limit λ of uncountable cofinality. The objects in
condition (A4) will be used to determine the extra component r of a run of A.

A1. A finite set of states S, a set of initial states I ⊆ S, and a transition
table T ⊆ S × Σ × S.

A2. A lower-limit function Ψlo : P(S) → S.

A3. A finite sequence of formulas ~ψ = 〈ψ0, . . . , ψl−1〉 in the almost-all lan-
guage, and a higher-limit function Ψhi : P(l) → S.

11

A4. A finite set P of pebbles, and two functions which will be used in placing
and removing pebbles, u : S → {U | U (P}, and h : S → P with
h(b) ∈ P − u(b) for all b ∈ S.

A run of the automaton on input X : α→ Σ, is a pair of functions s : α+
1 → S and r : α ⇀ S satisfying the following conditions. The first three we
have seen before, and they will now apply to the initial state, successor states,
and all limit states of countable cofinality. The fourth condition will apply
to limits of uncountable cofinality, and the fifth will determine the additional
component r of the run. We shall say more about these rules below.

s(0) ∈ I (Initial)

〈s(ξ), X(ξ), s(ξ + 1)〉 ∈ T (Succ)

s(λ) = Ψlo(cf(s↾λ)) (LimCtbl)

s(λ) = (Ψhi ⊕ ~ψ)(s↾λ, r↾λ) (LimHi)

If there exists some γ > ξ so that h(s(ξ)) 6∈ u(s(γ)) then r(ξ) = s(γ)
for the least such γ, and otherwise r(ξ) is undefined.

(Peb)

As usual the automaton is deterministic if I is a singleton and T is the
graph of a function. It is conceptually easier to explain how the conditions
above govern the behavior of a deterministic automaton, so we do this first,
and comment on the natural extension to non-deterministic automata later.

A deterministic automaton A should be viewed as running over input
X : α→ Σ and producing a run 〈s, r〉 through a transfinite sequence of stages.
In the initial stage the automaton sets s(0) equal to the unique element of
I. In each subsequent stage β the automaton determines s(β) through one of
the conditions (Succ), (LimCtbl), and (LimHi), depending on whether β is a
successor, a limit of countable cofinality, or a limit of uncountable cofinality.
If β is a successor, say ξ+1, then the automaton sets s(ξ+1) = T (s(ξ), X(ξ)),
determining the state s(ξ + 1) on the basis of the state s(ξ) and input X(ξ),
as usual. If β is a limit ordinal of countable cofinality, then the automaton
sets s(β) = Ψlo(cf(s↾β)), determining s(β) on the basis of the cofinal set of
the run s↾β produced so far. Finally, if β is a limit of uncountable cofinality
then the automaton sets s(β) = (Ψhi ⊕ ~ψ)(s↾β, r↾β), determining s(β) on
the basis of a fragment of the almost-all theory of the run s↾β produced so
far, its cofinal-state derivative cd(s↾β), and the auxiliary sequence r↾β. The
sequence ~ψ defines the window of formulas to be consulted, and Ψhi converts
the resulting fragment of the theory into a state.

The auxiliary sequence r is determined using the objects P , u, and h in
condition (A4), subject to condition (Peb). We think of P as a finite set
of pebbles. The functions h and u are used to place and remove pebbles as
follows. Having determined the state s(β), the automaton places a pebble
p = h(s(β)) on the ordinal β. The pebble p remains on β until a later stage
β∗ is reached with p 6∈ u(s(β∗)). At the first such stage β∗ the automaton
removes the pebble from β, and sets r(β) = s(β∗). This is expressed precisely

12

in condition (Peb). r(β) remains undefined until the pebble placed on β is
removed, and may indeed remain undefined throughout, if the pebble is not
removed at all during the run. The use of pebbles therefore introduces a delay
into part of the construction of a run. This delay is essential in the proofs of
Theorems 12 and 13 below.

The value of r↾β known by stage β, call it (r↾β)local, is not the same as
the final value r↾β known by the end of the run, after stage α, as there may
be ordinals ξ < β so that the pebble h(s(ξ)) placed on ξ is removed at a stage
γ ≥ β. But there may only be finitely many such ordinals, since the number
of pebbles is finite and since no pebble is ever located on two ordinals at the
same stage (to see this use the restriction h(b) 6∈ u(b) in condition (A4)). Thus
(r↾β)local and r↾β may only differ on a finite set.

When reaching a limit stage β the automaton looks at the value of r↾β
known by stage β, setting s(β) equal to (Ψhi ⊕ ~ψ)(s↾β, (r↾β)local). This as-
signment satisfies condition (LimHi) since (r↾β)local and r↾β differ only on a
finite set, and the almost-all theory cannot distinguish such a difference.

Runs of non-deterministic automata are governed by conditions (LimCtbl),
(LimHi), and (Peb) in exactly the way described above. Deterministic and
non-deterministic automata differ only in the initial and successor stages,
where conditions (Initial) and (Succ) require a non-deterministic automaton
to make a choice.

As usual we equip the automaton with a set F of accepting final states.
A run 〈s, r〉 on input X : α → Σ is accepting iff its last state s(α) belongs
to F . As usual the automaton accepts X iff there is an accepting run of the
automaton on X.

The main result connecting this class of automata to monadic truth, and
the purpose behind the definition of the class, is the following theorem:

Theorem 12 (Neeman). For every monadic formula ϕ, there is a determin-
istic automaton with a full-limit condition, A, which is equivalent to ϕ on all
ordinal domains.

The theorem is a corollary to the following result on determinism, in much
the same way that Theorem 1 is a corollary to Lemma 2.

Theorem 13 (Neeman). Every automaton with full-limit condition is equiv-
alent to a deterministic automaton with full-limit-condition. The equivalence
holds on all ordinal domains, and the equivalent automaton is independent of
the domain.

Theorem 13 extends the work of Büchi [3] and Büchi–Zaiontz [5] to au-
tomata acting on inputs of lengths ω2 and greater. The specific details of the
definition of automata with full-limit condition above are of course important
to the proof of the theorem. The proof, and the uses of the various aspects
of the definition, are beyond the scope of this paper. We refer the reader to
Neeman [14].

13

Since automata may refer to the almost-all theory of the run constructed
to set limit states, Theorem 12 may be viewed as reducing questions about
the monadic theory to questions about the almost-all theory. This kind of
reduction can also be made using model theoretic techniques on individual
cardinals, see Shelah [18], with increasing complexity as one moves to higher
cardinals. What makes Theorem 12 particularly useful is its uniformity. To
each monadic formula ϕ it assigns a single deterministic automaton which
performs the reduction to the almost-all theory on all domains. This unifor-
mity, and properties of the almost-all theories of ordinals, for example the fact
that the almost-all theory of (α;<) depends only on the cofinality of α, allow
deriving the following result from Theorem 12.

Theorem 14 (Neeman). No singular cardinal is definable over (On;<) by a
monadic formula.

The result was extended in Neeman [15], again using Theorem 12, to show
further:

Theorem 15 (Neeman). An ordinal is definable over (On;<) by a monadic
formula iff it can be obtained, using ordinal addition and multiplication, from
regular cardinals which are definable over (On;<) by monadic formulas.

The uniform reduction from monadic theory to almost-all theory given by
Theorem 12 may also help obtain results on the monadic theory of ordinals in
future forcing extensions which manipulate the almost-all theory of all regular
cardinals. At the moment though we only know how to force useful almost-
all theories (useful for the purpose of connections with monadic theories) at
low cardinals. The following theorem of Neeman [16] reaches ω3. The model
involved satisfies 2ω2 = ω4, and the construction does not generalize to higher
cardinals even if one were willing to let 2ω2 rise further.

Theorem 16 (Neeman). It is consistent (assuming the consistency of ZFC)
that the monadic theory of (ω3;<) is decidable.

Much more remains to be discovered on the monadic theory of ordinals. Is
it consistent that for every ordinal α the monadic theory of α is decidable? Is
it consistent that ℵω+1 is not definable by a monadic formula over (On;<)? By
Theorem 12, both questions are in fact questions about the almost-all theories
of the mentioned ordinals.

Theorem 12 uses the axiom of choice. In fact already at the level of ω1

known proofs of decidability of the monadic theory use some fragment of the
axiom of choice, see Litman [11]. What happens when this fragment of the
axiom of choice fails? In particular, is the monadic theory of (ω1;<) decidable
under the axiom of determinacy? Very little is known that may help with this
question.

Second order theories are typically very complicated. But within second
order theories the monadic theories should be relatively manageable, and it
is not unreasonable to hope that further research should shed light on the
questions above.

14

References

[1] J. Richard Büchi. Weak second-order arithmetic and finite automata. Z.
Math. Logik Grundlagen Math., 6:66–92, 1960.

[2] J. Richard Büchi. On a decision method in restricted second order arith-
metic. In Logic, Methodology and Philosophy of Science (Proc. 1960 In-
ternat. Congr .), pages 1–11. Stanford Univ. Press, Stanford, Calif., 1962.

[3] J. Richard Büchi. Decision methods in the theory of ordinals. Bull. Amer.
Math. Soc., 71:767–770, 1965.

[4] J. Richard Büchi. The monadic second order theory of ω1. In The monadic
second order theory of all countable ordinals (Decidable theories, II), pages
1–127. Lecture Notes in Math., Vol. 328. Springer, Berlin, 1973.

[5] J. Richard Büchi and Charles Zaiontz. Deterministic automata and the
monadic theory of ordinals < ω2. Z. Math. Logik Grundlag. Math.,
29(4):313–336, 1983.

[6] Calvin C. Elgot. Decision problems of finite automata design and related
arithmetics. Trans. Amer. Math. Soc., 98:21–51, 1961.

[7] Yuri Gurevich. Monadic second-order theories. In Model-theoretic logics,
Perspect. Math. Logic, pages 479–506. Springer, New York, 1985.

[8] Yuri Gurevich, Menachem Magidor, and Saharon Shelah. The monadic
theory of ω2. J. Symbolic Logic, 48(2):387–398, 1983.

[9] Bakhadyr Khoussainov and Anil Nerode. Automata theory and its appli-
cations, volume 21 of Progress in Computer Science and Applied Logic.
Birkhäuser Boston Inc., Boston, MA, 2001.

[10] Shmuel Lifsches and Saharon Shelah. The monadic theory of (ω2, <) may
be complicated. Arch. Math. Logic, 31(3):207–213, 1992.

[11] Ami Litman. On the monadic theory of ω1 without A.C. Israel J. Math.,
23(3-4):251–266, 1976.

[12] Menachem Magidor. Reflecting stationary sets. J. Symbolic Logic,
47(4):755–771 (1983), 1982.

[13] Robert McNaughton. Testing and generating infinite sequences by a finite
automaton. Information and Control, 9:521–530, 1966.

[14] Itay Neeman. Finite state automata and monadic definability of singular
cardinals. To appear, J. of Symbolic Logic, June 2008.

15

[15] Itay Neeman. Monadic definability of ordinals. To appear, Computa-
tional Prospects of Infinity, Part II: Presented Talks, Vol. 15, Lecture
Notes Series, Institute of Mathematical Sciences, National University of
Singapore.

[16] Itay Neeman. Monadic theory of ω3. To appear.

[17] M. O. Rabin and D. Scott. Finite automata and their decision problems.
IBM J. Res. Develop., 3:114–125, 1959.

[18] Saharon Shelah. The monadic theory of order. Ann. of Math. (2),
102(3):379–419, 1975.

[19] Saharon Shelah. A weak generalization of MA to higher cardinals. Israel
J. Math., 30(4):297–306, 1978.

16

