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Abstract

Infons are pieces of information. In the context of access control the
logic of infons is a conservative extension of intuitionistic logic. Dis-
tributed Knowledge Authorization Language uses additional unary con-
nectives “p said” and “p implied” where p ranges over principals. Here we
investigate infon logic and a narrow but useful primal fragment of it. In
both cases, we develop model theory and analyze the derivability prob-
lem: Does the given query follow from the given hypotheses? Our more
involved technical results are on primal infon logic. We construct an al-
gorithm for the multiple derivability problem: Which of the given queries
follow from the given hypotheses? Given a bound on the quotation depth
of the hypotheses, the algorithm works in linear time. We quickly discuss
the significance of this result for access control.
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1 Introduction

Infons are pieces of information, e.g. John has the right to read File 13 of the
given computer system. The notion of infon is basic in DKAL, Distributed
Knowledge Authorization Language, that we have been developing [8, 9, 10].

Quisani1: How are infons different from statements?

Authors2: We never ask whether an infon is true or false. Instead we
ask whether it is known to relevant principals. For example, does the
owner of File 13 know that John has the right to read the file? Does the
administrator of the system know? Does John know? Besides the notion
of infon is purely semantical.

Q: Did you invent the term?

A: No, though for a while we thought we did. The term has been used in
situation theory where the name is “intended to emphasize the fact that
‘infons’ are semantic objects, not syntactic representations” [7, page 22].
But infons are assigned truth values in situation theory, so our usage of
the term is different.

One may study the algebra of infons. Order a ≤ b if the information in a is
a part of that in b. At the bottom of that partial order are uninformative infons
carrying no information whatsoever. There is a natural union operation a + b
on infons. You know a+b if you know a and you know b. Infon a+b is the least
upper bound of a and b. But one has to be careful with the information order
because of the omniscience problem well known in epistemic logic. The partial
order is intractable. Indeed, valid logic statements are uninformative. In [8] we
used a rule-based feasible approximation of the true information order.

The right tool to deal with infons is logic. The addition operation a+ b can
be thought as conjunction a ∧ b. And the implication connective is natural. If
you know a and you know a→ b then you know b. In terms of the information
order, a→ b is the least solution x of the inequality a+ x ≥ b.

Q: Give an example of implication.

A: You have the right to fish in this river if you have an appropriate
licence from the state.

Implication allowed us to simplify DKAL [10]. For example “principal p is
trusted on saying infon x,” used to be a primitive notion in DKAL subject to
a stipulation “x ≤ (p said x) + (p trusted on saying x).” Now we define “p
trusted on saying x” as “(p said x) → x.” The stipulation follows. It turns out
that infon logic is a conservative extension of (disjunction-free, propositional)

1Quisani is an inquisitive friend of ours.
2Speaking one at a time.
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intuitionistic logic. In addition to conjunction and implication, infon logic has
two unary connectives “p said” and “p implied” for any principal p. The number
of principals is unbounded.

Q: How is infon logic related to authorization?

A: In DKAL, a principal uses infon logic to derive consequences from
(i) his own knowledge assertions and (ii) the communications from other
principals.

Q: How are “said” and “implied” different?

A: A principal p may just say x to q. Then (if the communication reaches
q and q accepts it but let us ignore all that) q learns infon p said x.
However p may condition his saying x on q knowing y. Then q learns
infon y → (p implied x).

Q: Give me an example.

A: Suppose that Alice and Bob work in the same company, and Charlie
is an outside visitor. If Alice tells Bob that Charlie can read the latest
company letter then Bob learns this: Alice said Charlie can read the
letter. But if Alice tells Bob that Charlie can read the letter provided
that Charlie signed the non-disclosure agreement (NDA) then Bob learns
this: if Charlie signed the NDA then Alice implied that Charlie can read
the letter.

Q: What does this buy you? Suppose that Bob knows the proviso that
Charlie signed the NDA. Then he learns that Alice implied that Charlie
can read the letter. Shouldn’t he learn that Alice said that Charlie can
read the letter?

A: If one is not careful, a proviso can be used for undesired delegation and
even a probing attack [10, §7]. To get from knowing p said x to knowing
x, q needs to trust p on saying x. To get from knowing p implied x to
knowing x, q needs to trust p on implying x which is a stronger condition.

The derivability problem (whether given formulas Γ entail another given for-
mula x) for intuitionistic logic may seem to be intractable. Even the termination
of the proof search does not seem to be guaranteed. But there are intuitionistic
calculi with the subformula property: if Γ entails x then there is a derivation of
x from Γ that uses only subformulas of formulas Γ ∪ {x}. This helps to estab-
lish that the problem is solvable in polynomial space. The problem is in fact
polynomial space complete [16].

Starting with a known sequent calculus for intuitionistic logic which is sound
and complete with respect to the standard Kripke semantics and which has the
subformula property, we extend the calculus and semantics to infon logic and
prove that the extended calculus is sound and complete and has the subformula
property. The derivability problem remains polynomial space complete in the
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worst case. This does not make infon logic useless. It works in great many
practical cases. Typical cases are far from the worst ones.

Further, we identified a narrow primal fragment of infon logic that is sur-
prisingly expressive. For the sake of contrast, the original infon logic may be
called full. We modify the sequent calculus for full infon logic to fit primal infon
logic. The new calculus has a version of subformula property; instead of subfor-
mulas we speak of relatives of theirs which we call local (to the given hypotheses
and query) formulas. The new calculus is sound and complete with respect to
Kripke semantics adjusted in a simple and natural way. The definition of when
an implication x→ y holds in a world w becomes non-deterministic and that’s
it.

Q: What about primal intuitionistic logic? I mean the intersection of
primal infon logic with intuitionistic logic. It’s got to be known. Intu-
itionistic logic has been researched so thoroughly for such a long time.

A: Well, the only references of relevance that we know are proof-theoretic
papers [1] and [2]. Their “semi-implication” is our primal implication.
But even the two papers have not been published yet; we learned of them
when we presented infon logic at Tel Aviv University. Primal intuitionistic
logic is weak indeed. That may explain the lack of attention.

The more involved technical results of this paper are related to the deriv-
ability problem for primal infon logic.

Definition 1.1. The multiple derivability problem MD(L) for a logic L is
to compute, given formulas x1, . . . , xm (the hypotheses) and y1, . . . , yn (the
queries), which of the queries are derivable from the hypotheses.

We construct an algorithm that solves the multiple derivability problem for
primal infon logic. We stratify primal logic according to the quotation depth
of infons. For example, both infons “Alice said that Bob implied that John
has the right to read File 13” and “Bob said that John has the right to read
File 13” belong to stratum 2 but only the second belongs to stratum 1. At each
stratum, our algorithm works in linear time. (Our computation model is the
usual random access machine, as in [6].)

In applications quotation depth tends to be small. Many authorization lan-
guages do not even allow nesting the pronouncements of principals. This applies
to all Datalog-based authorization languages that we know.

Q: The lowest stratum where pronouncements is nested is stratum 2. Is
stratum 2 of primal logic of any use for authorization purposes?

A: Very much so. In our experience, stratum 2 suffices for most purposes.

Q: Is there any evidence beyond your own experience?

A: An authorization language SecPAL [3] expresses many important ac-
cess control scenarios. A rather natural translation of SecPAL to DKAL
uses only stratum 2 of primal infon logic.
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This paper is self-contained. We do not presume that the reader is familiar
with DKAL or intuitionistic logic.

Acknowledgments

Conversations with Nikolaj Bjørner, Andreas Blass and Grigori Mints have been
most helpful. Last-minute remarks of Sergio Mera were useful as well.

2 Sequent calculi for full and primal infon logic

In DKAL, infons are expressed by means of terms, and formulas have the form
“principal knows infon”. Primitive terms have the form t0 A(t1, . . . , Ak) where
A is an attribute name, each ti is a term in the sense of first-order logic, and t0
is of type Principal. Compound terms are built from primitive ones by means
of functions ∧ and → of type Infon × Infon −→ Infon and functions said and
implied of type Principal × Infon −→ Infon.

This paper is devoted to infon logic. (Readers interested primarily in DKAL
and not so much in infon logic per se may want to go directly to [10].) Here
we treat infon terms as propositional formulas. We use symbol > to represent
an uninformative infon. We presume an infinite vocabulary of infon variables
and another infinite vocabulary of (the names of) principals. Formulas are built
from infon variables and the infon constant > by the following means.

• Conjunction. If x, y are formulas then so is x ∧ y.

• Implication. If x, y are formulas then so is x→ y.

• Two unary connectives p said and p implied for every principal p. If x
is a formula then so are p said x and p implied x.

In the sequel, formulas are by default these formulas. Formulas that do not
involve the unary connectives will be called quotation-free.

Some of our algorithms take formulas or sequences of formulas as inputs.
In this connection, we presume that the syntax of formulas is such that an
occurrence of a subformula y in a formula x is uniquely defined by the position
of the first symbol of y in x.

2.1 Sequent calculus for full infon logic

Our sequent calculus SCF for full infon logic is essentially an extension of the
disjunction-free version of the intuitionistic propositional system NJp [14, §2.2].
A sequent has the form Γ ` x where x is a formula and Γ is a set of formulas
written as a sequence. Here are the axioms and rules of inference.
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Axioms

(>) ` >
(x2x) x ` x

Inference rules

(Premise Inflation)
Γ ` y

Γ, x ` y

(∧E) Γ ` x ∧ y
Γ ` x

Γ ` x ∧ y
Γ ` y

(∧I) Γ ` x Γ ` y
Γ ` x ∧ y

(→E)
Γ ` x Γ ` x→ y

Γ ` y

(→I)
Γ, x ` y

Γ ` x→ y

(Said)
∆ ` y

q said ∆ ` q said y

(Implied)
(∆1 ∪∆2) ` y

(q said ∆1) ∪ (q implied ∆2) ` q implied y

Here E and I allude to “elimination” and “introduction” respectively. If
∆ = {x1, . . . , xn} then “q said ∆” is the set {(q said xi) : i = 1, . . . , n} and
“q implied ∆” is the set {(q implied xi) : i = 1, . . . , n}.

Corollary 2.1. q said x ` q implied x.

Proof Apply rule (Implied) to x ` x. �

Corollary 2.2 (Transitivity). If Γ ` x and Γ, x ` y then Γ ` y.

Proof By (→I), we have Γ ` (x→ y). It remains to apply (→E). �

Q: I guess > is the propositional constant usually called “true.”

A: This is a reasonable point of view as far as this paper is concerned.

Q: Is there any semantical difference between > and “true?”
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A: Yes, > is a piece of information known to all principals. It is natural
to assume that this infon is true but we don’t have to lump all true infons
together. Some true infons may be informative.

Q: Rule (Implied) is too complicated. Turn Corollary 2.1
into an axiom and then replace (Implied) with a simpler rule

∆ ` y
q implied ∆ ` q implied y

.

A: Calculus SCF has the subformula property: If a sequent Γ ` x is
provable then it has a proof that uses only subformulas of the sequent for-
mulas; see Theorem 3.2 below. The modified system loses the subformula
property. For example any proof of sequent

s = [q said r said x ` q implied r implied x].

involves additional formulas.

2.2 Sequent calculus for primal infon logic

We introduce primal infon logic by means of a sequent calculus SCP ob-
tained from the calculus SCF for full infon logic by replacing the implication-
introduction rule (→I) with two rules

(→IW)
Γ ` y

Γ ` (x→ y)

(Trans)
Γ ` x, Γ, x ` y

Γ ` y

Rule (→IW) is a weaker (hence the “W”) implication-introduction rule. Rule
(Trans) reflects Corollary 2.2.

Lemma 2.3. In either calculus,

if Γ ∪ {x1, . . . , xn} ` y and Γ ` x1, . . . ,Γ ` xn

then Γ ` y.

Proof Induction on n. If n = 0, the lemma is trivial. Suppose that n > 0
and the lemma has been proved for n − 1. Let Γ′ = Γ ∪ {x1, . . . , xn−1}. Use
(Premise Inflation) to derive Γ′ ` xn from the last premise. The first premise is
Γ′, xn ` y. Now use (Trans) and then the induction hypothesis. �

Q: Rule (→IW) is ridiculous. Why do you need the implication if you
already have the conclusion?

A: A principal may know the conclusion y but may be willing to share
only an implication x→ y with another principal. Besides the implication
x → y may be needed for derivation as it may occur as the premise of
another implication.
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3 Semantics, soundness and completeness, sub-
formula property

3.1 Semantics for full infon logic

Recall that a quasi-order ≤ is a binary relation that is reflexive and transitive.
A subset U of a quasi-ordered set (W,≤) is a cone if u ∈ U and u ≤ v imply
v ∈ U for all u, v in W . A Kripke structure for propositional intuitionistic logic
[12] can be defined as a triple (W,≤, C) where

K1 W is a nonempty set whose elements are traditionally called worlds,

K2 ≤ is a quasi-order of W , and

K3 C assigns a cone to every infon variable.

By induction, every quotation-free formula z is assigned a cone C(z) of worlds:

K4. C(>) = W.

K5. C(x ∧ y) = C(x) ∩ C(y).

K6. C(x→ y) = {u : C(x) ∩ {v : v ≥ u} ⊆ C(y)}.

Here > plays the traditional role of propositional constant “true.” It is easy to
check, by induction on formula z, that every C(z) is indeed a cone.

We extend this definition to accommodate full infon logic. A Kripke struc-
ture for full infon logic is a quintuple (W,≤, C, S, I) where W,≤, C are as above
and where S and I assign binary relations Sq and Iq over W respectively to every
principal q in such a way that the following two requirements are satisfied.

K7. Iq ⊆ Sq.

K8. If u ≤ w and wSq v then uSq v, and the same for Iq.

The cone map C is extended to all formulas by means of clauses K4–K6 and
the following two clauses.

K9. C(q said x) = {u : {v : uSq v} ⊆ C(x) }.

K10. C(q implied x) = {u : {v : u Iq v} ⊆ C(x) }.

If u ∈ C(z), we say that z holds in u and that u models z, and we write
u |= z. Again, it is easy to check, by induction on formula z, that every C(z) is
indeed a cone. We consider here only the case when z = (q said x). Suppose
that u ∈ C(z) and u ≤ w. By K9, {v : uSq v} ⊆ C(z) and we need to show
that {v : wSq v} ⊆ C(z). This follows from K8.

The cone map C extends naturally to sets of formulas and to sequents:

• C(Γ) =
⋂

x∈Γ C(x),
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• C(Γ ` y) = {u : C(Γ) ∩ {v : v ≥ u} ⊆ C(y)}.

The Kripke structure itself models a sequent s = [Γ ` y] if C(s) = W which
is equivalent to C(Γ) ⊆ C(y). A sequent s is valid if every Kripke structure
models s.

Corollary 3.1. C(q said x) ⊆ C(q implied x)

Proof By K9 and K10, it suffices to show that, for every u, {v : u Iq v} ⊆ {v :
u Sq v}. This is exactly K7. �

3.2 Semantics for primal infon logic

The definition of Kripke structures for primal infon logic is similar to that for
full infon logic except that the deterministic requirement K4 is replaced with
the following non-deterministic requirement.

K6W. C(x→ y) is an arbitrary cone subject to constraint

C(y) ⊆ C(x→ y) ⊆ {u : C(x) ∩ {v : v ≥ u} ⊆ C(y)}.

3.3 Soundness and completeness

Theorem 3.2. In the case of either infon logic, full or primal, the following
claims are equivalent for any sequent s.

1. s is provable.

2. s is valid.

3. Every finite Kripke structure models s.

4. There is a proof of s that uses only subformulas of s.

Proof We deal with both logics at once. We prove that (1) =⇒ (2) =⇒
(3) =⇒ (4) =⇒ (1). Implications (4) =⇒ (1), and (2) =⇒ (3) are obvious.

(1) =⇒ (2). Let K = (W,≤, C, S, I) be an arbitrary Kripke structure. By
induction on the given derivation of sequent s we show that K models s. If s
is the (>) axiom, use K4. If s is an (x2x) axiom, the desired C(x) ⊆ C(x) is
obvious.

Suppose that s is not an axiom. Let u be a world in the cone of the premise
of s. We need to show that u models the conclusion of s. Consider the last step
in the given derivation of s. Several cases arise. The case of (Premise Inflation)
is obvious. The cases (∧E) and (∧I) are obvious as well; just use K5.
(→E). By the induction hypothesis, u models x as well as x→ y. By K6W (use
the second inclusion of the constraint), u models y.
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(→I). This case is relevant for the full but not primal infon logic. By K6, it
suffices to check that v |= x implies v |= y for all v ≥ u. Suppose v |= x. By the
induction hypothesis, v |= y.
(→IW). This case is relevant for primal infon logic. By the induction hypothesis,
u models y. By K6W (use the first inclusion of the constraint), u models x→ y.
(Trans). This case is relevant for primal infon logic. By the choice of u, we have
u ∈ C(Γ). By the induction hypothesis applied to the first premise, u ∈ C(x).
Now we apply the induction hypothesis to the second premise: u ∈ C(y).
(S) and (I). These two cases are similar. We consider only (I). By the choice
of u, we have u ∈ C(q said ∆1) ∩ C(q implied ∆2). By Corollary 3.1, u ∈
C(q implied (∆1 ∪∆2)) which, by K10, is equivalent to this: v ∈ C(∆1 ∪∆2)
for all v with u Iq v. For any such v, by the induction hypothesis, v ∈ C(y). By
K10, u ∈ C(q implied y).

(3) =⇒ (4). Assuming that (4) fails, we construct a finite model K = (W,≤
, C, S, I) for sequent s. Call a formula native if it is a subformula of s. A
native theory is any set u of native formulas closed under native deduction in
the following sense: u contains every native formula x such that sequent u ` x
is provable using only native formulas.

The quasi-order (W,≤) of K is the set of native theories ordered by inclusion.
Set u Iq v true if v contains every formula x such that (q implied x) belongs to
u or (q said x) belongs to u. Set u Sq v true if v contains every formula x such
that q said x belongs to u. Requirements K1–K2 and K7–K8 are obviously
satisfied. It remains to define the cone map C. In the case of full infon logic,
we could have defined C on the variables and then used clauses K4–K6 and
K9–K10 to extend C to compound formulas. For the uniformity of the proof,
we choose a different route.

If z is a native formula or > define C(z) = {u : z ∈ u}, so that u |= z if and
only if z ∈ u. Clearly requirements K3 and K4 are satisfied. Now use clauses
K5–K6 and K9–K10 to extend C to the remaining formulas composed from
native formulas and > by means of connectives ∧,→, q said, q implied. To
complete the definition of K, we check that requirements K5, K6 (resp. K6W)
and K9–K10 on C(z) are satisfied for any native formula z. This is done by
induction on z. The base of induction, when z is a variable, is trivial. The
induction step splits into several cases.
Case K5. Using the definition of C on native formulas and the fact that every
world is closed under native deduction, we have

u ∈ C(x ∧ y) ⇐⇒ (x ∧ y) ∈ u ⇐⇒
x ∈ u ∧ y ∈ u ⇐⇒ u ∈ C(x) ∩ C(y).

Case K6. First we prove that C(x → y) ⊆ {u : C(x) ∩ {v : v ≥ u} ⊆ C(y)}.
This part is relevant to both infon logics. Suppose that u contains x→ y. If a
native theory v ≥ u also contains x then it contains y.

Second we prove that {u : C(x) ∩ {v : v ≥ u} ⊆ C(y)} ⊆ C(x → y).
This part is relevant only to full infon logic. Pick an arbitrary world u such
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that C(x) ∩ {v : v ≥ u} ⊆ C(y). We claim that sequent u, x ` y is provable.
Otherwise, there is a native theory v that includes u, contains x but does not
contain y which contradicts the choice of u. By (→I) with Γ = u, we have that
u contains x→ y.

Case K6W. This case is relevant for primal infon logic. The right inclusion has
been already proven. To prove the left inclusion, suppose that u ∈ C(y), so that
u ` y is provable. By (→IW), u ` (x→ y) is provable, and so u ∈ C(x→ y).

Cases K9 and K10. The two cases are similar; we consider only case K9. Con-
sider an arbitrary world u. First suppose that u ∈ C(q said x), that is u
contains (q said x). We need to prove that any v with uSq v contains x. This
follows from the definition of Sq. Second suppose that {v : uSq v} ⊆ C(x), that
is every native theory v with uSq v contains x. Let ∆ be the set of formulas
y such that u contains (q said y), and let ∆∗ be the least native theory that
includes ∆. By the definition of Sq , we have uSq ∆∗. Then ∆∗ contains x, so
that the sequent ∆ ` x is provable. By rule (Said), sequent u ` (q said x) is
provable, and so u contains q said x.

Thus K is a legitimate Kripke structure. Finally let s be Γ ` x, and let Γ∗ be
the least native theory. By the assumption that (4) fails, Γ∗ does not contain
x. It follows that s fails in K. �

4 Full infon logic: complexity

Theorem 4.1. The validity problem (whether a given formula is valid) for full
infon logic is polynomial-space complete.

The rest of this section is devoted to proving the theorem. The quotation-free
fragment of our sequent calculus for full infon logic is a calculus for a fragment
of propositional intuitionistic logic whose validity problem is pspace (that is
polynomial space) hard [16]. Hence our problem is pspace hard. It remains to
show that the validity problem for full infon logic is pspace.

We use the following idea that goes back to Ladner [13] who proved that the
validity problem for some modal logics is pspace. Instead of checking validity,
check whether the given formula can be refuted “in a tree-like model structure,”
which may be exponentially large but where the branches have only polynomial
length and thus “can be constructed one branch at a time.” The idea was
developed in a variety of publications, in particular by Halpern and Moses [11]
and by Schröder and Pattinson [15]. The latter paper is quite recent, has a
survey of related literature and will delight the fans of category theory.

Instead of constructing a tree-like model structure and examining it branch
by branch, we use games; this helps to avoid bookkeeping. Recall that pspace
equals alternating polynomial time [5]. We show that the unprovability problem
for the sequent calculus SCF for full infon logic, whether a given sequent is
unprovable, is solvable in alternating polynomial time.
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We start with a few auxiliary definitions. A sequent s = [Γ ` ϕ] self-refuting
if Γ is closed under s-native deduction but does not contain ϕ. A formula is
potent if it has the form x → y or p said x or p implied x. Define quotation
depth in the obvious way:

QD(z) = 0 if z is a variable or >,
QD(x ∧ y) = QD(x→ y) = max{QD(x),QD(y)},
QD(p said x) = QD(p implied x) = 1 + QD(x),
QD(Γ ` z) = max{QD(x) : x ∈ Γ ∨ x = z}.

The game Given a sequent s0 = [Γ0 ` ϕ0], we define a game G(s0) between two
players: Refuter, who intends to refute s, and Challenger. Let n be the length
of s0 and d the quotation depth QD(s0). Notice that the number of s0-native
formulas is ≤ n.

Phase 0. Refuter starts the game by guessing a sequent s1 = [Γ1 ` ϕ1] such that
Γ1 ⊇ Γ0 and ϕ1 = ϕ0; Refuter claims that s1 is self-refuting.

Winning condition. For any k > 0, the state of the game after phase k−1 (unless
the game terminated earlier) is given by a sequent sk = [Γk ` ϕk]. The game
continues further provided the following conditions are satisfied.

R1 > ∈ Γk, and ϕ /∈ Γk, and every formula in Γk is sk−1-native.

R2 If x ∧ y is in Γk then both x and y are in Γk.

R3 If x, y are in Γk and x ∧ y is sk-native then x ∧ y is in Γk.

R4 If x is in Γk and x→ y is in Γk then y is in Γk.

C1 There is an sk native potent formula outside of Γk.

Otherwise the game terminates. If at least one of the conditions R1–R4 fails
then Challenger wins. If conditions R1–R4 hold but condition C1 fails, then
Refuter wins.

Phase number k > 0. In state given by sequent sk = [Γk, ϕk], Challenger chooses
a potent sk-native formula z outside of Γk.

Case z = (x → y). Refuter guesses a sequent sk+1 = [Γk+1 ` y] with Γk+1 ⊇
Γk ∪ {x}.

Case z = (p said y). Let ∆ be the set of formulas x such that formula p said x
belongs to Γk. Refuter guesses a sequent sk+1 = [Γk+1 ` y] where Γk+1

consists of formulas native to ∆ ∪ {y} and Γk+1 ⊇ ∆.

Case z = (p implied y). Let ∆ be the set of formulas x such that either
(p said x) or (p implied x) belongs to Γk. Refuter guesses a sequent
sk+1 = [Γk+1 ` y] where Γk+1 consists of formulas native to ∆ ∪ {y} and
Γk+1 ⊇ ∆.
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That completes the description of the game.

Termination The game terminates in at most 1 + (d+ 1)n phases. Indeed, at
every phase k where Challenger chooses a said-formula or implied-formula, we
have QD(sk+1) < QD(sk). Thus there can be at most d such cases. And every
stretch of phases where Challenger chooses implications can contain at most n
phases as at each such phase the set of hypotheses grows but there can only be
≤ n hypotheses as there are only ≤ n s0-native formulas. The only exception
is the very first stretch because the set of hypotheses may not grow during the
very first phase.

Lemma 4.2.
1. If s0 is refutable then Refuter has a winning strategy in G(s0).
2. If s0 is valid then Challenger has a winning strategy in G(s0).

Proof 1. Assuming that s0 = [Γ0 ` ϕ0] is refutable, we construct a winning
strategy for Refuter. At phase 0, Refuter chooses Γ1 to be the least s0-native
theory that includes Γ0, and he chooses ϕ1 = ϕ0 so that sequent s1 = [Γ1 ` ϕ1]
is self-refuting.

Suppose that k > 0, phase k − 1 has been executed, the current sequent sk

is self-refuting, the game continues, and Challenger chose a formula z. We show
that Refuter can reply with a self-refuting sequent sk+1 = Γk+1 ` ϕk+1 whose
form depends on the form of z. But first notice that sk is not valid because it is
self-refuting and condition R1 holds. Let K be the counter-model constructed in
the proof of Theorem 3.2 with sk playing the role of s. Since sk is self-refuting,
Γk is an sk-native theory and thus a world in K.
Case z = (x→ y). Since (x→ y) does not belong to sk-native theory Γk, there is
a world Γk+1 ⊇ Γk in K that contains x but not y. The desired sk = [Γk+1 ` y].

Case z = (p said y). Let ∆ be as in the definition of phase k > 0. Taking
into account the rule (Said) of calculus SCF for full infon logic, we see that
sequent t = ∆ ` y is unprovable. The desired Γk+1 is the least t-native theory
that includes ∆ and the desired ϕk+1 = y.

Case z = (p implied y) is similar to the previous one.
2. Suppose that s0 is valid and thus provable in calculus SCF for full infon logic.
We construct a winning strategy for Challenger. Suppose that k > 0, phase k−1
has been executed and the current sequent sk is provable. If at least one of the
clauses R1–R4 in winning definition fails then Challenger wins. Suppose that
all four clauses hold. We show that Challenger can choose a potent sk-native
formula in such a way that every legal response sk+1 of Refuter is provable.

Since sk is provable and condition R1 holds, Γk is not closed under sk-
native deduction. Hence there exist sk-native formulas ψ outside of Γk such
that sequent [Γk ` ψ] is provable in SCF. Challenger should choose a formula
z among such formulas ψ subject to an additional constraint: the proof P of
sequent t = [Γk ` z] should be minimal possible. Clearly t is not an axiom of
SCF. Let R be the inference rule used to obtain t in P . Taking into account that
conditions R2–R4 hold, R cannot be (Premise Inflation), (∧E), (∧I) or (→E).
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We consider the remaining cases. In all those remaining cases formula z chosen
by Challenger is potent.
Case R = (→I), so that z has the form x → y. Refuter guesses a sequent
sk+1 = [Γk+1 ` y] with Γk+1 ⊇ Γk ∪ {x}. But the premise of (our application
of) R is sequent Γk, x ` y. So sk+1 is provable.

Case R = (Said), so that z has the form p said x. Let ∆ be as in the
definition of phase k. Refuter guesses a sequent sk+1 = [Γk+1 ` y] where Γk+1

consists of formulas native to ∆ ∪ {y} and Γk+1 ⊇ ∆. But the premise of R is
sequent ∆ ` y. sk+1 is provable.

Case R = (Implied) is similar to the previous one. �

Thus the question whether a given sequent s0 is valid or refutable can be de-
cided in alternating polynomial time. That concludes the proof of Theorem 4.1.

5 Hilbert-type calculus for primal infon logic

The rest of this paper is devoted to primal infon logic. We introduce a Hilbert-
type calculus H for the logic.

Let told with or without a subscript range over {implied, said}. A string
π of the form q1 told1 q2 told2 . . . qk toldk is a quotation prefix ; the length k
of π may be zero. Let pref with or without a subscript range over quotation
prefixes. If x is a formula

q1 told1 q2 told2 . . . qm toldm y

where y is a variable, conjunction or implication then every quotation prefix
(q1 told1 q2 told2 . . . qk toldk) with k ≤ m is a quotation prefix of x so that
(q1 told1 q2 told2 . . . qm toldm) is the maximal quotation prefix of x.

We say that pref1 is dominated by pref2 and write pref1 ≤ pref2 if pref1

is the result of replacing some (possibly none) occurrences of implied in pref2

with said. Now we are ready to give the axioms and rules of H.

Axioms: pref >

Inference rules:
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(Pref S2I)
pref2 x

pref1 x
where pref1 ≤ pref2

(Pref ∧E)
pref (x ∧ y)

prefx

pref (x ∧ y)
pref y

(Pref ∧I)
prefx pref y

pref (x ∧ y)

(Pref →E)
prefx pref (x→ y)

pref y

(Pref →I)
pref y

pref (x→ y)

A derivation of a formula ϕ from hypotheses Γ in calculus H is a sequence
x1, . . . , xn of formulas where xn = ϕ and every xi is an axiom, a hypothesis or
the result of applying one of the rules to earlier members. H does not have the
subformula property but it has a similar property.

Q: How do you know that H does not have the subformula property?

A: Here is a simple example. Hypotheses

p said x, p said (x→ y), p said (y → z)

entail p said z. Indeed, the first two hypotheses entail formula p said y;
that formula and the third hypotheses entail p said z. That derivation
and indeed all derivations of p said z from the hypotheses contain formula
p said y which is not a subformula of the hypotheses or the conclusion.

Definition 5.1. The components of a formula z are defined by induction:

• z is a component of z, and

• if pref (x∧ y) is a component of z or if pref (x→ y) is a component of z,
then prefx and pref y are components of z.

The components of a set ∆ of formulas are the components of the formulas in
∆.

Lemma 5.2 (Components). If x is a component of z then p told x is a com-
ponent of p told z.

Proof Induction on the definition of components. �

Further, a formula x is dominated by a formula y if x = pref1 z and y =
pref2 z for some z and pref1 ≤ pref2.

Definition 5.3 (Local). A formula x is local to a formula z if it is dominated
by a component of z. Formula x is local to a set ∆ of formulas if it is local to a
formula in ∆. A prefix pref is local to ∆ if some formula pref y is local to ∆.
A derivation x1, . . . , xn of ϕ from Γ in calculus H is local if every formula xi is
local to set Γ ∩ {ϕ}.
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Recall that SCP is the sequent calculus of §2.2 for primal infon logic.

Theorem 5.4. For every sequent s = [Γ ` ϕ], the following claims are equiva-
lent.

1. s is derivable in SCP.

2. There is a derivation of s in SCP where every formula is a subformula of
s.

3. s is valid.

4. ϕ is derivable from Γ in H.

5. There is a local derivation of ϕ from Γ in H.

Proof (1), (2) and (3) are equivalent by Theorem 3.2. (5) obviously implies
(4). It suffices to prove that (4) implies (1) and (2) implies (5).

(4) implies (1). By induction on a given derivation of ϕ from Γ in H, we prove
Γ ` ϕ in SCP. If ϕ is an axiom pref > of H, start with the axiom > of SCP;
repeatedly apply rules (Said) or (Implied) to obtain sequent ∅ ` (pref >);
then repeatedly apply (Premise Inflation) to obtain sequent Γ ` pref >. If ϕ
is a hypothesis, use axiom (x2x) of SCP and then repeatedly apply (Premise
Inflation). Otherwise several cases arise according to the last step in the given
derivation of ϕ. We consider only the case when rule (Pref→E) was applied at
the last step; other cases are similar. By the induction hypothesis, Γ ` pref x
and Γ ` pref(x → y) are provable. By Lemma 2.3, it suffices to prove the
sequent

Γ, prefx, pref (x→ y) ` pref y.

Start with an obviously provable sequent x, (x→ y) ` y and apply rules (Said),
(Implied) to obtain sequent

prefx, pref (x→ y) ` pref y;

and then repeatedly apply (Premise Inflation).

(2) implies (5). By induction on a given proof P of sequent s = [Γ ` ϕ] in SCP
that uses only subformulas of s, we construct a local derivation of ϕ from Γ in
H. The cases when s is an axiom are obvious. Otherwise several cases arise
according to the last step in P . We consider here only two cases.
(→E) Suppose that rule (→E) was applied in the last step of P . By the
induction hypotheses, we have local derivations of x and of x→ y from Γ in H.
It remains to apply rule (Pref→) with the empty pref.
(Implied) Suppose that rule (Implied) was applied in the last step of P , so that
Γ has the form (q said ∆1)∪ (q implied ∆2) and ϕ has the form q implied ϕ0.
By the induction hypothesis, there is a local derivation D of ϕ0 from ∆1 ∪∆2

in H. Without loss of generality, D has the form

∆1,∆2,Tail
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so that first ∆1 formulas are listed, then ∆2 formulas are listed, and then the
remaining tail formulas z are listed. Let D′ be

q implied ∆1, q implied ∆2, q implied Tail.

D′ is a derivation of ϕ from Γ′ = (q implied ∆1) ∪ (q implied ∆2) in H.
Indeed, if a tail formula z of D is an axiom or is obtained from earlier members
of D by means of a rule R then (q implied z) is an axiom or is obtained
from the corresponding members of D′ by rule R. Furthermore, D′ is a local
derivation. Indeed, if a tail formula x of D is dominated by a component y
of ∆1 ∪ ∆2 ∪ {ϕ0} then q implied x is dominated by q implied y which, by
Lemma 5.2, is a component of Γ∪{ϕ}. Further, let D′′ be (q said ∆1) followed
by D′:

q said ∆1, q implied ∆1, q implied ∆2, q implied Tail.

D′′ is the desired local derivation of ϕ from Γ in H. First we check that D′′ is
a derivation. Since D′ is a derivation of ϕ from Γ′; it remains only to notice
that q implied ∆1 is obtained from q said ∆1 by repeated applications of
rule (Pref S2I). In fact, derivation D′′ is local to sequent s. Indeed formulas in
blocks (q said ∆1) and (q implied ∆2) are local because they are hypotheses.
Formulas in block (q implied ∆1) are local as they are dominated by hypotheses
q said ∆1. And, since D′ is local to Γ′∪{ϕ}, every formula z in (q implied Tail)
is dominated either by a component of ϕ or else by a component of Γ′ which is
dominated by the corresponding component of Γ. �

Q: Do you really need local formulas in addition to the components of
Γ ∪ {ϕ}? Maybe there is a derivation of ϕ from Γ that uses only the
components whenever ϕ is derivable from Γ.

A: Here is a counter-example to your conjecture. Let x, y, z be distinct
infon variables, and let Γ be

• p implied x,

• p said (x→ y),

• p said (y → z).

Formula ϕ = (p implied z) is derivable from Γ but any derivation involves
local formula (p implied y) that is not a component of Γ∪ {ϕ}. Further-
more, if y is not a variable and y = (q said y′) then any derivation of ϕ
from Γ involves a quotation prefix (p implied q said) that is not a prefix
of any component.

6 Primal intuitionistic logic

To logicians, primal intuitionistic logic may be of interest in its own right. In this
connection, in §6.1, we specialize the relevant results above to the case of primal

17



intuitionistic logic. In §6.2 we construct a linear time algorithm for the multiple
derivation problem (defined in §1) for primal intuitionistic logic. The algorithm
will be generalized in the next section. For brevity primal intuitionistic logic will
be called PC which is an allusion to “Primal Constructive logic” as intuitionistic
logic is also known as constructive.

6.1 Syntax and semantics

.
PC formulas are built from variables and constant > by means of conjunction

and implication. A PC sequent calculus is obtained from the sequent calculus
for primal infon logic by removing inference rules (Said) and (Implied):

Axioms

(>) ` >
(x2x) x ` x

Inference rules

(Premise Inflation)
Γ ` y

Γ, x ` y

(∧E) Γ ` x ∧ y
Γ ` x

Γ ` x ∧ y
Γ ` y

(∧I) Γ ` x Γ ` y
Γ ` x ∧ y

(→E)
Γ ` x Γ ` x→ y

Γ ` y

(→IW)
Γ ` y

Γ ` x→ y

(Trans)
Γ ` x, Γ, x ` y

Γ ` y

Kripke structures for PC are triples (W,≤, C) subject to conditions K1–K5
in §2.1 and condition K6W in §2.2. Theorem 3.2 remains true. More exactly,
for every PC sequent s the clauses 1–4 of Theorem 3.2 are equivalent.

A Hilbert type calculus HPC for PC is a simplification of calculus H of the
previous section:
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Axiom: >

Inference rules

(∧e) x ∧ y
x

x ∧ y
y

(∧i) x y

x ∧ y

(→e)
x x→ y

y

(→i)
y

x→ y

In the PC case, the components of a formula z are exactly the subformulas
of z, and the local formulas of z are exactly the subformulas of z . Theorem 3.2
simplifies as follows.

Theorem 6.1. For any PC sequent s = [Γ ` ϕ], the following are equivalent:
(i) s is derivable in the PC sequent calculus, (ii) there is a derivation of s in the
PC sequent calculus where every formula is a subformula of s, (iii) s is valid,
(iv) ϕ is derivable from Γ in HPC, and (v) there is a derivation of ϕ from Γ in
HPC where every formula is a subformulas of s.

6.2 Linear time theorem for primal constructive logic

Theorem 6.2. There is a linear time algorithm for the multiple derivability
problem for primal constructive logic. Given hypotheses Γ and queries Q, the
algorithm determines which of the queries in Q follow from the hypotheses Γ.

Proof Formulas local to (that is subformulas of) Γ ∪Q will be simply called
local. By Theorem 6.1, we may restrict attention to derivations where all for-
mulas are local. The idea is to compute all local consequences of Γ. This is
obviously sufficient.

Without loss of generality we may assume that > does not occur in Γ ∪Q.
It follows that > does not occur in any local formula. Let n be the length of
the input sequence Γ, Q. The key K(y) of a local formula y is the position of
the first symbol of the first occurrence of y in the input sequence.

Parse tree Run a parser on the input string producing a parse tree. The
subtrees of the hypotheses and the queries hang directly under the root. Each
node of the parse tree has a label that is or represents (according to the lexical
analyzer) a variable or connective. The label length is O(log(n)) due to the
lexical analysis phase of parsing. Extra tags mark hypotheses and queries; such
a tag is not a part of the official label.
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By induction define the locutions L(u) of nodes u. If u is a node with children
u1, . . . , uk, then

L(u) = Label(u)(L(u1), . . . , L(uk)).

The locutions are being introduced for use in our analysis of the algorithm; the
algorithm will not have the time to produce all the locutions.

Each node u is associated with a particular occurrence of L(u) in the input
string. The initial position of L(u) in the input string is the key K(u) of u.
Nodes u and v are homonyms if L(u) = L(v). A node with the least key in its
homonymy class is a homonymy original. A homonymy original u represents
the locution L(u); its key is the key of the locution. We presume that the nodes
u come with homonymy pointers H(u) initially set to nil.

Homonymy originals Run the Cai-Paige algorithm [4] on the parse tree.
The algorithm partitions the (keys of) nodes u into buckets B` according to
the height ` of u, that is the height (or depth) of the subtree rooted at u.
Furthermore, every bucket is ordered according to the lexicographic order of
locutions L(u). Note that two homonyms have the same height and thus belong
to the same bucket. Homonyms are ordered according their keys. The Cai-Paige
algorithm sets every homonymy pointer H(u) to the homonymy original of u.
This wonderful algorithm runs in linear time.

Preprocessing Create a table T of records indexed by the homonymy origi-
nals u such that L(u) is a formula. A record T (u) has five fields. One of them is
the status field S(u) with values in the set {1, 2, 3}. The status field is dynamic;
its value may change as our algorithm runs. All other fields are static; once
created their values remain immutable.

The status field S(u) determines the current status of the formula L(u).
Formulas of status 1, 2, 3 will be called raw, pending, processed respectively. A
raw formula has not been derived. A pending formula has been derived but
remains a subject of some processing. A processed formula has been derived
and processed. Initially every S(u) = 1. Traverse the parse tree setting the
status S(u) to 2 if L(u) is tagged as a hypothesis.

The static fields of the record T (u) are (∧, left), (∧, right), (→, left) and
(→, right). Each entry in these fields is a sequence of (the keys of) nodes. To
compute those sequences, traverse the parse tree in the depth-first manner. If
the current node v is the left child of a node v′ with label “∧” then append
H(v′) to the (∧, left) sequence of H(v) and move on. The cases where v is the
right child of v′ or the label of v′ is → or both are treated similarly.

Processing Walk through the table T and process every pending formula
L(u) in turn. When the processing of L(u) is finished do the following.

• Set S(u) = 3 indicating that L(u) is processed.

• If u is tagged as a query then output K(u).
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The processing consists of firing, one after another, the inference rules ap-
plicable to L(u).

Rule (∧e) requires that L(u) has the form x ∧ y. If any of the formulas x, y is
raw, make it pending. More exactly, let u1, u2 be the left and right children of
u. If S(H(ui)) = 1, set S(H(ui)) = 2.

Rule (∧i) may be applied in two ways depending on whether we view L(u) as
the left or right premise of the rule. The two cases — call them the left and
right cases — are similar; we describe here only the left case where L(u) is the
left conjunct x of a formula x ∧ y. For any such y that has been derived but
x ∧ y is still raw, make x ∧ y pending. More exactly, for every v in the (∧, left)
sequence of T (u) do the following. Note that L(v) = L(u) ∧ L(w) where w is
the right child of v. If S(H(w)) > 1 and S(v) = 1, set S(v) = 2.

Rule (→e) also may be applied in two ways depending on whether we view L(u)
as the left or right premise of the rule. This time around the two cases — call
them the left and right cases — are quite different. The left case is similar to
the left case in the application of rule (∧i) above. For every v in the (→, left)
sequence of T (u) do the following. Note that L(v) = L(u) → L(w) where w is
the right child of v. If S(v) > 1 and S(H(w)) = 1, set S(H(w)) = 2. The right
case requires that L(u) has the form x→ y. If x has been derived and y is raw,
make y pending. More exactly, let u1, u2 be the left and right children of u. If
S(H(u1)) > 1 and S(H(u2)) = 1, set S(H(u2)) = 2.

Rule (→i) has only one premise y = L(u). Any raw formula of the form x→ y
becomes pending. More exactly, for every v in the (→, right) sequence of T (u)
do the following. Note that L(v) = L(w) → L(u) where w is the homonymy
original of the left child of v. If S(v) = 1, set S(v) = 2.

This completes the algorithm.

Proof of correctness Note that every pending formula becomes processed.
Obviously only provable formulas become pending. To prove the correctness
of the algorithm, it suffices to prove that every provable formula L(v) becomes
pending. We do that by induction on the proof length of L(v). If L(v) is a
hypothesis, it becomes pending when the table is formed. Otherwise several
cases arise depending on the rule used at last step of the given proof of L(v).
All cases are pretty obvious. We consider just one of those cases.

Case (∧i) where L(v) = x∧y and x, y have been derived earlier. By symmetry
we may assume without loss of generality that x became pending first. Formula
y is L(u) for some u. But then v occurs in the (∧,right) sequence of T (u).
Accordingly L(v) becomes pending as a result of applying the right case of rule
(∧i) in the processing of L(u).

Time complexity It remains to check that the algorithm is indeed linear
time. Obviously the parse-tree and table stages are linear time. The only ques-
tion is whether the processing stage is linear time. Instead we claim something
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else. Note that the processing of a pending formula L(u) is done in a fixed finite
number of phases. At each phase, we make some number k(u) of attempts to
apply a particular inference rule viewing L(u) as one of the premises. Each at-
tempt takes bounded time. The number of attempts is not bounded. It suffices
to prove, however, that

∑
u k(u) = O(n).

The proof is similar for all phases. Here we consider only the phase when
we attempt to apply rule (∧e) with L(u) as the left premise x. In this phase
the number k(u) is the length of the (∧,left) sequence of u. But the (∧,left)
sequences for distinct records are disjoint. And so

∑
u k(u) ≤ n. �

7 Linear time theorem for primal infon logic

We return to primal infon logic. We will be working with fragments of the
Hilbert-type calculus H for primal infon logic. To recall H, see §5.

In §4 we gave the obvious definition of the quotation depth of formulas. In
the case of primal infon logic, another definition of quotation depth is more
pertinent.

Definition 7.1 (Primal quotation depth). The primal quotation depth of for-
mulas is defined by induction:

• δ(x) = 0 if x is a variable.

• δ(p told x) = 1 + δ(x).

• δ(x ∧ y) = max{δ(x), δ(y)}.

• δ(x→ y) = δ(y)

Further δ(Γ) = maxx∈Γ δ(x) for any set Γ of formulas. �

Recall Definition 1.1 of the multiple derivability problem MD(L) for a logic
L.

Theorem 7.2. For every natural number d, there is a linear time algorithm for
the multiple derivability problem for primal infon logic restricted to formulas z
with δ(z) ≤ d.

Q: The definition of primal quotation depth is strange. The clause
δ(x → y) = δ(y) ignores δ(x). If foo is a quotation-free formula then
δ((p said q said foo) → foo) = 0. The formula involves quotation but
its primal quotation depth is zero.

A: Well, the strange definition makes the theorem stronger.

Q: Does the additional strength matter?

A: It does. For example it allows us to interpret authorization logic
SecPAL [3] in the stratum of depth ≤ 2 of primal infon logics [10].
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7.1 Reduction to Main Lemma

Definition 7.3 (Regular). A formula x is regular if it has no occurrences of >.
A derivation is regular if all its formulas are regular. R is the fragment of H
obtained by removing > from the language and removing the axioms from the
calculus.

Two formulas are equivalent if each of them entails the other in primal infon
logic.

Lemma 7.4. 1. For any formula z there is an equivalent formula z′ that is
either an axiom or regular.
2. There is a linear time algorithm that, given a formula z, computes the equiv-
alent formula z′.
3. Any local derivation of a regular formula from regular hypotheses is regular.
4. There is a linear-time reduction of MD(H) to MD(R).

Proof 1. Easy induction on z. We consider only the case z = x → a in the
induction step where a is an axiom. In that case z′ may be a. Indeed z ` a
because a is an axiom, and a ` z by (Pref→I).
2. Execute the regularization algorithm implicit in the proof of 1. One appropri-
ate data structure is parse tree. Even if z is given as a string, in linear time you
can construct the parse tree of z and then execute the regularization algorithm.
3. By the definition of local derivation.
4. Apply the regularization algorithm to the hypotheses and queries. If a mod-
ified hypothesis is an axiom, remove it. If a modified query is an axiom, mark
it derivable and remove it. �

Lemma 7.5. Theorem 5.4 remains true if sequent s is assumed to be regular
and if H is replaced with R.

Proof The proof of Theorem 5.4 needs only two minor modifications, in fact
simplifications. In the proof that (4) implies (1), ignore the case where ϕ is an
axiom of H. Similarly, in the proof that (2) implies (5), in the proof that D′ is
a derivation, ignore the case where the tail formula z is an axiom of H. �

Lemma 7.6. 1. For any inference rule in R, the primal quotation depth of the
conclusion is bounded by the primal quotation depth of the premise(s).
2. If Γ entails ϕ in R then δ(ϕ) ≤ δ(Γ).
3. The restriction Rd of R to formulas z with δ(z) ≤ d is a calculus in its own
right; all inference rules of R produce formulas in Rd when applied to formulas
in Rd.

Proof Claim 1 is obvious but note that the unusual clause δ(x → y) = δ(y)
in the definition of primal quotation depth is used in the case of rule (Pref→I).
Claims 2 and 3 are obvious as well. �
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Main Lemma 7.7. For every natural number d, there is a linear time algorithm
for the multiple derivation problem MD(Rd) for Rd.

Clearly Theorem 7.2 follows from Main Lemma. We prove Main Lemma in
the next subsection.

7.2 Proof of Main Lemma

Given a positive integer d, we construct a linear time algorithm for MD(Ld) by
modifying the linear-time algorithm of §5. Recall that told with or without a
subscript ranges over {said, implied}, and pref with or without a subscript
ranges over quotation prefixes q1 told1 . . . qk toldk where k is the length of
pref. We say that a quotation prefix is relevant if its length is ≤ d.

Parsing Parse the input as in §6.2 except that now we have additional labels
p told. There is a problem, however. In §6.2, every local formula was the
locution L(u) of some node u of the parse tree. Now it is not necessarily the
case. To remedy the situation, we graft extra nodes into the parse tree. This is
not the optimal remedy but it simplifies the exposition.

By induction on nodes u, define pref(u). If u is the root, then pref(u) is
empty. Suppose that v is the parent of u. If the label of v is of the form p told
then pref(u) is pref(v) appended with the label of v; otherwise pref(u) =
pref(v). Let C(u) be the formula pref(u)L(u). It is easy to check that every
C(u) is a component and that every component is C(u) for some u. Call node
u relevant if (i) u is not the root of the parse tree so that L(u) is a formula and
(ii) pref(u) is relevant.

The fan F (pref) of a prefix pref is a tree of prefixes. It contains all prefixes
pref′ ≤ pref. Further, it contains a prefix q1 told1 . . . qi toldi of length i if
it contains a prefix q1 told1 . . . qi toldi qi+1 toldi+1 of length i+ 1 which is a
parent of q1 told1 . . . qi toldi. Every node in F (pref) has at most two children
and at most one parent. If d = 2, then F (pref) contains at most 7 nodes. Now
turn F (pref) upside down, and let F ′(pref) be the result. Normally our trees
go downward so that the root is at the top. F ′(pref) grows upward.

Traverse the parse tree in the depth-first manner and graft a fresh copy F (u)
of F ′(pref(u)) at every relevant node u. There is a one-to-one correspondence
ξ : F (u) −→ F ′(pref(u)). If v ∈ F (u) and ξ(v) is a prefix q1 told1 . . . qi toldi

of length i > 0 then the label of v is qi toldi and the key of v is the pair

(Key(u), told1 . . . toldi)

The keys are ordered lexicographically. We do not distinguish between Key(u)
and the pair (Key(u), s) where string s is empty. Every node u of the resulting
parse structure has at most three parents, and the nodes ≤ u form a tree.

Remark 7.8. For every relevant original node u, the formula pref(u)L(u) is
a component of Γ ∪Q. If pref ≤ pref(u) then prefL(u) is local. Every local
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formula is obtained this way. Thus the parse structure has a node for every
local formula (and for some non-local formulas).

Homonymy originals As in §6.2, run the Cai-Paige algorithm on the parse
structure and compute homonymy pointers H(u).

Preprocessing Let T1 be the table T constructed in §6.2. T1 is a one-
dimensional table of records T1(u) indexed by nodes u such that u is a
homonymy original. Now, in addition to T1, we construct a sparse two-
dimensional table T2. The rows of T2 are indexed by original nodes u, and
the columns are indexed by relevant prefixes π. If there is a node v with
L(v) = π L(u), then T2(u, π) = {H(v)}; otherwise T2(u, π) = ∅. A traver-
sal around the parse structure suffices to fill in table T2.

Remark 7.9. We graft nodes and then put only some of them into table T2.
This is not the most efficient way to do things. One can forgo grafting, con-
struct table T2 directly, and refer to the table instead of to grafted nodes in the
following processing. We thought that grafting would simplify the exposition.

Remark 7.10. It is more efficient to combine preprocessing with parsing.

Processing As in §6.2, we walk through the table T and process every pending
formula L(u) in turn. The processing consists of firing, one after another, the
inference rules applicable to L(u). The case of rule

pref2 x

pref1 x

is new. Suppose that L(u) = pref2 x and let pref1 ≤ pref2. The descendant
u0 of u with locution x has an ancestor v with locution pref1 x. If H(v) is raw,
make it pending.

As far as the remaining rules are concerned, the situation is similar to that
in §6.2. For example, consider the application of the rule

pref (x ∧ y)
prefx

to a formula L(u) = pref(x∧y). Find the descendant u0 of u with L(u0) = x∧y.
The left child of u0 has an ancestor v with locution prefx. If H(v) is raw, make
it pending.

For a more interesting example, consider the application of rule

prefx pref y

pref (x ∧ y)

to a formula L(u) = prefx. Find the descendant u0 of u with L(u) = x. For
each v in the (∧, left) field of record T1(H(u0)) do the following.
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Check the entry T2(v, pref). If it is empty, do nothing. Otherwise let w
be the node in the entry. The locution of v is x ∧ y, and the locution of w is
pref (x ∧ y). Let w0 be the descendent of w with locution x ∧ y. The right
child of w0 has an ancestor w′ with locution L(w′) = pref y. If the status of
H(w′) is > 1, so that pref y has been proved, but the status of w is 1, so that
pref (x ∧ y) has not been proved, then set the status of w to 2; otherwise do
nothing.

Correctness and time complexity The proof of the correctness of the al-
gorithm and the analysis of time complexity of §6.2 survive with minor changes.
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