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Abstract. Jullien’s indecomposability theorem states that if a scattered countable lin-

ear order is indecomposable, then it is either indecomposable to the left, or indecomposable

to the right. The theorem was shown by Montalbán to be a theorem of hyperarithmetic

analysis. We identify the strength of the theorem relative to standard reverse mathematics

markers. We show that it lies strictly between weak Σ1

1
choice and ∆1

1
comprehension.

§1. Introduction. A linear order (U ;<U ) (denoted simply U below) is scat-
tered if it does not contain a copy of the order of rational numbers. A cut in
the order U is a pair 〈L,R〉 so that L ∩ R = ∅, L ∪ R = U , L is closed down-
ward (or leftward) in <U , and R is closed upward (or rightward). The cut is a
decomposition of U if U does not embed into either one of L, R. The order U
is indecomposable if it has no decompositions, or, equivalently, if for every cut
〈L,R〉 in the order, U embeds either into L or into R.

If U embeds into L whenever 〈L,R〉 is a cut in U with L 6= ∅, then U is
indecomposable to the left. Indecomposability to the right is defined similarly.
Jullien [2] proved the following rather curious result:

Theorem 1.1 (Jullien [2]). Let (U ;<U ) be a countable linear order. Suppose
(U ;<U ) is scattered and indecomposable. Then (U ;<U ) is either indecomposable
to the left, or indecomposable to the right.

Montalbán [4] initiated the search for the reverse mathematics strength of
this theorem. Recall that reverse mathematics is concerned with the strength of
theorems of second order number theory, also called analysis since it encompasses
the first order theory of natural and real numbers. The strength of a theorem
is measured in terms of the set existence axioms needed for its proof, over a
base theory consisting of the basic axioms of arithmetic, some form of induction
(ranging from full induction to just Σ0

1 induction), and the first set existence
schema in the list below, ∆0

1 comprehension.
There are several established axioms and axiom schemas of set existence which

serve as markers of strength over this base theory. The following is a partial list
of the axioms and schemas studied. When added to the base theory they result
in subsystems of analysis. The list is arranged so that the resulting subsystems
are in order of strictly increasing strength. The implications and, especially,
non-implications needed to show this are in some cases highly non-trivial. Many
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of them can be found in Simpson [6]. Let us only comment that the fact that the
strengths of the systems resulting from (5), (6), and (7) are strictly increasing
is due to Steel [7, 8] and Van Wesep [9]. Their work is essential to the proofs in
this paper.

Formulas ϕ and ψ in the list are allowed to have real parameters.

1. ∆0
1 comprehension, asserting for each pair of Σ0

1 formulas ϕ,ψ, that if (∀n ∈
ω)(ϕ(n) ↔ ¬ψ(n)), then the set {n ∈ ω | ϕ(n)} = {n ∈ ω | ¬ψ(n)} exists.

2. Weak König’s lemma, asserting that each infinite subtree of the binary tree
has an infinite branch.

3. Arithmetic comprehension, asserting for each arithmetic ϕ, that the set
{n ∈ ω | ϕ(n)} exists. Equivalently (over the base system), the Turing
jump of every real exists.

4. Jump iteration, asserting that every real has a Turing jump and that it-
erations of the jump operator can be continued at each (countable) limit.
Precisely, (∀x ∈ R)(∀ ordinal α)((x(β) exists for all β < α) → x(α) exists).

5. Weak Σ1
1 choice (also called arithmetic replacement), asserting for each

arithmetic ϕ, that if (∀n ∈ ω)(∃unique y ∈ R)ϕ(n, y), then there is a
sequence 〈yn | n < ω〉 so that (∀n)ϕ(n, yn).

6. ∆1
1 comprehension, asserting for each pair of Σ1

1 formulas ϕ,ψ, that if (∀n ∈
ω)(ϕ(n) ↔ ¬ψ(n)), then the set {n ∈ ω | ϕ(n)} = {n ∈ ω | ¬ψ(n)} exists.

7. Σ1
1 choice, asserting for each arithmetic ϕ, that if (∀n ∈ ω)(∃y ∈ R)ϕ(n, y),

then there is a sequence 〈yn | n < ω〉 so that (∀n)ϕ(n, yn).
8. Arithmetic transfinite recursion, asserting for each arithmetic formula, that

definition by comprehension using the formula can be iterated transfinitely
along any (countable) wellorder.

9. Π1
1 comprehension, asserting for each Π1

1 formula ϕ, that {n ∈ ω | ϕ(n)}
exists.

The systems resulting from (1), (2), (3), (8), and (9) are the big five systems
of reverse mathematics. Over the years they have been shown to capture the
strength of many theorems of analysis, see [6].

The systems resulting from (4), (5), (6), and (7) are all systems of hyperarith-
metic analysis. T is a theory, or system, of hyperarithmetic analysis, if on the
one hand it is strong enough that every ω-model of T is closed under joins and
hyperarithmetic reducibility, and on the other hand it is weak enough that it
holds in HYP(x) for every real x. There are systems of hyperarithmetic analysis
that have been studied and do not appear in the list above, see Montalbán [4]
and [3] for details. But none of them lies strictly between (5) and (6)

Montalbán [4] proved that Jullien’s indecomposability theorem, which he termed
INDEC, is a theorem of hyperarithmetic analysis. More precisely he showed that
it follows from ∆1

1 comprehension, and its ω-models are closed under joins and
under the αth Turing jump operator for each ordinal α that belongs to the model.
The result is significant because it makes INDEC the first “natural” mathemat-
ical theorem shown to be a theorem of hyperarithmetic analysis. Natural here
is taken to mean that the theorem had been published independently of reverse
mathematics. INDEC had been published in [1] and [5].
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Montalbán’s work left the precise strength of INDEC open. It remained open
whether INDEC implies jump iteration (as Montalbán’s proof mentioned above
applied only to ω models), whehter it was comparable with weak Σ1

1 choice at all,
and whether it was equivalent to ∆1

1 comprehension. We address the strength
of INDEC in this paper. We show that:

Theorem 1.2. (Over RCA∗, see below.) INDEC implies weak Σ1
1 choice.

Theorem 1.3. (Over RCA∗.) Weak Σ1
1 choice does not imply INDEC.

Theorem 1.4. (Over RCA∗.) INDEC does not imply ∆1
1 comprehension.

Implications in all theorems are in the base theory RCA∗, consisting of the
basic axioms of arithmetic, ∆0

1 comprehension, and Σ1
1 induction. The models

witnessing Theorems 1.3 and 1.4 are ω-models, and so the theorems continue to
hold with base theories that allow stronger induction.

Since INDEC follows from ∆1
1 comprehension, the theorems place INDEC

strictly between weak Σ1
1 choice and ∆1

1 comprehension. There are no established
set existence schemas between these two markers, so this is as precise an analysis
of the strength of INDEC as one could hope for.

Theorem 1.2 is proved in Section 2. The argument there is simply a proof in
the base theory. Theorems 1.3 and 1.4 are proved in Sections 3 and 4. These
theorems require constructions of models satisfying weak Σ1

1 choice plus the nega-
tion of INDEC, and INDEC plus the negation of ∆1

1 comprehension, respectively.
The models are constructed through a use of Steel’s forcing, developed in [7, 8].
We shall say more on this when we get to Section 3.

§2. INDEC implies weak Σ1
1 choice. We prove that INDEC implies weak

Σ1
1 choice in the system RCA∗, consisting of the basic axioms of arithmetic, Σ1

1

induction, and ∆0
1 comprehension. Except for the very first claim, the proof

can be carried out in the weaker RCA0, in which induction is restricted to Σ0
1

formulas.
During the proof we talk about elements of ωω (these are the reals, following

standard abuse of notation), sequences, both finite and of length ω, with ele-
ments from ω ∪ R, and trees (sets of sequences closed under initial segments)
on countable sets. All these objects can be coded by subsets of ω, so that the
axioms of RCA∗ apply to them through the coding. We work with the objects
themselves, rather than the codes, to simplify notation.

Weak Σ1
1 choice states that if ϕ is an arithmetic formula such that (∀n ∈

ω)(∃! y ∈ R)ϕ(n, y), then there exists a sequence 〈yn | n < ω〉 so that (∀n)ϕ(n, yn).
By standard arguments this statement is equivalent to its restriction to Π0

1 for-
mulas. We prove this restriction.

Fix then a Π0
1 formula ϕ so that (∀n)(∃! y)ϕ(n, y). Say ϕ = (∀i)ψ(n, i, x)

where ψ has only bounded quantifiers. Let Sn be the tree consisting of tuples
s ∈ ω<ω so that ψ(n, i, s) holds for all i < lh(s). That the sequence of trees
〈Sn | n < ω〉 exists follows from ∆0

1 comprehension. Each of the trees Sn has a
unique infinite branch, namely the unique real y so that ϕ(n, y).

Claim 2.1. For all k < ω, there exists a unique sequence 〈y0, . . . , yk−1〉 so
that (∀n < k)ϕ(n, yn).



4 ITAY NEEMAN

Proof. Uniqueness is clear from the uniqueness of y such that ϕ(n, y) for
each n. Existence is easily proved by induction on k, using the fact that
(∀n)(∃y)ϕ(n, y). ⊣

Note that we are using Σ1
1 induction in the proof of Claim 2.1. This is our

only use of Σ1
1 induction. The rest of the proof that INDEC implies weak Σ1

1

choice is entirely in RCA0.
We shall construct from 〈Sn | n < ω〉 a scattered linear order (U ;<U ) which

we shall prove embeds into both a non-trivial left tail-end and a non-trivial right
tail-end of itself. By INDEC it will follow that the linear order is decomposable,
and from the cut witnessing this we shall construct a sequence of infinite branches
through the trees Sn.

Let I be the integers equipped with the following linear order <I : −n <I

−m<I 0<I m<I n for all 0 < n < m < ω. The order thus has a middle point,
0, with a part of order type ω to its left, and a part of order type ω∗ to its right.
It is displayed in Diagram 1.

−1 −2 −3 · · · · · · · · · · · · 0 · · · · · · · · · · · · +3 +2 +1

Diagram 1. The order <I

By I<ω we mean the tree of finite sequences of elements of I. The Brouwer–
Kleene order on I<ω is defined using the order <I . Precisely, it is the linear
order <L determined by the conditions q⌢〈i〉<L q, and q⌢〈i〉<L q

⌢〈j〉 iff i<I j.
Note that we are using the order <I , not the ordinary order on Z, and we talk
about I<ω rather than Z<ω to emphasize this.

We regard each subset A of I<ω as a linear order. precisely it is the linear order
(A;<L↾A), but we usually suppress mention of <L. Thus when we write, for
example, that A embeds into B we mean that (A;<L↾A) embeds into (B;<L↾B),
and when we write that Q embeds into A we mean that it embeds into (A;<L↾A).

For each node p ∈ I<ω let nbd(p) consist of all nodes which extend p strictly.
Let Lnbd(p) consist of all nodes to the left nbd(p). Precisely, q ∈ Lnbd(p) if
q <L r for each r ∈ nbd(p), or equivalently, q <L p and q 6∈ nbd(p). Define
Rnbd(p) similarly: q ∈ Rnbd(p) if q >L r for each r ∈ nbd(p), or equivalently,
q ≥L p.

Rnbd(p) is a tree. Lnbd(p) is not a tree, but only because it is missing the strict
initial segments of p. Let sInSeg(p) = {p↾i | i < lh(p)}. Then Lnbd(p)∪sInSeg(p)
is a tree.

For a set C ⊆ ω and a sequence t of length ≤ ω, define t↾C to be the sequence
〈t(ni) | i < l〉 where 〈ni | i < l〉 is an increasing enumeration of C ∩ lh(t).

Let Even and Odd be the sets of even and odd numbers respectively. Define
tEven to be t↾Even, and define tOdd similarly.

Let 〈Ci | i < ω〉 be a recursive partition of ω into infinitely many infinite sets,
with C0 = Even and with the property that n ⊆

⋃
i<n Ci for each n. By the

product Πi<ωTi of trees Ti, i < ω, we mean the tree T consisting of sequences
t so that t↾Ci is a node in Ti for each i < ω. Given branches xi through
Ti, define Πi<ωxi to be the branch x through T determined by the condition
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x↾Ci = xi. For n < ω we define the products Πi<nTi and Πi<nxi similarly, using
the partition C0, . . . , Cn−2,

⋃
i≥n−1 Ci. We adopt these definitions for products

since they make it easy to relate the Brouwer-Kleene order on the trees Ti to the
Brouwer-Kleene order on products T . More precisely, if Ti ⊆ I<ω, then T ⊆ I<ω

too. The definitions are such that a product T0 ×T1 = Πi<2Ti consists precisely
of nodes t so that tEven ∈ T0 and tOdd ∈ T1.

Let S∗ denote the product Πi<ωSi. Let S∗
n denote the product Πi<nSi. The

fact that n ⊆
⋃

i<n Ci implies that S∗ and S∗
n agree on nodes of lengths ≤ n.

For a node t in a tree T let T (t) = {r | t⌢r ∈ T}. Let F be the function on
S∗ defined by F(s) = S∗

k(s) where k = lh(s) (whence s ∈ S∗
k). The existence

of S∗ and F follows from the existence of the sequence 〈Si | i < ω〉, using ∆0
1

comprehension. S∗ and F have the properties given by the following claim, and
these are their only properties that we shall use, to show that INDEC implies
the existence of a branch through S∗.

Claim 2.2. S∗ is a tree on ω, and for each s ∈ S∗, F(s) is a tree on ω. The
trees are such that:

1. If s ∈ S∗ can be extended to a branch through S∗, then there is a branch
through F(s).

2. If s, s′ ∈ S∗ are incompatible, then it cannot be that both F(s) and F(s′)
have branches.

3. For every k there is s ∈ S∗ of length k so that F(s) has a branch. (This s
is unique by the previous condition.)

Proof. The existence claimed in condition (3) follows from the definitions
using the existence in Claim 2.1. If 〈y0, . . . , yk−1〉 is such that (∀n < k)ϕ(n, yn),
then y∗k = Πi<kyi is a branch through S∗

k , and s = y∗k↾k witnesses condition (3).
Suppose s, s′ ∈ S∗ are incompatible. Let j < min(lh(s), lh(s′)) be such that

s(j) 6= s′(j), and let i < min(lh(s), lh(s′)) be such that j ∈ Ci. Suppose F(s)
and F(s′) both have branches. Then s can be extended to a branch through
S∗

lh(s), which must have the form Πn<lh(s)yn with yn ∈ Sn, and yn extending

s↾Cn for each n < lh(s). Similarly there is a branch through S∗
lh(s′), of the form

Πn<lh(s′)y
′
n, with y′n ∈ Sn and y′n extending s′↾Cn for each n < lh(s′). Both yi

and y′i are branches through Si, and since the tree has a unique branch it follows
that yi = y′i. But from the fact that s and s′ disagree on j ∈ Ci it follows that
yi 6= y′i. This contradiction completes the proof of condition (2).

For condition (1), suppose s can be extended to a branch y∗ through S∗. Then
y∗ has the form Πn<ωyn with yn a branch through Sn. Let y∗k = Πn<kyn. Then
y∗k is a branch through S∗

k , and agrees with y∗ to k. Taking k = lh(s) it follows
that y∗k↾[k, ω) is a branch through F(s). ⊣

Our goal is to prove the existence of a branch through S∗. For motivational
purposes it is convenient to talk about the unique branch through S∗, even before
we prove its existence. Let y∗ denote this branch. (We emphasize that we are
talking about it here only for motivational purposes, as we have not yet proved
it exists.) We intend to construct a tree U ⊆ I<ω with the following properties:

1. U has only one infinite branch b.
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2. If q is a node of U to the right of b, then U can be embedded into the
nodes of U to the left of q. Similarly if q is to the left of b, then U can be
embedded into the nodes of U to the right of q.

3. b codes y∗.

It follows from property (1) that U is scattered (meaning that (U ;<L↾U) is scat-
tered). From property (2) using INDEC it follows that U must be decomposable
into two parts, the part to the left of b and the part to the right of b, and in
particular it follows that b exists. Using property (3) it follows finally that from
this decomposition one can construct the branch y∗ through S∗.

The definition of U , which we give next, is recursive. We shall comment on
the recursion below. It is clear from the definition that the existence of U follows
from the existence of S∗ and F using Σ0

1 induction (to show that the recursive
recipe for identifying nodes is ∆0

1) and ∆0
1 comprehension.

Definition 2.3. U has four types of nodes, primary nodes, middle children
of primary nodes, left descendants of primary nodes, and right descendants of
primary nodes.

1. If s = 〈a0, . . . , ak−1〉 is a node in S∗ then p = 〈0, a0, 0, a1, . . . , 0, ak−1〉 is a
primary node of U . We refer to it as the primary node labelled with s, and
denote it p(s).

2. p(s)⌢〈0〉 is the middle child of p(s). (The children of p(s)⌢〈0〉 in turn are
the primary nodes p(s)⌢〈0, e〉 for e so that s⌢〈e〉 ∈ S∗.)

3. The primary node p(s) = 〈0, a0, 0, a1, . . . , 0, ak−1〉 has additional children
of two kinds, p(s)⌢〈−n〉 and p(s)⌢〈+n〉, for 0 < n < ω. We call these the
left and right children of p(s) respectively.

4. Below a left child p(s)⌢〈−n〉, with lh(s) = k, there sits the tree F(s) ×
(U ∩TLeft), where TLeft is the tree Lnbd(p(s))∪ sInSeg(p(s)). Precisely, the
left descendants of p(s) are nodes of the form p(s)⌢〈−n〉⌢t where:
(a) tEven ∈ F(s).
(b) tOdd ∈ U and tOdd ∈ Lnbd(p(s)) ∪ sInSeg(p(s)).
(The strict initial segments of p(s) are added to make TLeft a tree.)

5. Similarly, below a right child p(s)⌢〈+n〉 there sits the tree F(s) × (U ∩
TRight ), where TRight = Rnbd(p(s)). (There is no need to add the strict
initial segments of p(s) on this side, as they already belong to Rnbd(p(s)).)

This completes the definition of U .

To determine which nodes of length l belong to U , we assume knowledge of
the restriction of U to shorter nodes. This knowledge is needed in the definition
of descendants of the left and right children of p(s), namely in conditions (4) and
(5) of the definition. To determine whether p(s)⌢〈±n〉⌢t (n > 0) belongs to U
we must determine whether tOdd belongs to U , and we can do this since tOdd is
shorter than p(s)⌢〈±n〉⌢t.

Claim 2.4. Let s ∈ S∗ be such that there exists a branch through F(s). Let p =
p(s), and let n > 0. Then U embeds into its left tail-end {q ∈ U | q<L p

⌢〈+n〉},
and into its right tail-end {q ∈ U | q >L p

⌢〈−n〉}.

Proof. We define an embedding π of U into {q ∈ U | q >L p
⌢〈−n〉}. An

embedding of U into {q ∈ U | q <L p
⌢〈+n〉} can be obtained similarly.
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We divide U into three components, corresponding to the following three parts
of I<ω: (1) K1 = Lnbd(p); (2) K2 =

⋃
m>0 nbd(p⌢〈−m〉); and (3) the rest,

meaning K3 = nbd(p⌢〈0〉) ∪
⋃

m>0 nbd(p⌢〈+m〉) ∪ Rnbd(p). We define π sep-
arately on each component.

Let z be a branch through F(s).
First, for t ∈ U ∩K1 define π(t) = p⌢〈−(n+1)〉⌢((z↾ lh(t))× t). π(t) belongs

to U by condition (4) in Definition 2.3.
Next, for t = p⌢〈−m〉⌢r ∈ U∩K2 (m > 0), define π(t) = p⌢〈−(m+n+1)〉⌢r.
Finally, for t ∈ U ∩K3 define π(t) = t.
Thus π embeds U ∩Lnbd(p) into nbd(p⌢〈−(n+1)〉), shifts U ∩nbd(p⌢〈−m〉)

to nbd(p⌢〈−(m+ n+ 1)〉), and fixes all nodes from nbd(p⌢〈0〉) rightwards. ⊣

Claim 2.4 leads to the motivational property (2) above, with b = ~0 × y∗. ~0

here is the sequence 〈0, 0, . . . 〉, and it is clear from the definition of U that ~0×y∗

is a branch through the tree. (Of course we cannot say this yet, except for
motivational purposes, as we have not shown that y∗ exists.) The motivational
property (3) is clear. The claims below establish the motivational property (1),
but we prove them, as we must, without reference to y∗ and b.

The key to the proof that U has at most one branch is the fact that nodes
in U code nodes in the trees S∗ and F(s) for s ∈ S∗. If x is a branch through
U , consisting only of primary nodes and their middle children, then xOdd is a
branch through S∗. If x includes a left or right child x↾2k⌢〈±n〉 of a primary
node, then xOdd↾[k + 1, ω) is a branch through F(xOdd↾k). Moreover, in this
case xEven has the form 〈0, . . . , 0,±n〉⌢z, where z itself is a branch through U ,
and therefore z codes more branches, through S∗ and/or F(s) for s ∈ S∗. Using
this we shall ultimately derive uniqueness for branches of U from the uniqueness
given by Claim 2.2.

First, we fix some tools for obtaining all these branches through trees S∗ and
F(s) from branches through U .

Define partial functions G and H, acting on pairs 〈q, i〉 with q ∈ U and i ∈ ω,
as follows:

1. If q = p(s) is a primary node and i = 0, then G(q, i) and G(q⌢〈0〉, i)
are both equal to s, and H(q, i) and H(q⌢〈0〉, i) are both equal to be the
symbol ∗. For all other values of i the functions are undefined.

2. If q = p(s)⌢〈±n〉⌢r (n > 0) then:
(a) G(q, 0) = s, and H(q, 0) = rEven .
(b) G(q, i + 1) and H(q, i + 1) are equal to G(rOdd , i) and H(rOdd , i) re-

spectively.

Claim 2.5. The functions G and H have the following properties:

1. G and H are defined on the same domain.
2. G(q, i), if defined, is a node in S∗. If H(q, i) is defined and not equal to ∗,

then it is a node in F(G(q, i)).
3. If q and q′ are incompatible primary nodes, then G(q, 0) and G(q′, 0) are

defined and are incompatible nodes of S∗.
4. If G(q, i) and H(q, i) are defined and q′ extends q, then G(q′, i) and H(q′, i)

are both defined, G(q′, i) extends G(q, i), and H(q′, i) extends H(q, i) if the
latter is not ∗. If in addition lh(q′) ≥ lh(q) + 2i+1, then:
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(a) If H(q′, i) = ∗ then G(q′, i) extends G(q, i) strictly.
(b) If H(q, i) 6= ∗ then G(q′, i) = G(q, i), H(q′, i) 6= ∗, and H(q′, i) extends

H(q, i) strictly.

Proof. By induction on i, using the definitions of G, H, and U . ⊣

Claim 2.6. Let x and x′ be two branches through U . Then either x = x′, or
else there is d, d′, i, i′ ∈ ω so that G(x↾d, i) and G(x′↾d′, i′) are both defined and
are incompatible.

Proof. We prove by induction on e that either x↾2e = x′↾2e, or else there
exist d, d′, i, i′ as in the claim. Note that this is a Σ0

1 statement, so we are free
to use induction.

The statement is clear for e = 0, as x↾0 = x′↾0.
Suppose the statement is known for e. Suppose x↾2e + 2 6= x′↾2e + 2. We

prove the existence of d, d′, i, i′.
If x↾2e+2 and x′↾2e+2 are both primary, thenG(x↾2e+2, 0) andG(x′↾2e+2, 0)

are defined and incompatible by condition (3) of Claim 2.5. Letting d = d′ =
2e+ 2 and i = i′ = 0 proves the claim.

Suppose then one of the nodes, say x↾2e+ 2 for definitiveness, is not primary.
Let k ≤ e be such that x↾2k is primary, and x(2k) 6= 0. For definitiveness suppose
that x(2k) = −n < 0, so that x↾2k+ 1 is a left child of x↾2k. Let p = x↾2k, and
let s be such that p = p(s). Then x has the form p⌢〈−n〉⌢h, where hEven is a
branch of F(s), and hOdd is a branch of U ∩ (Lnbd(p) ∪ sInSeg(p)).

If x′ does not extend p, then x↾2k 6= x′↾2k, and since k ≤ e our induction hy-
pothesis applies, producing the required d, d′, i, i′. Suppose then that x′ extends
p.

Note on the other hand that hOdd is not an extension of p, since it is a branch
through Lnbd(p) ∪ sInSeg(p), which has no nodes extending p.

Thus, hOdd and x′ disagree at a point before lh(p) = 2k ≤ 2e. By induction
it follows that there is d, d′, i, i′ so that G(hOdd↾d, i) and G(x′↾d′, i′) are both
defined and are incompatible.

Recall that x = p⌢〈−n〉⌢h. Let d̂ = 2k + 1 + 2d, so that x↾d̂ = p⌢〈−n〉⌢

(hEven↾d×hOdd↾d). The definition of G is such that G(x↾d̂, i+1) = G(hOdd↾d, i).

Thus G(x↾d̂, i + 1) is defined and incompatible with G(x′↾d′, i′). So d̂, d′, î =
i+ 1, i′ witness the condition in Claim 2.6, completing the inductive proof. ⊣

Corollary 2.7. U has at most one branch.

Proof. Suppose x and x′ are two distinct branches of U . Let d, d′, i, i′ be
given by Claim 2.6, so that s = G(x↾d, i) and s′ = G(x′↾d′, i′) are defined and
incompatible.

We prove that there are ŝ extending s, and ŝ′ extending s′, so that there are
branches through both F(ŝ) and F(ŝ′). Since ŝ and ŝ′ are incompatible (being
extensions of the incompatible s and s′), this contradicts condition (2) in Claim
2.2.

Let us prove that s can be extended to ŝ so that F(ŝ) has a branch. The proof
for s′ is similar.

Look at G(x↾e, i) and H(x↾e, i) for e ≥ d. By condition (4) in Claim 2.5 they
are all defined.
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Suppose first that for all e ≥ d, H(x↾e, i) = ∗. Then, using Claim 2.5,⋃
e≥dG(x↾e, i) is a branch through S∗. Since the branch extends s, it follows by

condition (1) in Claim 2.2 that there is a branch through F(s). We take ŝ = s

in this case.
Suppose on the other hand that for some e ≥ d, H(x↾e, i) 6= ∗, and pick the

least such e. Again using Claim 2.5, G(x↾e, i) extends s, and
⋃

j≥eH(x↾j, i) is a

branch through F(G(x↾e, i)). We take ŝ = G(x↾e, i) in this case. ⊣

We have now established all the motivational properties of U listed above. It
remains to show, using the claims establishing these properties, that an applica-
tion of INDEC to U produces a branch through S∗.

Claim 2.8. U is scattered.

Proof. Suppose for contradiction that π embeds Q into U . We shall use π
to construct two branches through U , contradicting Corollary 2.7.

First, we divide U into two parts. Let p0 = π(0). Let U1 = {p ∈ U | p<Lp0∨p
is an initial segment of p0}. Let U2 = {p ∈ U | p >L p0}. (The initial segments
of p0 are added to U1 to make it a tree. The addition is not needed in the case
of U2.) We shall use the fact that π embeds an interval of rationals into U1, to
produce a branch through it. A similar argument produces a branch through U2.
Since the two trees have no branches in common, we get two distinct branches
of U , and hence the desired contradiction to Corollary 2.7.

Montalbán [4, Lemma 1.16] shows how to obtain a branch through a tree,
starting from an embedding of the rationals into the Brouwer–Kleene order on
the tree, working in RCA0. For completeness we sketch the argument.

First observe that:

(i) For every node p, π embeds an interval into U1 ∩ nbd(p) iff there are two
distinct rationals sent into U1 ∩ nbd(p) by π.

(ii) If π embeds an interval into nbd(p), then there is an immediate extension
p⌢〈n〉 of p in U so that π sends two distinct rationals into nbd(p⌢〈n〉).

The first item follows from the fact that π preserves order. The second item
follows from preservation of order and the fact that {U ∩ nbd(p⌢〈n〉) | n ∈ I}
divides nbd(p) into a scattered collection of neighborhoods (it is ordered by <I

of Diagram 1). The map into this collection induced by π is order preserving
from an interval of rationals, so it cannot be one-to-one.

Using (i) and (ii) it is easy to recursively construct a sequence ∅ = q0 ( q1 . . .

of nodes forming a branch through U1. Pick at each stage i the minimal pair
of rational a, a′—minimal in some recursive ordering of the rationals of order
type ω—so that π(a) and π(a′) both belong to nbd(qi

⌢〈n〉) for the same n. Set
qi+1 = qi

⌢〈n〉 for this n. ⊣

Claim 2.9. U is not indecomposable to the left, and not indecomposable to the
right.

Proof. Suppose for contradiction and definitiveness that U is indecompos-
able to the left. (The argument for the right is similar.)

Let y∗1 be the unique branch through S∗
1 . Let s = y∗1↾1, let p = p(s), and

consider the node p⌢〈−1〉.
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Since U is indecomposable to the left by assumption, there is an embedding
πLeft of U into the <L interval of U to the left of this node, namely into {q ∈
U | q <L p

⌢〈−1〉}.
But by Claim 2.4 there is also an embedding πRight of U into the right tail-end

{q ∈ U | q >L p
⌢〈−1〉}.

Let W be the complete binary tree, with order determined by s⌢〈0〉⌢t <W s

and s⌢〈1〉⌢t >W s. Using the two embeddings πLeft and πRight , one mapping to
the left of p⌢〈−1〉 and the other to the right, it is easy to construct an embedding
σ of W into U . For example, set σ(∅) = p⌢〈−1〉, σ(〈0〉⌢t) = πLeft(σ(t)),
and σ(〈1〉⌢t) = πRight(σ(t)). Since Q embeds into W it follows that U is not
scattered, contradicting Claim 2.8. ⊣

At last we are in a position to apply INDEC to the order U . Since U is
scattered, not indecomposable to the left, and not indecomposable to the right,
it follows from INDEC that U must be decomposable. In other words there must
exist a cut 〈A,B〉 in U , so that U embeds into neither A nor B.

We use this cut to construct a branch through S∗. Call a node s ∈ S∗ nice
if p(s)⌢〈−1〉 ∈ A and p(s)⌢〈+1〉 ∈ B. We show that the nice nodes form a
branch through S∗.

Claim 2.10. For every k < ω, there is at most one nice s ∈ S∗ of length k.

Proof. Suppose for contradiction there are two distinct nice nodes s and s′

of length k. Suppose for definitiveness that p(s)<L p(s
′). So q = p(s)⌢〈+1〉<L

p(s′)⌢〈−1〉 = q′, but then it cannot be that q ∈ B and q′ ∈ A. ⊣

Claim 2.11. If s ( s′ and s′ is nice, then s is nice.

Proof. Suppose s ( s′ and s′ is nice. Let q = p(s)⌢〈−1〉 and q′ = p(s′)⌢〈−1〉.
Let 2k = lh(p(s)) < lh(p(s′)). Then q(2k) = −1 <I 0 = q′(2k), so q <L q′.
Since q′ ∈ A it follows from this that q ∈ A. A similar argument shows
p(s)⌢〈+1〉 ∈ B. ⊣

Claim 2.12. For every k < ω, there exists a nice s of length k.

Proof. By Claim 2.2, there exists s of length k so that F(s) has a branch.
We claim that this s is nice.

Let p = p(s). By Claim 2.4, U embeds into the left tail-end {q ∈ U | q <L

p⌢〈+1〉}. If p⌢〈+1〉 ∈ A then A, which is closed leftward, contains this left
tail-end, and hence U embeds into A. But this contradicts the fact that 〈A,B〉
is a decomposition of U . So p⌢〈+1〉 must belong to B. A similar argument
using the fact that U embeds into {q ∈ U | q >L p

⌢〈−1〉} shows that p⌢〈−1〉
must belong to A. ⊣

It is now easy to complete the proof that there is a branch through S∗, and
with it the proof of the instance of weak Σ1

1 choice we are working on.
Let R = {s ∈ S∗ | p(s)⌢〈−1〉 ∈ A ∧ p(s)⌢〈+1〉 ∈ B}. That R exists follows

easily from the existence of A and B using ∆0
1 comprehension. By Claims 2.10

and 2.11, s(i) = m for some s ∈ R iff s(i) = m for all s ∈ R with lh(s) > i.
So the set y∗ = {〈i,m〉 | s(i) = m for some s ∈ R} exists, again using ∆0

1

comprehension, and moreover it is a function. By Claims 2.12 the domain of y∗
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is ω. For each k < ω, y∗↾k is an element of R by definition, and therefore also
an element of S∗. So y∗ is a branch through S∗.

By the definition of S∗, its branch y∗ must have the form Πn<ωyn with yn ∈ Sn,
equivalently ϕ(n, yn), for each n. This completes the proof of the existence of a
sequence 〈yn | n < ω〉 so that (∀n)ϕ(n, yn).

§3. A model of weak Σ1
1 choice in which INDEC fails. Steel [7, 8]

developed a powerful technique for creating models of hyperarithmetic analysis.
The technique was used by Steel to produce a model of ∆1

1 comprehension where
Σ1

1 choice fails, showing that the former does not imply the latter. Van Wesep
[9] in another application produced a model of weak Σ1

1 choice where ∆1
1 com-

prehension fails. We prove that INDEC fails in Van Wesep’s model. It follows
that weak Σ1

1 choice does not imply INDEC.
Let us briefly recall Steel’s technique and Van Wesep’s model. We follow Van

Wesep’s exposition. The poset he uses differs slightly from the one Steel used,
allowing non-wellfounded “ordinals” as tags.

Let ≺ be a recursive (illfounded) linear order on a recursive subset of ω, so that
the wellfounded part of ≺ has order type ωck

1 , and so that no hyperarithmetic
sequence witnesses the illfoundedness of ≺.

Define a poset P as follows. Conditions are triples p = 〈Tp, fp, hp〉 where:

1. Tp ⊆ ω<ω is a finite tree.
2. fp is a function from a finite subset of ω to T . Let Dc(fp), the downward

closure of range(fp), be the set {fp(i)↾j | i ∈ dom(fp), j ≤ lh(fp(i))} of
initial segments of nodes in range(fp).

3. hp is a 〈Tp, fp〉-tagging. I.e., hp is a function from Tp − {∅} − Dc(fp) into
dom(≺), with t ) s→ hp(t) ≺ hp(s).

Conditions are ordered by reverse extension. p ≤ q iff Tp ⊇ Tq, hp ⊇ hq, and
(∀i ∈ dom(fq)) fp(i) is defined and extends fq(i).

We use P to force over the model Lωck
1

. Let G be generic over this model.

Let T = TG =
⋃

p∈G Tp and define h = hG and f(i) = fG(i) similarly. We

use Ṫ , ḟ , and ḣ for the canonical names for T , f , and h. T is a tree on ω,
B = BG = {f(i) | i ∈ ω} is a set of branches through T , and h “ranks” nodes of
T which are not initial segments of branches in B, meaning that it embeds the
order of reverse extension on these nodes to ≺. (If ≺ were wellfounded then h

would witness that these nodes do not extend to branches of T .)
In talking about h, we identify each member of the wellfounded part of ≺ with

its ordinal rank. Thus when we write h(t) = α we mean h(t) = i for i whose
order type in ≺ is α. For t ∈ T so that h(t) is defined we refer to h(t) as the tag
of t.

For each finite F ⊆ B let MF = MG
F be the model Lωck

1

({T}∪F ). The subsets

of ω which belong to MF are precisely those which are hyperarithmetic in the
join of {T} ∪ F . The models of hyperarithmetic analysis that we produce are
unions of models of the form MF ∩ (ω ∪ P(ω)).
MF has the tree T , but not the tagging function h. For each α < ωck

1 , the
restriction of h to nodes with tags < α does belong toMF : genericity implies that
the tag of t, when wellfounded, is precisely equal to the rank of t in T , and for
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each α < ωck
1 the ranks up to α can be computed from T by recursion. But these

recursions become increasingly complicated as α increases. If one is restricted to
some bounded complexity below hyperarithmetic, then one cannot distinguish
between sufficiently high tags. A precise formulation of this symmetry is given
in Lemma 3.3 below.

Let A ⊆ ω be finite. Let F (A) = FG(A) denote the set {fG(i) | i ∈ A}. By
induction on α < ωck

1 we define the A-nice names for elements of Lα({T}∪F (A)),
and the order of these names. The order of ẋ is denoted o(ẋ), and we shall have
Lα({T} ∪ F (A)) = {ẋ[G] | ẋ is A-nice and o(ẋ) < α}. We start the hierarchy
with Lω({T} ∪ F (A)) = Lω ∪ {TG} ∪ F (A). 1P denotes 〈∅, ∅, ∅〉, the weakest
condition in P.

• The A-nice names for elements of Lω, for TG, and for fG(i), i ∈ A, are
simply the canonical P-names for these objects. The order of these names
is 0.

• Let α ≥ ω. Let ż = {〈ẋ, 1P〉 | ẋ is A-nice and o(ẋ) < α}. (By induction,
ż names Lα({T} ∪ F (A)).) If ϕ(v0, v1, . . . , vk) is a formula, and ȧ1, . . . , ȧk

are A-nice names of order < α, then {〈u̇, p〉 | u̇ is A-nice, o(u̇) < α, and
p  “ż |= ϕ[u̇, ȧ1, . . . , ȧk]”} is an A-nice name of order α.

It is clear that every element of MG
F = Lωck

1

({T} ∪FG(A)) has an A-nice name,

and that MG
F = {ẋ[G] | ẋ is A-nice}.

A statement ϕ(ẋ1, . . . , ẋk) in the forcing language is A-nice if ẋi are A-nice,
and all quantifiers of ϕ are bounded to range over A-nice names. When talking
about MG

F (A) in the forcing language we shall only use A-nice statements. We

often neglect to mention explicitly that the statements are A-nice. A will always
be a finite set, and we often neglect to explicitly mention this too.

An A-nice statement ϕ(ẋ1, . . . , ẋk) is ranked if there is α < ωck
1 so that o(ẋi) <

α and all quantifiers in ϕ are bounded to range over A-nice names of order
< α. The least α witnessing this is the order of ϕ(ẋ1, . . . , ẋk). The rank of
ϕ(ẋ1, . . . , ẋk) is defined to be ω2 ·o+ω ·q+n where o is the order of ϕ(ẋ1, . . . , ẋk),
q is the number of quantifier in ϕ, and n the number of logical connectives. The
definition is taken from Steel [8].

Claim 3.1. For each α < ωck
1 , the restriction of the forcing relation to A-nice

statements of rank < α belongs to Lωck
1

.

Claim 3.1 is clear. It is taken from Van Wesep [9] and relies on Van Wesep’s
definition of P, which differs slightly from that of Steel [8].

Definition 3.2. Let p, p∗ ∈ P, η < ωck
1 . p∗ is an η-absolute A-reduct of p if:

1. Tp = Tp∗ and fp(i) = fp∗(i) for i ∈ A.
2. If hp(s) < η then hp∗(s) = hp(s). If hp(s) ≥ η then hp∗(s) ≥ η.

In condition (2) we adopt the convention that hp(s) = ∞ for s ∈ Dc(fp), and
that ∞ ≥ η.

Lemma 3.3 (Steel [8]). Let ϕ(ẋ1, . . . , ẋk) be A-nice and ranked, with rank ≤
η < ωck

1 . Suppose p∗ is an ωη-absolute A-reduct of p. Then p  ϕ(ẋ1, . . . , ẋk) iff
p∗  ϕ(ẋ1, . . . , ẋk).
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Lemma 3.3 is the foundation of Steel’s method for reasoning about the models
of hyperarithmetic analysis that he produces. It shows in a very precise way
that if one is restricted to complexity bounded below hyperarithmetic, in T and
finitely many branches through it, then one cannot distinguish the tags of nodes
in T beyond a bounded level. It implies in particular that the only branches of
T in MG

F are the ones in F :

Claim 3.4 (Steel [8]). Let A ⊆ ω be finite. Let F = {fG(i) | i ∈ A}. Then
the only branches of T which belong to MG

F are those in F .

Proof. Suppose not. Let ḃ be an A-nice name for a branch of T which is
distinct from fG(i) for each i ∈ A. Let p ∈ P force this. Strengthening p, we

may fix n < ω and a node t, and assume that p forces ḃ↾ň = ť, t ∈ Tp, and t is
incompatible with fp(i) for each i ∈ A.

Let η < ωck
1 be the rank of the statement “ḃ is a branch through Ṫ , and

ḃ↾ň = ť.” (How large it is exactly depends on the order of ḃ.)

The key to the proof is our ability to change the value of ḣ(ť), from hp(t)
which possibly belongs to the illfounded part of ≺, to a new value hp∗(t) which

is in the wellfounded part, without affecting the statement that ḃ is a branch of
Ṫ extending ť.

Precisely, let p∗ be obtained from p by setting Tp∗ = Tp, setting fp∗ = fp↾A,
picking wellfounded values ≥ ωη for hp∗(s) for all s ∈ Tp −Dc(fp∗) so that hp(s)
is undefined or ≥ ωη, and leaving hp∗(s) = hp(s) for all other s. Then p∗ is an
ωη-absolute A-reduct of p. Since t is incompatible with fp(i) for each i ∈ A, t
does not belong to Dc(fp∗). Therefore hp∗(t) is defined, and by construction of

p∗, hp∗(t) belongs to the wellfounded part of ≺. By Lemma 3.3, p∗ forces that ḃ

is a branch through Ṫ , and ḃ extends ť. But then ḣ(ḃ↾ǰ), j > n, is forced by p∗

to be a descending chain in ≺ below ḣ(ť) = hp∗(t), contradiction. ⊣

The models of analysis that we construct, just like the models in Steel [8] and
Van Wesep [9], are all of the form (ω∪P(ω))∩NK whereNK =

⋃
F⊆K,F finiteMF ,

for K ⊆ B. (The models constructed in Montalbán [4] and [3] are of similar
form with a slightly different forcings, for example, in [4], designed to add a
ranking function on an open game rather than a ranking function on a tree.)
The parameter affecting the exact model we obtain is the set K ⊆ B. All such
models, regardless of the choice of K, satisfy RCA and indeed are model of
hyperarithmetic analysis.

Clearly T belongs to NK , as it belongs to MF for each F . The branches of T
that belong to K also belong to NK . By Claim 3.4 these are the only branches
of T which belong to NK . Moreover:

Claim 3.5 (Steel [8]). In NK there are no sequences 〈bn | n < ω〉 of infinitely
many distinct branches through T .

Proof. Suppose 〈bn | n < ω〉 belongs to NK . Then there is a finite F ⊆ K

so that 〈bn | n < ω} belongs to MF . But then, since {bn | n < ω〉 is infinite and
F is finite, there must be a branch bn of T in MF which does not belong to F ,
contradicting Claim 3.4. ⊣
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Steel [8] uses this claim to argue that Σ1
1 choice fails in NK for K = B: by

genericity, (∀n)(∃b)(b is a branch of T and b(0) > n). But by the claim there is
no choice function inside NK for this Σ1

1 statement.
Van Wesep [9] also uses the claim. He carefully selects K so that there is a real

which codes a sequence of infinitely many distinct branches of T , and is ∆1
1(T )

over NK . By the claim the real cannot belong to NK , and it follows that ∆1
1

comprehension fails in NK . On the other hand Van Wesep proves that weak Σ1
1

choice holds in the model.
We use Van Wesep’s model to prove that weak Σ1

1 choice does not imply
INDEC. After describing the model (i.e., describing the set K), we shall show
that INDEC fails in it.

Let (∗, ∗) : ω × ω → ω be a recursive injection of ω2 into ω, with the property
that (m,n) > m for all m,n. Let π : ω<ω → ω be a recursive injection, with the
property that π(∅) > 0 and π(t) > t(0) for all t 6= ∅.

By recursion on l < ω define ml ∈ ω and Dl ⊆ ω as follows:

• m0 = 0, and D0 = {π(b↾i) | b ∈ B, i ∈ ω, and (∃n)b(0) = (0, n)}.
• ml+1 is the least m > ml with m 6∈ Dl. Dl+1 = Dl ∪ {π(b↾i) | b ∈ B, i ∈ ω,

and (∃n)b(0) = (ml+1, n)}.

Let D =
⋃

l<ω Dl. The following properties are clear:

1. Dl omits infinitely many numbers, so ml+1 can be defined for each l.
2. By genericity, for each m there are infinitely many n so that (∃b ∈ B)b(0) =

(m,n).
3. All elements of D0 are greater than 0, and all elements of Dl+1 − Dl are

greater than ml+1. This uses the particular nature of the injection π picked
above.

It follows that for all l, ml 6∈ D. On the other hand {ml | l < ω} ⊇ ω −D by
the definition of ml+1. So:

4. {ml | l < ω} = ω −D.

Let K = {b ∈ B | (∃m,n)(b(0) = (m,n) ∧m 6∈ D}. We work with this specific
K for the rest of the section. By (4), K = {b ∈ B | (∃l, n)b(0) = (ml, n)}. From
this and the definition of Dl it follows that:

5. D = {π(b↾i) | i < ω ∧ b ∈ K}.

Since the branches of T which belong to NK are precisely the ones in K, it
follows from the above properties that D is ∆1

1(T ) over NK : j ∈ D iff j = π(t)
for t which can be extended to a branch of T in NK by (5); and j 6∈ D iff there
is a branch b of T in NK with b(0) = (j, n) for some n, by (2) and the definition
of K. It also follows from condition (5) that from D one can construct infinitely
many branches of T , so by Claim 3.5, D 6∈ NK .

The definition of D, its properties, the definition of K, and the claim above
are all taken form Van Wesep [9]. Van Wesep also proves the following lemma.
He uses it, together with the fact that D is ∆1

1(T ) over NK and does not belong
to NK , to conclude that weak Σ1

1 choice does not imply ∆1
1 comprehension.

Lemma 3.6 (Van Wesep [9]). NK satisfies weak Σ1
1 choice.

Proof sketch. Suppose ϕ(x) is arithmetic in parameters fromMF . Suppose
that there exists x ∈ NK−MF so that ϕ(x) holds. A forcing symmetry argument
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shows that there must then exist two (in fact infinitely many) distinct witnesses
x for ϕ(x) in NK . One of the keys to the argument is the fact NK can be
viewed as an extension of MF , adding the branches of T which belong to K−F .
Another is that any node which is an initial segment of such a branch, is an
initial segment of two (in fact infinitely many) different branches in K−F . This
is but a hint to the proof. For more see [9]. The main subtlety is in the first fact
above, which only applies to ranked forcing statements, and uses Lemma 3.3.

Suppose now that ψ(n, x) is arithmetic in parameters from NK and for every
n there is a unique x = xn ∈ NK so that ψ(n, x). Fix F ⊆ K finite so that
the parameters of ψ all belong to MF . Then by the previous paragraph it must
be that xn ∈ MF for each n. The model MF satisfies weak Σ1

1 choice, so the
sequence 〈xn | n < ω〉 belongs to MF , and hence also to NK . ⊣

Our goal here is to show that weak Σ1
1 choice does not imply INDEC. All we

need is the following lemma (for Van Wesep’s set K described above):

Lemma 3.7. INDEC fails in NK .

Proof. We define a tree S∗ so that the unique branch through S∗ codes the
set D, and define a map F so that S∗ and F have the properties in Claim 2.2.
The results of Section 2 then show that from INDEC one can derive the existence
of D. But D 6∈ NK , so INDEC fails in NK .

let W = {t ∈ ω<ω | π(t) ∈ D}. We use the following properties of W , which
follow from the properties of D above:

(a) W ⊆ T and W has no terminal nodes.
(b) If t 6∈W , then there is a node of length 1 in W of the form 〈(π(t), n)〉.
(c) The converse of (b) is also true. If there is a node of length 1 in W of the

form 〈(π(t), n)〉, then t 6∈W .
(d) t ∈W iff it t can be extended to a branch of T in K.

Let S∗ be the tree of attempts to construct χ : T → 2 which is a characteristic
function of a tree, and r : T → T witnessing in a uniquely determined manner
that this tree has properties (a) and (b). Precisely:

(i) χ is the characteristic function of a tree χ−1(1) ⊆ T .
(ii) For each t ∈ χ−1(1), r(t) is an immediate extension of t in χ−1(1), and the

left-most such.
(iii) For each t 6∈ χ−1(1), r(t) is a node of length 1 in χ−1(1) so that r(t)(0)

has the form (π(t), n), with n least so that a node of this form belongs to
χ−1(1).

Even more precisely, let {ti | i < ω} enumerate T , with the property that initial
segments of t are enumerated before t. A node s of length k in S∗ consists
of functions χ = χs : {t0, . . . , tk−1} → 2 and r = rs : {t0, . . . , tk−1} → ω<ω

satisfying the conditions:

• χ(ti) ∈ {0, 1} for each i, and χ−1(1) is closed under initial segments.
• If i < k and χ(ti) = 1 then r(ti) is an immediate extension of ti. Let n be

such that r(ti) = ti
⌢〈n〉. For j < k such that tj has the form ti

⌢〈n̄〉, if
n̄ < n then χ(tj) = 0, and if n̄ = n then χ(tj) = 1.
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• If i < k and χ(ti) = 0 then r(ti) has the form 〈(π(ti), n)〉 for some n. For
j < k such that tj has the form 〈(π(ti), n̄〉, if n̄ < n then χ(tj) = 0, and if
n̄ = n then χ(tj) = 1.

We shall refer to s as equal to χs × rs for notational simplicity, but really s is
equal to 〈(χs(ti), π(rs(ti)) | i < k〉, so that S∗ is formally a tree on ω.

Claim 3.8. There are no branches of S∗ in NK .

Proof. This is essentially the proof that D does not belong to NK .
Suppose b is a branch through S∗. Then b gives rise to functions χ and r

with properties (i)–(iii) above. Consider the tree χ−1(1). It is a subtree of T by
property (i). By property (ii) it has no terminal nodes. Since T has infinitely
many terminal nodes it follows that T − χ−1(1) is infinite, and by property (iii)
it follows that χ−1(1) has infinitely many distinct nodes of length 1. They can
constructively be extended to branches through the tree, since the tree has no
terminal nodes. All this can be done inside NK . Since χ−1(1) ⊆ T it follows
that, in NK , one can construct a sequence of infinitely many distinct branches
of T . But this contradicts Claim 3.5. ⊣

A node s = χs × rs ∈ S∗ of length k determines more of χ than its restriction
to k, because of properties (ii) and (iii) above. The full information that s gives
on χ is captured by the partial map θs : T → {0, 1} defined as follows:

• If i < k then θs(ti) = χs(ti).
• If i < k, χs(ti) = 1, and rs(ti) = ti

⌢〈n〉, then θs(ti
⌢〈n〉) = 1 and

θs(ti
⌢〈n̄〉) = 0 for all n̄ < n.

• If i < k, χs(ti) = 0, and rs(ti) = 〈(π(ti), n)〉, then θs(〈(π(ti), n)〉) = 1 and
θs(〈(π(ti), n̄)〉) = 0 for all n̄ < n.

It is clear from the definitions that if χ is the characteristic function determined
by a branch of S∗ extending s, then χ extends θs.

For t such that θs(t) = 1, let V s
t be the tree of attempts to construct a branch

of T extending t. Precisely, V s
t = T (t). For t such that θs(t) = 0, let V s

t be the
tree of attempts to construct a branch b of T with b(0) of the form 〈(π(t), n)〉.
Precisely, V s

t consists of all nodes of T with first coordinate of this form, plus
the empty node.

The following claim is then obvious from the definitions, properties (c) and
(d) above, and the fact that the branches of T which belong to NK are precisely
the ones in K.

Claim 3.9. If θs(t) = 1 and there is a branch of V s
t in NK , then t ∈ W . If

θs(t) = 0 and there is a branch of V s
t in NK , then t 6∈W .

For each s ∈ S∗ define F(s) to be the tree Πt∈dom(θs)V
s
t .

Claim 3.10. Let s, s′ ∈ S∗ be incompatible. Then at most one of F(s), F(s′)
has a branch in NK .

Proof. From the fact that s and s′ are incompatible, it follows that θs and
θs′

are incompatible. (The last two conditions in the definition of θs are essential
here, in case that s and s′ disagree only on their r parts.) Let t ∈ dom(θs) ∩

dom(θs′

) be such that θs(t) 6= θs′

(t). A branch of F(s) includes a branch through
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V s
t , and similarly with s′. If there are branches through both V s

t and V s′

t in NK ,

then since {θs(t), θs′

(t)} includes both 1 and 0, it follows by the last claim that
t ∈W and t 6∈W , a contradiction. ⊣

Claim 3.11. For each k there is some s ∈ S∗ of length k so that F(s) has a
branch in NK .

Proof. Fix k. For i < k set χs(ti) = 1 if ti ∈W and χs(ti) = 0 if ti 6∈W . If
ti ∈W then using (a) above let n be least so that ti

⌢〈n〉 ∈W , and set rs(ti) =
ti

⌢〈n〉. If ti 6∈W then using (b) above let n be least so that 〈(π(ti), n)〉 ∈W and
set rs(ti) = 〈(π(ti), n)〉. Finally let s = χs × rs. It is clear from this definition
that θs(t) = 1 iff t ∈ W for each (of the finitely many) t ∈ dom(θs). From this
and properties (b) and (d) above it follows that each of the trees V s

t , t ∈ dom(θs),
has a branch in K and therefore in NK . So F(s) has a branch in NK . ⊣

Both S∗ and F belong to NK . In fact they belong to MG
∅ , as both are defined

from T . We established that, in NK , they have the properties derived in Claim
2.2. (The first condition in the claim holds for the current S∗ vacuously, since
in NK no s ∈ S∗ can be extended to a branch of S∗.)

Recall that in Section 2 we proved, from the properties given by Claim 2.2,
using INDEC, that there is a branch through S∗.

Suppose for contradiction that INDEC is true in NK . Then the proof in
Section 2, applied with the current S∗ and F and relativized to the model NK ,
shows that there is a branch of S∗ in NK . But this contradicts Claim 3.8. The
contradiction completes the proof of Lemma 3.7. ⊣

We have now shown that (in the base theory RCA) weak Σ1
1 choice does not

imply INDEC. The model NK ∩ (ω ∪ P(ω)) satisfies the former by Lemma 3.6
and fails to satisfy the latter by Lemma 3.7.

§4. A model of INDEC in which ∆1
1 comprehension fails. We continue

to work with the poset P of the previous section. Fix G which is generic for
this poset over Lωck

1
+1. For the most part we work only with ranked forcing

statements, so that we have access to Lemma 3.3. In those situations genericity
over Lωck

1

is enough. But every once in a while, when dealing with statements

which are not ∆1 over Lωck
1

[G], for example an order being scattered in MG
F , we

implicitly use the fact that G meets dense sets outside Lωck
1

.

We work with T = TG, f(i) = fG(i), B = BG, h = hG, and MF = MG
F all

defined as before. Recall that Ṫ , ḟ , Ḃ, and ḣ name these objects. Given a finite
A ⊆ ω we set MG

F (A) = MG
F = Lωck

1

({T} ∪ F ) where F = {fG(i) | i ∈ A}. We

use ṀF (A) for the canonical name for this model. This is a class name over Lωck
1

.

Let C be the poset adding a Cohen real. Conditions are finite partial func-
tions from ω into 2, ordered by reverse extension. Let H be generic for C over
Lωck

1
+1[G].

Set K = {b ∈ B | b(0) = (n, e) with e even if H(n) = 0 and odd if H(n) = 1}.

Let K̇ = {〈ḟ(i), 〈p, c〉〉 | fp(i)(0) = (n, e) with e even iff c(n) = 0}, so that K̇

is a P × C name for K. Set I = {i < ω | fG(i) ∈ K}, and let İ = {〈̌i, 〈p, c〉〉 |
fp(i)(0) = (n, e) with e even iff c(n) = 0}, so that İ names I.
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As in the previous section let NK =
⋃

F⊆K, F finiteMF . Let ṄK be the natural
name for NK .

By genericity of G, for each n there are infinitely many even numbers e, and
infinitely many odd numbers e, so that 〈(n, e)〉 can be extended to a branch in
B. Thus H(n) = 0 iff (∃b ∈ K)(∃e ∈ Even)b(0) = (n, e), and H(n) = 1 iff
(∃b ∈ K)(∃e ∈ Odd)b(0) = (n, e). Since by Claim 3.4 the branches of T in NK

are precisely the elements of K, it follows immediately that {n ∈ ω | H(n) = 0}
is ∆1

1(T ) over NK . It is clear that this set does not belong to MG
F for any finite

F , since in fact it does not belong to Lωck
1

[G]. In particular then the set does

not belong to NK . We proved:

Claim 4.1. ∆1
1 comprehension fails in NK .

In the rest of the section we prove that NK satisfies INDEC. Fix a linear order-
ing U = (ω;<U ) in NK . Suppose for contradiction that, in NK , U is scattered,
indecomposable, not indecomposable to the left, and not indecomposable to the
right.

From these properties of U it follows that there must exist, though not inside
NK , a unique cut 〈L,R〉 in U , so that U can be embedded, using embeddings in
NK , to the left of every β ∈ R, and to the right of every α ∈ L. We shall look at a
name for this cut, and divide into cases depending on whether its interpretation
does or does not depend non-trivially on H. If it does not, we shall argue for a
contradiction by showing that the cut belongs to NK . If it does, then working
in NK we shall embed the complete binary tree, via C, into U , contradicting the
fact that U is scattered. For both arguments, we shall work in MG

F for F ⊆ K

finite and large enough that U ∈MG
F , and reason about embeddings of U in NK

by viewing NK as a generic extension of MG
F . This approach is similar to the

one Steel [8] used to prove ∆1
1 comprehension in his model.

Let Ā ⊆ I be large enough that U ∈ MG
F̄

where F̄ = {fG(i) | i ∈ Ā}. Let M̄

denote MG
F̄

. Let U̇ be an Ā-nice name for U . Let 〈p̄, c̄〉 ∈ G ×H force that, in

ṄK , U̇ is indecomposable, not indecomposable to the left, not indecomposable
to the right, and scattered. Extending 〈p̄, c̄〉 if needed, suppose it forces that
ˇ̄A ⊆ İ. In other words suppose that for each i ∈ Ā, fp̄(i)(0) has the form (n, e),
with n ∈ dom(c̄) and e even iff c̄(n) = 0.

We work throughout below the condition 〈p̄, c̄〉.
We also work with A-nice names, for A ⊇ Ā. (A is always finite, even when

this is not explicitly mentioned.) For every such A, there is a natural A-nice

name U̇ ′ which is forced by 1P to be equal to U̇ . For notational simplicity we
identify U̇ ′ with U̇ in all such situations.

By (α, β)U we mean the interval {γ ∈ ω | α <U γ <U β} of U . The interval
avoids δ if δ is not between α and β in the order <U . When we say that π
embeds U to the left of β we mean that it embeds U into its restriction to the
set {γ | γ <U β}, and similarly with embedding to the right of α.

Claim 4.2. For each δ < ω, and each condition 〈p, c〉 ≤ 〈p̄, c̄〉, there exists
α, β ∈ ω, A ⊇ Ā, A-nice names σ̇ and π̇, and a condition 〈q, d〉 ≤ 〈p, c〉, so that
〈q, d〉 forces:

1. α̌ <U̇ β̌ and the interval (α̌, β̌)U̇ avoids δ̌.
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2. σ̇ embeds U̇ to the right of α̌, and π̇ embeds U̇ to the left of β̌.
3. Ǎ ⊆ İ.

Proof. Fix δ and fix 〈p, c〉. Suppose for simplicity that 〈p, c〉 ∈ G × H. If
not we simply work during this proof with a different generic, G′ × H ′, which
contains 〈p, c〉. As 〈p, c〉 ≤ 〈p̄, c̄〉, the properties of U and NK that we use during
the proof hold also for the objects given by the revised generic.

Since U is indecomposable in NK , there is in NK an embedding of U either
to the left of δ or to the right. Suppose for definitiveness that it is to the right,
and let σ be the embedding. Let α = δ. Since U is not indecomposable to the
right there is β >U α so that U does not embed to the right of β, in NK . Again
since U is indecomposable in NK , we may fix π ∈ NK which is an embedding of
U to the left of β.

Let F ⊇ F̄ be a finite subset of K so that π, σ ∈MG
F . Let A ⊇ Ā be such that

F = {fG(i) | i ∈ A}. Let σ̇ and π̇ be A-nice names for σ and π.
We obtained the G×H-realizations of the conditions in the claim. Finally, fix

〈q, d〉 ∈ G×H, stronger than 〈p, c〉, forcing these conditions to hold. ⊣

The first two conditions in Claim 4.2 involve only the forcing P, and only
ranked statement in the forcing language. The third condition has very low
complexity. It is equivalent to the statement that fq(i)(0) = (n, e) with n ∈
dom(d) and e even iff d(n) = 0, for each i ∈ A. Thus the claim asserts conditions
which are ∆1 over Lωck

1

in their parameters. Using admissability it follows that:

Claim 4.3. There is θ < ωck
1 so that for each δ < ω, and each condition

〈p, c〉 ≤ 〈p̄, c̄〉, one can find in Lθ objects satisfying the conditions of the previous
claim.

We work with a fixed θ witnessing this claim, for the rest of the section. Note
that if π̇ and σ̇ are A-nice names which belong to Lθ, then it follows in particular
that their orders are below θ. We pick θ to be closed under ordinal multiplication,
and larger than the order of U̇ . Then it follows that the ranks of the statement
“α̌<U β̌ and the interval (α̌, β̌)U̇ avoids δ̌”, “σ̇ embeds U̇ to the right of α̌”, and

“π̇ embeds U̇ to the left of β̌” are all smaller than θ.

Claim 4.4. For each δ ∈ ω and each condition c ≤ c̄ in C, there exists α, β ∈
ω, A ⊇ Ā, A-nice names σ̇, π̇, and a condition 〈q, d〉, all in Lθ, so that 〈q, d〉
forces the conditions in Claim 4.2, and in addition to that, d ≤ c and q ∈ G.

Proof. Fix δ and c. Modifying H if needed, we may assume for simplicity
that c ∈ H.

Let D be the set of 〈q, d〉 ∈ P for which there exists α, β ∈ ω, A ⊆ Ā, and
A-nice names σ̇, π̇ ∈ Lθ, so that 〈q, d〉 forces conditions (1)–(3) in Claim 4.2.
Because of the restriction to Lθ, the set belongs to Lωck

1

. By Claim 4.3, the set

is dense in P × C below 〈p̄, c̄〉.
We may thus fix a condition 〈q, d〉 ∈ D∩ (G×H). Then q ∈ G, extending d if

needed we may assume that d ≤ c, and since 〈q, d〉 ∈ D we can find the required
α, β, A, σ̇, and π̇. ⊣

We will use the claim later, working in the model M̄ = MG
F̄

. The claim refers
to G, which this model cannot identify because it is missing the branches other
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than those in F̄ , and missing the rank function hG. But it has the restriction of
the function to nodes with ranks < θ, and this, together with the branches in F̄ ,
will be enough through a use of Lemma 3.3.

Let us be more precise on the approximation to G resulting from these restric-
tions. Define Ḡ to be the set of conditions p ∈ P extending p̄ and so that:

• Tp ⊆ T = TG.
• fp(i) ⊆ fG(i) for each i ∈ Ā.
• If hG(t) < θ, then hp(t) = hG(t). If hG(t) ≥ θ then hp(t) ≥ θ.

In the last condition, as usual, we adopt the convention that hp(t) = ∞ > θ for
t ∈ Dc(fp), and similarly with G. The set Ḡ belongs to M̄ = MG

F̄
, since the

restriction of hG to nodes t so that hG(t) < θ can be computed from the tree T .
Ḡ is not a filter, but it is close enough to G for our purposes. To see this, we
will use Lemma 3.3, and the symmetry in the following remark.

Remark 4.5. Suppose that α, β, A, σ̇, π̇, and 〈q, d〉 satisfy the conditions in
Claim 4.2. Let τ : ω → ω be a bijection, with τ↾Ā = id. Let A∗ = τ ′′A, let
q∗ = 〈Tq, f

∗, hq〉 where f∗(τ(i)) = fq(i), and let σ̇∗ and π̇∗ be obtained from

σ̇ and π̇ by replacing references to ḟ(i) with references to ḟ(τ(i)). Then the
conditions in the claim continue to hold for α, β, A∗, σ̇∗, π̇∗, and 〈q∗, d〉.

Claim 4.6. Let αj, βj, Aj, σ̇j, π̇j, and 〈qj , dj〉 belong to Lθ and satisfy the
conditions in Claim 4.2 for each j = 0, . . . , k − 1, with qj ∈ Ḡ. Suppose that
d0, . . . , dk−1 have a common extension in C, and that they are all ≤ c̄. Then
αj <U βj for each j, and the intervals (αj , βj)U have a non-empty intersection.

Proof. It is enough to prove the claim for k = 2. The case k = 2 can
then be applied to j0 and j1 such that αj0 = max(α0, . . . , αk−1) and βj1 =
min(β0, . . . , βk−1), with the maximum and minimum taken using U , to yield the
general case.

So suppose k = 2. Our first task is to find an approximation to a common
extension of q0 and q1.

Using Remark 4.5, we may assume that dom(fq0
) − Ā and dom(fq1

) − Ā are
disjoint. Since both q0 and q1 belong to Ḡ, both fq0

(i) and fq1
(i) are initial

segments of fG(i) for i ∈ Ā. Extending the conditions we may assume that
fq0

(i) = fq1
(i) for such i.

If t ∈ Tqo
∩ Tq1

and one of hq0
(t), hq1

(t) is defined and < θ, then both are
defined, and take the same value. (Both take the value hG(t) on such t.) Making
adjustments to values of hq0

and hq1
which are ≥ θ, we may assume that hq0

(t) =
hq1

(t) whenever both are defined (not ∞). Since the modifications only involve
values ≥ θ, they do not affect the fact that qj ∈ Ḡ. They also do not affect
the fact that the conditions in Claim 4.2 hold, because the forcing statements in
the first two conditions have rank < θ (we are using Lemma 3.3 here), and the
statement in the third condition only involve fqj

and dj , not hqj
. We can make

the modifications in such a way that no changes are made to values on which
the original conditions were already in agreement, and so maintain also the fact
that qj extends p̄ for each j.

Let T ∗ = Tq0
∪Tq1

. Let f∗ = fq0
∪fq1

. Let ĥ = hq0
∪hq1

. The last two unions
are possible by the observations in the previous paragraphs.
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ĥ is defined on t ∈ (T ∗−Dc(fq0
))∪ (T ∗−Dc(fq1

)) = T ∗− (Dc(fq0
)∩Dc(fq1

)).

Let h∗j = ĥ↾T ∗ − Dc(fqj
), and let h∗ = ĥ↾T ∗ − (Dc(fq0

) ∪ Dc(fq1
)). Then:

(i) 〈T ∗, fqj
, h∗j 〉 extends qj .

(ii) 〈T ∗, fqj
, h∗j 〉 is a θ-absolute dom(fqj

)-reduct of 〈T ∗, f∗, h∗〉.

q∗ = 〈T ∗, f∗, h∗〉 is our approximation to a common extension of q0 and q1. It

follows from (i) that 〈T ∗, fqj
, h∗j 〉 forces that “σ̇j embeds U̇ to the right of α̌j ,

and π̇j embeds U̇ to the left of β̌j”, for each j ∈ {0, 1}. It follows from (ii) using
Lemma 3.3 that forces q∗ the statement for both j.

Both q0 and q1 extend p̄, and it follows from this and the definitions above
that q∗ extends p̄. By assumption d0 and d1 have a common extension in C, and
both are ≤ c̄. Let d∗ be a common extension of the two conditions, with d∗ ≤ c̄.

Consider the condition 〈q∗, d∗〉. Since it is stronger than 〈p̄, c̄〉, it forces that

U̇ is scattered in ṄK . Since f∗ extends fqj
and d∗ extends dj , 〈q

∗, d∗〉 forces

that Ǎj ⊆ İ. (We are using condition (3) of Claim 4.2 here.) Hence, since σ̇j , π̇j

are Aj-nice, it forces that σ̇j , π̇j ∈ ṄK .

We claim that 〈q∗, d∗〉 forces that α̌j <U̇ β̌j for each j, and the intervals

(α̌j , β̌j)U̇ have a non-empty intersection.
Suppose not. Then there is 〈q∗∗, d∗∗〉 ≤ 〈q∗, d∗〉, and j0, j1 ∈ {0, 1}, so that

〈q∗∗, d∗∗〉 forces β̌j0 ≤U̇ α̌j1 . It also forces that π̇j0 and σ̇j1 belong to ṄK , and

embed U̇ to the left of β̌j0 and to the right of α̌j1 respectively. Thus, it forces

that in ṄK there are embeddings of U̇ to both the left and the right of the
interval [β̌j0 , α̌j1 ]U̇ . But from such embeddings one can construct an embedding

of the rationals into U̇ , see for example the construction at the end of the proof
of Claim 2.9. Thus 〈q∗∗, d∗∗〉 forces that U̇ is not scattered in ṄK , and this is a
contradiction.

Let ϕ be the forcing statement that α̌j <U̇ β̌j for each j, and the intervals

(α̌j , β̌j)U̇ have a non-empty intersection. We have shown so far that 〈q∗, d∗〉
forces this statement. Since the statement only involves the poset P, it is forced
by q∗.
q∗ by construction belongs to Ḡ, but this is not enough for the claim. We

have to show that αj <U βj and that the intervals (αj , βj)U have a non-empty
intersection, and for this we must show that ϕ is forced by a condition in G.

The name U̇ is Ā-nice and belongs to Lθ. Since all variables of ϕ range over
ω, and all parameters other than U̇ are elements of ω, ϕ is Ā-nice and ranked.
Since the order of U̇ is below θ, and θ is closed under ordinal multiplication, the
rank of ϕ is below θ.

Using the fact that q∗ ∈ Ḡ we can find a θ-absolute Ā-reduct r of q∗ which
belongs to G. The adjustments leading from q∗ to r are similar to ones made
above, so let us just comment that Tr = Tq∗ , hr = hG↾Tr agrees with hq∗ on
nodes in Tr which get tags < θ, fr↾Ā = fq∗↾Ā, and outside Ā, fr is defined on a
finite domain in such a way that fr(i) ⊆ fG(i) and Dc(fr) = Dc(fG) ∩ Tr.

Then by Lemma 3.3, r forces ϕ. ⊣

Recall that our plan is to identify a certain cut 〈L,R〉 in U , and divide into
cases depending on whether or not the location of this cut depends non-trivially
on H. The proof of the next claim handles the case that 〈L,R〉 does not depend
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on H, deriving a contradiction from the fact that U is indecomposable in NK .
Later we shall use non-trivial dependence of the cut on H to embed the rationals
into U .

Call intervals (α0, β0)U and (α1, β1)U separated if there is a point of U between
them (equivalently, β0 ≤U α1 or β1 ≤U α0). This implies in particular that they
have empty intersection.

Claim 4.7. For every c ≤ c̄, there are αj, βj, Aj, σ̇j, π̇j, and 〈qj , dj〉 in Lθ,
for j ∈ {0, 1}, which satisfy the conditions in Claim 4.2, with qj ∈ Ḡ and dj ≤ c,
and so that the intervals (α0, β0)U and (α1, β1)U are separated. (By the previous
claim, d0 and d1 must be incompatible.)

Proof. Suppose not, and let c witness this. Modifying the generic H if
necessary, we may assume that c ∈ H.

Let Z be the set of intervals (α, β)U for which there exists A, σ̇, π̇, and 〈q, d〉,
all in Lθ, with q ∈ Ḡ and d ≤ c, so that the conditions in Claim 4.2 hold.

Note that Z belongs to M̄ . Working in M̄ , let L = {γ | (∃(α, β)U ∈ Z)γ≤Uα},
and let R = {γ | (∃(α, β)U ∈ Z)γ ≥U β}. It is clear that L is closed leftward
in U , and R is closed rightward. By our assumption for contradiction, no two
intervals in Z are separated. It follows that L and R are disjoint, for otherwise
there is γ with an interval in Z to its right, and another interval in Z to its left,
so that these intervals are separated. Finally, L∪R is the entire line U , by Claim
4.4: Given δ ∈ ω, there is by the claim an interval in Z which avoids δ. So δ
is either to the left of the interval, in which case δ ∈ L, or to the right of the
interval, in which case δ ∈ R.

We constructed, inside M̄ , a cut 〈L,R〉 in U . Since U is indecomposable
in NK ⊇ M̄ , it must be that U embeds either into L or into R. Suppose for
definitiveness that U embeds into L. Taking the square of this embedding we
can find δ ∈ L so that, in NK , U embeds to the left of δ.

By Claim 4.4, for each c ≤ c̄ there exists α, β ∈ ω, A ⊇ Ā, A-nice names σ̇,
π̇, and a condition 〈q, d〉, all in Lθ, so that 〈q, d〉 forces the conditions in Claim
4.2, and in addition to that, d ≤ c and q ∈ G. Since we can get d ≤ c for an
arbitrary c ≤ c̄, the set of d which can occur in such tuples is dense below c̄. By
the genericity of H, we can find a tuple as above, with d ∈ H.

As q ∈ G and d ∈ H, the conditions in Claim 4.2 imply that α <U β, the
interval (α, β)U avoids δ, σ = σ̇[G] embeds U to the right of α, and σ ∈ NK .

The interval (α, β)U belongs to Z by definition of Z, and since δ 6∈ R it must
be that δ <U β. Since the interval avoids δ, we must have δ ≤U α. So σ embeds
U to the right of δ.

We found, in NK , two embeddings of U , to the left and to the right of δ.
From these embeddings one can construct an embedding of the rationals into U ,
contradicting the fact that U is scattered in NK . ⊣

We now have the tools needed for the final stage of the proof. We shall embed
the rationals, via C, into U . We work in M̄ throughout.

For each c ≤ c̄ in C, let Zc be the set of intervals (α, β)U for which there
exists A, σ̇, π̇, and 〈q, d〉, all in Lθ, with q ∈ Ḡ and d ≤ c, so that the conditions
in Claim 4.2 hold. For each interval (α, β)U in Zc, let dc(α, β) be a condition
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in C so that a witness for the membership of (α, β)U in Zc can be picked with
d = dc(α, β).

Since θ < ωck
1 , and Ḡ belongs to M̄ , each Zc is an element of M̄ , and indeed

the function c 7→ Zc belongs to M̄ . Similarly the function c, α, β 7→ dc(α, β)
belongs to M̄ .

Let W be the complete binary tree with order determined by s⌢〈0〉⌢t <W s

and s⌢〈1〉⌢t >W s. Working recursively on the length of s ∈ W , define maps
s 7→ cs, and s 7→ (αs, βs)U for s 6= ∅, where cs ≤ c̄ in C and αs<U βs, as follows:
Set c∅ = c̄. Once cs is known, let (α0, β0)U and (α1, β1)U be separated intervals
in Zc. Separated intervals in Zc can be found by Claim 4.7. Arrange them so
that (α0, β0)U is to the left of (α1, β1)U . Set (αs⌢〈j〉, βs⌢〈j〉)U = (αj , βj)U for
j = 0, 1, and set cs⌢〈j〉 = dcs

(αj , βj).
The objects constructed then have the following properties:

1. cs⌢〈j〉 extends cs, by definition of the map dc.
2. The intervals (αs↾i, βs↾i)U , 0 < i ≤ lh(s), have a non-empty intersection,

by Claim 4.6, because the conditions cs↾i are compatible. (Indeed these
conditions form a chain.)

For each s 6= ∅, let Os =
⋂

0<i≤lh(s)(αs↾i, βs↾i)U . From the fact that Os⌢〈0〉

and Os⌢〈1〉 are both non-empty, and that the intervals (αs⌢〈0〉, βs⌢〈0〉) and
(αs⌢〈1〉, βs⌢〈1〉) are separated with the former to the left of the latter, it follows
that:

3. βs⌢〈0〉 ≤U αs⌢〈1〉 and both belong to Os.

For each s ∈ W pick δs so that βs⌢〈0〉 ≤U δs ≤U αs⌢〈1〉. (For example, take
δs = βs⌢〈0〉.) Then:

4. δs belongs to Os, Os⌢〈0〉 ⊆ Os is to the left of δs, and Os⌢〈1〉 ⊆ Os is to
the right of δs.

It is clear from this that the map s 7→ δs embeds W into U .
We constructed, inside M̄ ⊆ NK , an embedding of W into U . Since the

rationals can be embedded into W , it follows that U is not scattered in NK .
This is a contradiction, obtained from our initial assumption that, in NK , U is
a counterexample to INDEC.

Thus, INDEC holds in NK . Since ∆1
1 comprehension fails in NK , we conclude

that INDEC does not imply ∆1
1 comprehension.
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