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The exponential function

ℵα, α ∈ On lists the infinite cardinals in order.

ℵ0, ℵ1, ℵ2, . . . , ℵω, ℵω+1, . . . .

The cofinality of a cardinal κ is the least δ so that there
exists f : δ → κ, cofinal. κ is singular if Cof(κ) < κ.

For example, Cof(ℵω) = ω. ℵω is singular.

κ2 is the set of functions from κ into 2 = {0, 1}.
Equinumerous with P(κ). 2κ = Card(κ2).

Continuum Hypothesis (CH): 2ℵ0 = ℵ1(= ℵ0
+).

Singular Cardinal Hypothesis (SCH): If κ is singular, 2κ is
as small as it can be, subject to monotonicity and König’s
theorem (Cof(2κ) > κ).
For κ singular strong limit (τ < κ → 2τ < κ), 2κ = κ+.
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Trees

A tree is a partial order (T ;<T ) so that (∀x ∈ T )
{z | z <T x} is wellordered by <T .

The height of x in T is the order type of {z | z <T x}. The
height of T is sup{Height(x) + 1 | x ∈ T}. Level α of T
consists of {x | Height(x) = α}.

T is a κ-tree if Height(T ) = κ, and each level of T has
size < κ.

The tree property at κ asserts that every κ tree has a
cofinal branch.

Holds at ℵ0 (König). Fails at ℵ1 (Aronszajn). More
generally fails at κ+ if <κκ = κ. Can hold at ℵ2 (Mitchell).
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Trees
Tree property is a remnant of large cardinals.

Definition
κ is measurable if it is the critical point of an elementary
π : V → M. (π � κ = Id , π(κ) > κ.)

Using the elementarity of π, can show κ is a cardinal, is a
limit cardinal, is a strong limit cardinal, and Cof(κ) = κ.

Example
Suppose κ is measurable. Then every κ-tree has a
cofinal branch.

Proof.
Let T be a κ-tree. Consider π(T ), a tree of height
π(κ) > κ. Let x be a node on level κ of π(T ). Look at the
branch b = {z | z <π(T ) x} of π(T ) leading to x . Since
κ = Crit(π) and |Levelα(T )| < κ for α < κ, T and π(T )
are “the same” on levels α < κ. So b is a branch of T .
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Tree property at successor of singular

Definition
κ is λ-supercompact if it is the critical point of an
elementary π : V → M with π(κ) > λ and λM ⊆ M (M
closed under λ sequences in V ). κ is supercompact if it is
λ-supercompact for all λ.

Theorem (Magidor–Shelah)
Suppose τ is a singular limit of supercompact cardinals.
Then every τ+-tree has a cofinal branch.

Get tree property at τ+.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Tree property at successor of singular

Definition
κ is λ-supercompact if it is the critical point of an
elementary π : V → M with π(κ) > λ and λM ⊆ M (M
closed under λ sequences in V ).

κ is supercompact if it is
λ-supercompact for all λ.

Theorem (Magidor–Shelah)
Suppose τ is a singular limit of supercompact cardinals.
Then every τ+-tree has a cofinal branch.

Get tree property at τ+.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Tree property at successor of singular

Definition
κ is λ-supercompact if it is the critical point of an
elementary π : V → M with π(κ) > λ and λM ⊆ M (M
closed under λ sequences in V ). κ is supercompact if it is
λ-supercompact for all λ.

Theorem (Magidor–Shelah)
Suppose τ is a singular limit of supercompact cardinals.
Then every τ+-tree has a cofinal branch.

Get tree property at τ+.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Tree property at successor of singular

Definition
κ is λ-supercompact if it is the critical point of an
elementary π : V → M with π(κ) > λ and λM ⊆ M (M
closed under λ sequences in V ). κ is supercompact if it is
λ-supercompact for all λ.

Theorem (Magidor–Shelah)
Suppose τ is a singular limit of supercompact cardinals.
Then every τ+-tree has a cofinal branch.

Get tree property at τ+.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Tree property at successor of singular

Definition
κ is λ-supercompact if it is the critical point of an
elementary π : V → M with π(κ) > λ and λM ⊆ M (M
closed under λ sequences in V ). κ is supercompact if it is
λ-supercompact for all λ.

Theorem (Magidor–Shelah)
Suppose τ is a singular limit of supercompact cardinals.
Then every τ+-tree has a cofinal branch.

Get tree property at τ+.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Additional principles

τ in rest of talk, always a singular cardinal of cofinality ω.

A square sequence at τ+ is a sequence 〈Cξ | ξ < τ+〉 so
that Cξ is club in ξ, of order type ≤ τ , and the clubs
cohere.

Let δi (i < ω) be cofinal and increasing in τ .∏
δi = {functions f so that Dom(f ) = ω and f (i) ∈ δi}.

f <∗ g iff f (i) < g(i) for all but finitely many i .

A scale of length τ+ in
∏

i<ω δi is a sequence 〈fξ | ξ < τ+〉
which is <∗-increasing and cofinal.
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Other principles

Scales are central tools in Shalah’s PCF theory. Eg:

Theorem (Shelah)
∃A ⊆ ω so that

∏
n∈A ℵn carries a scale of length ℵω+1.

Proof sketch.
Easy to construct <∗-increasing ~f = 〈fξ | ξ < ℵω+1〉 in∏

n<ω ℵn. Work goes into making sure ~f has an exact

upper bound (eub), that is a bound g so that ~f is cofinal in
g. One can then turn ~f into a scale on

∏
i<ω Cof(g(i)).

Definition
α ≤ Length(~f ) with Cof(α) > ω is good for ~f if ~f � α has an
eub of cofinality Cof(α). Otherwise α is bad.

A scale of length τ+ is good if it has a club of good points.
Otherwise the scale is bad.
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Theorem (Shelah)
If there is a supercompact cardinal below τ , then every
scale of length τ+ is bad.

Theorem (Shelah)
If there is a square sequence at τ+, then every scale of
length τ+ is good.
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Forcing basics

Basic goal: Adjoin an object G to a model M of ZFC.
Resulting extension M[G] is a model of ZFC.

G is a “new” subset of a set P ∈ M. M[G] consists of all
sets that can be constructed from elements of M using
the new set G.

One way to describe elements of M[G]:

For each τ ∈ M define
τ [G] = {σ[G] | (∃p ∈ G)〈σ, p〉 ∈ τ}.

Then M[G] = {τ [G] | τ ∈ M}.
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Forcing basics

The fundamental theorem of forcing (Cohen) allows
reasoning about M[G] from inside M. There is a relation
, definable in M, so that:

1. If M[G] |= ϕ(τ1[G], . . . , τn[G]) then there is p ∈ G so
that p  ϕ(τ1, . . . , τn).

2. If p  ϕ(τ1, . . . , τn) then M[G] |= ϕ(τ1[G], . . . , τn[G])
for all G so that p ∈ G.

Requires some assumptions on P and G: P is a partially
ordered set, G is a filter, and G meets every dense open
subset of P in M. (Such G are called generic over M.)
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Changing the continuum

Work in M. Consider P consisting of all finite partial
functions from ℵ2 × ω into {0, 1}, ordered by extension:
r <P s iff r extends s.

Let G be generic over M.

Since G is a filter, all partial functions r ∈ G agree.
θ =

⋃
G is a function from ℵ2 × ω into {0, 1}.

For ξ < ℵ2 define θξ(n) = θ(ξ, n). Then θξ ∈ ω2.

Using genericity, θ is total, and ξ 6= ζ → θξ 6= θζ .

Conclusion : M[G] |= 2ω ≥ (ℵ2)
M .

Prove (ℵ2)
M[G] = (ℵ2)

M . Here fundamental theorem of
forcing is crucial. Allows reasoning in M about
f : (ℵ1)

M → (ℵ2)
M that belong to M[G]. Using properties

of P in M show such f are not onto.
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Changing 2κ

A cardinal κ is regular if Cof(κ) = κ.

Method for changing the continuum (ω2) works for any
regular κ.

Force with P consisting of partial functions of size < κ
from κ++ × κ into {0, 1}. (Called Add(κ, κ++).)

As before, get (κ++)M elements of κ2 out of G.

Further, M and M[G] have the same cardinals. Argument
again uses fundamental theorem of forcing. Relies on the
closure of P to show cardinals ≤ κ are preserved.
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Without closure

Consider P consisting of all finite partial functions from ω
to κ, ordered by extension.

Let G be generic over M.

Again, θ =
⋃

G is a function, this time from ω into κ.

By genericity G is total (again), and onto.

Conclusion : M[G] |= Card(κ) = ω.

Note
For κ of cofinality ω, Add(κ, κ++) is not closed. will act
like poset above, and collapse κ.
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Singular cardinals

Increasing the powerset of a singular cardinal will
typically collapse it.

There are ZFC theorems showing that certain changes
involving singular cardinals are in fact impossible:

Theorem (Silver)
SCH cannot fail for the first time at a cardinal of
uncountable cofinality.

Theorem (Solovay)
SCH holds above supercompacts.

Theorem (Shelah)
Failures of SCH at ℵω are limited: if 2ℵn < ℵω for each n,
then 2ℵω < ℵω4 .
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Ultrafilters

An ultrafilter over a set S is a collection U of non-empty
subsets of S so that:

1. U is closed upward. X ∈ U and X ⊆ Y → Y ∈ U .

2. U is closed under intersections.
X , Y ∈ U → X ∩ Y ∈ U .

3. For every X ⊆ S, either X or S − X belongs to U .

The ultrafilter is κ-complete if it is closed under all
intersections of fewer than κ sets.

Example
Suppose κ is a measurable cardinals. Let π : V → M
have critical point κ. Define U over κ by
X ∈ U ↔ κ ∈ π(X ). Then U is a κ-complete ultrafilter.

Example
Suppose κ is λ-supercompact. Let π : V → M with
Crit(π) = κ and a = π′′λ ∈ M. Define U over Pκ(λ) by
X ∈ U ↔ a ∈ π(X ). Then U is a κ-complete ultrafilter.
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Prikry forcing

Many uses of ultrafilters in forcing.

We concentrate on
those that help change cofinalities.

Let κ be measurable, and let U be κ-complete ultrafilter
over κ.

Prikry forcing is the poset P consisting of pairs 〈s, X 〉
where s is a finite subset of κ and X ⊆ κ belongs to U .
The order on P is defined by:
〈t , Y 〉 < 〈s, X 〉 ↔ t extends s, Y ⊆ X , and t − s ⊆ X .

Given a generic G, set g =
⋃
{s | (∃X )〈s, X 〉 ∈ G}.

By genericity, g is cofinal in κ. It has order type ω.

The clause t − s ⊆ X above restricts g, and prevents it
from coding any patterns of ordinals. g turns the cofinality
of κ to ω, and does nothing else.
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Magidor forcing

Magidor forcing is a generalization of Prikry forcing,
designed to change cofinalities to λ > ω.

Requires a measurable cardinal κ with many measurable
cardinals below it. Will add, for example,
g = {αξ | ξ < ω1} increasing and cofinal.

Uses many local instances of Prikry forcing. In example
above, sup{αξ | ξ < ω} is measurable, and {αξ | ξ < ω}
Prikry generic for it. Similarly above ω.

Another forcing due to Magidor is diagonal Prikry forcing.

Fix ω measurable cardinals κn, with ultrafilters Un.

Use conditions 〈α0, . . . , αn−1, Xn, . . .〉, αi ∈ κi , Xi ∈ Ui .

Adds a cofinal subset {αi | i < ω} of sup{κn | n < ω}, and
does nothing else.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Magidor forcing
Magidor forcing is a generalization of Prikry forcing,
designed to change cofinalities to λ > ω.

Requires a measurable cardinal κ with many measurable
cardinals below it. Will add, for example,
g = {αξ | ξ < ω1} increasing and cofinal.

Uses many local instances of Prikry forcing. In example
above, sup{αξ | ξ < ω} is measurable, and {αξ | ξ < ω}
Prikry generic for it. Similarly above ω.

Another forcing due to Magidor is diagonal Prikry forcing.

Fix ω measurable cardinals κn, with ultrafilters Un.

Use conditions 〈α0, . . . , αn−1, Xn, . . .〉, αi ∈ κi , Xi ∈ Ui .

Adds a cofinal subset {αi | i < ω} of sup{κn | n < ω}, and
does nothing else.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Magidor forcing
Magidor forcing is a generalization of Prikry forcing,
designed to change cofinalities to λ > ω.

Requires a measurable cardinal κ with many measurable
cardinals below it.

Will add, for example,
g = {αξ | ξ < ω1} increasing and cofinal.

Uses many local instances of Prikry forcing. In example
above, sup{αξ | ξ < ω} is measurable, and {αξ | ξ < ω}
Prikry generic for it. Similarly above ω.

Another forcing due to Magidor is diagonal Prikry forcing.

Fix ω measurable cardinals κn, with ultrafilters Un.

Use conditions 〈α0, . . . , αn−1, Xn, . . .〉, αi ∈ κi , Xi ∈ Ui .

Adds a cofinal subset {αi | i < ω} of sup{κn | n < ω}, and
does nothing else.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Magidor forcing
Magidor forcing is a generalization of Prikry forcing,
designed to change cofinalities to λ > ω.

Requires a measurable cardinal κ with many measurable
cardinals below it. Will add, for example,
g = {αξ | ξ < ω1} increasing and cofinal.

Uses many local instances of Prikry forcing. In example
above, sup{αξ | ξ < ω} is measurable, and {αξ | ξ < ω}
Prikry generic for it. Similarly above ω.

Another forcing due to Magidor is diagonal Prikry forcing.

Fix ω measurable cardinals κn, with ultrafilters Un.

Use conditions 〈α0, . . . , αn−1, Xn, . . .〉, αi ∈ κi , Xi ∈ Ui .

Adds a cofinal subset {αi | i < ω} of sup{κn | n < ω}, and
does nothing else.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Magidor forcing
Magidor forcing is a generalization of Prikry forcing,
designed to change cofinalities to λ > ω.

Requires a measurable cardinal κ with many measurable
cardinals below it. Will add, for example,
g = {αξ | ξ < ω1} increasing and cofinal.

Uses many local instances of Prikry forcing.

In example
above, sup{αξ | ξ < ω} is measurable, and {αξ | ξ < ω}
Prikry generic for it. Similarly above ω.

Another forcing due to Magidor is diagonal Prikry forcing.

Fix ω measurable cardinals κn, with ultrafilters Un.

Use conditions 〈α0, . . . , αn−1, Xn, . . .〉, αi ∈ κi , Xi ∈ Ui .

Adds a cofinal subset {αi | i < ω} of sup{κn | n < ω}, and
does nothing else.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Magidor forcing
Magidor forcing is a generalization of Prikry forcing,
designed to change cofinalities to λ > ω.

Requires a measurable cardinal κ with many measurable
cardinals below it. Will add, for example,
g = {αξ | ξ < ω1} increasing and cofinal.

Uses many local instances of Prikry forcing. In example
above, sup{αξ | ξ < ω} is measurable, and {αξ | ξ < ω}
Prikry generic for it.

Similarly above ω.

Another forcing due to Magidor is diagonal Prikry forcing.

Fix ω measurable cardinals κn, with ultrafilters Un.

Use conditions 〈α0, . . . , αn−1, Xn, . . .〉, αi ∈ κi , Xi ∈ Ui .

Adds a cofinal subset {αi | i < ω} of sup{κn | n < ω}, and
does nothing else.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Magidor forcing
Magidor forcing is a generalization of Prikry forcing,
designed to change cofinalities to λ > ω.

Requires a measurable cardinal κ with many measurable
cardinals below it. Will add, for example,
g = {αξ | ξ < ω1} increasing and cofinal.

Uses many local instances of Prikry forcing. In example
above, sup{αξ | ξ < ω} is measurable, and {αξ | ξ < ω}
Prikry generic for it. Similarly above ω.

Another forcing due to Magidor is diagonal Prikry forcing.

Fix ω measurable cardinals κn, with ultrafilters Un.

Use conditions 〈α0, . . . , αn−1, Xn, . . .〉, αi ∈ κi , Xi ∈ Ui .

Adds a cofinal subset {αi | i < ω} of sup{κn | n < ω}, and
does nothing else.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Magidor forcing
Magidor forcing is a generalization of Prikry forcing,
designed to change cofinalities to λ > ω.

Requires a measurable cardinal κ with many measurable
cardinals below it. Will add, for example,
g = {αξ | ξ < ω1} increasing and cofinal.

Uses many local instances of Prikry forcing. In example
above, sup{αξ | ξ < ω} is measurable, and {αξ | ξ < ω}
Prikry generic for it. Similarly above ω.

Another forcing due to Magidor is diagonal Prikry forcing.

Fix ω measurable cardinals κn, with ultrafilters Un.

Use conditions 〈α0, . . . , αn−1, Xn, . . .〉, αi ∈ κi , Xi ∈ Ui .

Adds a cofinal subset {αi | i < ω} of sup{κn | n < ω}, and
does nothing else.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Magidor forcing
Magidor forcing is a generalization of Prikry forcing,
designed to change cofinalities to λ > ω.

Requires a measurable cardinal κ with many measurable
cardinals below it. Will add, for example,
g = {αξ | ξ < ω1} increasing and cofinal.

Uses many local instances of Prikry forcing. In example
above, sup{αξ | ξ < ω} is measurable, and {αξ | ξ < ω}
Prikry generic for it. Similarly above ω.

Another forcing due to Magidor is diagonal Prikry forcing.

Fix ω measurable cardinals κn, with ultrafilters Un.

Use conditions 〈α0, . . . , αn−1, Xn, . . .〉, αi ∈ κi , Xi ∈ Ui .

Adds a cofinal subset {αi | i < ω} of sup{κn | n < ω}, and
does nothing else.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Magidor forcing
Magidor forcing is a generalization of Prikry forcing,
designed to change cofinalities to λ > ω.

Requires a measurable cardinal κ with many measurable
cardinals below it. Will add, for example,
g = {αξ | ξ < ω1} increasing and cofinal.

Uses many local instances of Prikry forcing. In example
above, sup{αξ | ξ < ω} is measurable, and {αξ | ξ < ω}
Prikry generic for it. Similarly above ω.

Another forcing due to Magidor is diagonal Prikry forcing.

Fix ω measurable cardinals κn, with ultrafilters Un.

Use conditions 〈α0, . . . , αn−1, Xn, . . .〉, αi ∈ κi , Xi ∈ Ui .

Adds a cofinal subset {αi | i < ω} of sup{κn | n < ω}, and
does nothing else.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Magidor forcing
Magidor forcing is a generalization of Prikry forcing,
designed to change cofinalities to λ > ω.

Requires a measurable cardinal κ with many measurable
cardinals below it. Will add, for example,
g = {αξ | ξ < ω1} increasing and cofinal.

Uses many local instances of Prikry forcing. In example
above, sup{αξ | ξ < ω} is measurable, and {αξ | ξ < ω}
Prikry generic for it. Similarly above ω.

Another forcing due to Magidor is diagonal Prikry forcing.

Fix ω measurable cardinals κn, with ultrafilters Un.

Use conditions 〈α0, . . . , αn−1, Xn, . . .〉, αi ∈ κi , Xi ∈ Ui .

Adds a cofinal subset {αi | i < ω} of sup{κn | n < ω},

and
does nothing else.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Magidor forcing
Magidor forcing is a generalization of Prikry forcing,
designed to change cofinalities to λ > ω.

Requires a measurable cardinal κ with many measurable
cardinals below it. Will add, for example,
g = {αξ | ξ < ω1} increasing and cofinal.

Uses many local instances of Prikry forcing. In example
above, sup{αξ | ξ < ω} is measurable, and {αξ | ξ < ω}
Prikry generic for it. Similarly above ω.

Another forcing due to Magidor is diagonal Prikry forcing.

Fix ω measurable cardinals κn, with ultrafilters Un.

Use conditions 〈α0, . . . , αn−1, Xn, . . .〉, αi ∈ κi , Xi ∈ Ui .

Adds a cofinal subset {αi | i < ω} of sup{κn | n < ω}, and
does nothing else.



Forcing with
ultrafilters

I.Neeman

Singular cardinal
combinatorics

Forcing

Use of ultrafilters

Recent results

Violating SCH

Recall: Easy to change κ2 for regular κ, without
collapsing cardinals. Difficult for singular κ.

Ultrafilters provide a way to singularize a cardinal, without
collapsing any cardinals.

Can be used to violate SCH.

Start with measurable κ. κ is regular. Force to get a
model M[G] satisfying 2κ = κ++. With some luck, κ still
measurable in M[G]. Then use Prikry forcing over M[G].
Get M[G][H] where:

1. 2κ = κ++.
2. Cof(κ) = ω.

Need to make sure κ remains measurable in M[G]. Must
start with stronger assumption on κ in M. Supercompact
certainly enough. Reduced by Woodin. Final optimal
result obtained by Gitik. Gives an equiconsistency.
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Violating SCH

Method: Using Prikry forcing to singularize a measurable
cardinal κ with 2κ = κ++.

Is this the only way?

Recall, tree property fails at κ+ if <κκ = κ. In particular,
fails at successors of measurable cardinals.

Singularizing preserves this.

If method above is only way to violate SCH, then failure of
SCH can only be obtained with failure of the tree property.

Question (Woodin, late 1980s)
Does failure of SCH at κ imply failure of the tree property
at κ+?

Intended to test whether the only way to violate SCH is by
singularizing a measurable cardinal κ where κ2 > κ+.
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Violating SCH
Question (Woodin, late 1980s)
Does failure of SCH at κ imply failure of the tree property
at κ+?

Intended to test whether the only way to violate SCH is by
singularizing a measurable cardinal κ where κ2 > κ+.

Turns our there are other ways (Gitik–Magidor, starting
with strong measurable where κ2 = κ+). Did not settle
test question.

Over time, question gained a life of its own.

Equivalent to: does tree property at κ+ imply SCH at κ?

Similar to other questions, eg, does PFA imply SCH?

(Both PFA and tree property at successors of singulars
are remnants of supercompacts, which imply SCH.)

Question on PFA answered in the positive.
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First cracks

Gitik–Sharon, investigating combinatorial properties
compatible with failure of the SCH, recently proved:

Theorem (Gitik–Sharon 2008)
(Assuming the existence of a supercompact cardinal.)
There is a model with a cardinal κ so that:

1. Cof(κ) = ω.

2. SCH fails at κ.

3. Weak square fails at κ+.

Weak square was considered a candidate for a principle
that would (a) follow from failure of SCH at κ, and (b)
imply failure of tree property at κ+.

Gitik–Sharon showed it does not follow from failure of
SCH.
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Related results

(Gitik–Sharon 2008, assuming the existence of a
supercompact cardinal.)
There is a model with a cardinal κ so that:

1. Cof(κ) = ω.

2. SCH fails at κ.

3. Weak square fails at κ+.

Theorem (Cummings–Foreman)
In the Gitik–Sharon model, in fact have

(3′) There is both a good scale and a bad scale on κ+.

(3)′ implies (3).

Extended by Sinapova to other cofinalities:

Theorem (Sinapova)
Can obtain the same, but with Cof(κ) = λ (arbitrary λ).
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More on Gitik–Sharon

Gitik–Sharon model constructed by Diagonal Prikry
forcing, using supercompactness ultrafilters Un on
Pκ(κ(+n)).

Resulting G singularizes κ and collapses λ = κ(+ω) to κ.
(κ+)M[G] = (λ+)M .

In starting model, κ2 = κ(+ω+2) = λ++.

In end model: κ2 = (λ++)M = (κ++)M[G].

Suppose τ > κ is a limit of supercompacts of cofinality ω.
Recall (Magidor–Shelah) tree property holds at τ+ if τ is
a limit of supercompacts.

Adapt Gitik–Sharon construction, replace λ = κ(+ω) by τ .

Try to preserve Magidor–Shelah result. (Two levels of
preservation. First, κ2 = τ++, second G. Both pose
difficulties.)
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Answer

Theorem (N.)
(Assuming the existence of ω supercompact cardinals.)
There is a model with a cardinal κ so that:

1. Cof(κ) = ω.

2. SCH fails at κ.

3. The tree property holds at κ+.

Question
Can this be done with additional collapsing, so that κ
becomes ℵω? Or even ℵω2?
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