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Abstract. Let o(κ) denote the Mitchell order of κ. We show how to reduce long games

which run to the first ordinal admissible in the play, to iteration games on models with a

cardinal κ so that (1) κ is a limit of Woodin cardinals; and (2) o(κ) = κ++. We use the

reduction to derive several optimal determinacy results on games which run to the first

admissible in the play.

Given a set C ⊂ R
<ω1 consider the following game, denoted Gadm(C): In

mega-round ξ players I and II alternate natural numbers as in Diagram 1, pro-
ducing together a real yξ = 〈yξ(n) | n < ω〉. They continue this way until
reaching the first ordinal α so that Lα[yξ | ξ < α] is admissible. At that point
the game ends. Player I wins if 〈yξ | ξ < α〉 ∈ C, and otherwise player II wins.

I y0(0) y0(2) . . . . . . yξ(0) yξ(2) . . . . . .

II y0(1) . . . yξ(1) . . .

Diagram 1. The game Gadm(C).

We develop in this paper methods for proving the determinacy of Gadm(C) for
appropriately definable C, from optimal large cardinal assumptions. The meth-
ods involve combining the techniques of Neeman [5] for proofs of determinacy of
long games, with the rank games of Neeman [6]. The large cardinals used depend
on the complexity of the payoff set C, but in all cases they involve a cardinal κ

which is a limit of Woodin cardinals, and has Mitchell order κ++. (The Woodin
cardinals are used in the proof in connection with the methods of Neeman [5],
while the measures are used in connection with the rank games.)

Section 2 presents the rank games that we need in this paper, and the relevant
results. Most interesting among them is Lemma 2.10 (whose proof makes use of
the measures involved in the large cardinal assumptions). Section 3 explains how
we reduce Gadm to an iteration game on models with sufficient large cardinals.
The actual proof of the reduction is spread over Sections 4, 5, 6, and 7. Finally
Section 8 uses the reduction to prove several optimal results concerning the
determinacy of Gadm.

This material is based upon work supported by the National Science Foundation under
Grant No. DMS-0094174.
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2 ITAY NEEMAN

§1. Codes. We begin by describing how to code positions in Gadm by reals.
By a position in Gadm we mean a sequence of reals 〈xξ | ξ < α〉 so that for

each β < α, Jβ [xξ | ξ < β] is not admissible. Jα[xξ | ξ < α] itself may or may
not be admissible. If it is, then we say that the position is terminal.

Remark 1.1. By Jβ [xξ | ξ < β] we mean the model J A
β where A is the predi-

cate defined by 〈ω · ξ + n,m〉 ∈ A iff xξ(n) = m. For sufficiently closed ordinals
β this is the same as Lβ [xξ | ξ < β]. The J hierarchy is more convenient for our
purposes, mostly for reasons of indexing: the ordinal height of J A

β is ω · β, and

these are precisely the ordinals we need to convert 〈xξ | ξ < β〉 into the predicate
A.

By a precode we mean a pair x = 〈w, f〉 where w is a linear order on ω and
f : ω → R is a partial function whose domain equals the domain of w.

Remark 1.2. Fix some recursive injection ϕ : LO×R
ω → R with the property

that (∀n) ϕ(w, f)↾n depends only on w↾n×n and f(0)↾n, . . . , f(n−1)↾n. Abusing
notation we often confuse ϕ(x) with x—for example we say that x and x∗ agree
to n just in case that ϕ(x)↾n = ϕ(x∗)↾n—and in general view precodes as reals.

We say that a precode x is wellfounded just in case that w is wellfounded.
We use o.t.(w) to denote the order type of w in this case. If w is wellfounded
then we think of 〈w, f〉 as coding a countable sequence ~x = 〈xξ | ξ < α〉 of reals,
where α = o.t.(w), and for each ξ < α, xξ is equal to f(n) for the unique n

whose order type in w is ξ. We refer to α as the length of x, denoted lh(x).
A wellfounded precode x = 〈w, f〉 for the sequence 〈xξ | ξ < α〉 induces

naturally an enumeration of all the elements of Jα[~x]. Let us make this precise.
Fix an injection (∗, . . . , ∗) of ω<ω into ω − {0}, and an enumeration {Fe}e<ω

of all finite compositions of rudimentary functions (these are the functions that
generate J A

γ+1 from J A
γ ∪ {JA

γ } for each γ and all A, see Jensen [1] or Zeman
[9, p.2]). We define a 1-1 coding function c : Jα[~x] → ω, working by induction
on γ < α.

Let a ∈ Jγ+1[~x] − Jγ [~x]. Then there exists an e < ω, an i < ω, and
m0, . . . ,mi < ω so that

a = Fe(c
−1(m0), . . . , c

−1(mi), Jγ [~x])

with c−1(m0), . . . , c
−1(mi) ∈ Jγ [~x]. Define c(a) to be the smallest n < ω which

equals (k, n, e,m0, . . . ,mi) where k < ω is the unique number whose order type
in w is γ, and e,m0, . . . ,mi satisfy the equation above.

Working by induction on γ ≤ α one can verify that a 7→ c(a) is a 1-1 function
from Jγ [~x↾γ] into ω. There is a dependence on ~x in the definition, since the
functions Fe are allowed to refer to A. But for a ∈ Jγ [~x] only ~x↾γ affects the
definition of c(a).

Let us next begin to consider admissibility. Let {φe}e<ω enumerate all the
formulae of set theory. If the structure Jα[~x] and all its initial segments are not
admissible then there exists an e < ω, an i < ω, and m0, . . . ,mi < ω so that:

• For every n < ω there exists an ordinal β < α so that

Jβ+1[~x↾β] |= φe[n, c−1(m0), . . . , c
−1(mi), ~x↾β].

We let βn denote the least such ordinal; and
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• The ordinals βn are increasing and cofinal in α.

The least l < ω which equals (e,m0, . . . ,mi) for a tuple satisfying the above is
said to meter the precode x.

Remark 1.3. It is easy to see that the same number l cannot meter both
x = 〈w, f〉 and a precode x′ for a strict initial segment of ~x.

For k ∈ dom(w) we use x↾k to denote the pre-code x′ = 〈w′, f ′〉, where w′ is
the restriction of w to numbers w–below k, and f ′ is the restriction of f to the
domain of w′. This is a precode for the sequence 〈xξ | ξ < γ〉 where γ is the
order type of k in w.

Definition 1.4. A code is a wellfounded precode x = 〈w, f〉, for a sequence
〈xξ | ξ < α〉 say, which satisfies the following additional requirements:

• 〈xξ | ξ < α〉 is a position in Gadm, meaning that for each β < α, Jβ [~x] is
not admissible; and

• For each k ∈ dom(w), k meters x↾k.

A terminal code is a code for a terminal position in Gadm.

Remark 1.5. For each β < α let kβ be the unique number whose order type in
w is β. Notice that the last condition in Definition 1.4 determines kβ uniquely,
from knowledge of 〈xξ | ξ < β〉 and 〈kξ | ξ < β〉: kβ must be the unique number
which meters the code obtained from these sequences.

If x is not terminal then there exists a unique l < ω which meters x, and by
Remark 1.3 this l is not in the domain of w. Thus given some y ∈ R we can
define a code x∗ = 〈w∗, f∗〉 for the position 〈xξ | ξ < α〉⌢〈y〉 as follows: let w∗

include w and the additional relations “l greater than j” for all j ∈ dom(w); and
let f∗ include f and the additional assignment l 7→ y.

Definition 1.6. We use x−−, y to denote the code x∗ defined above.

Remark 1.7. Let 〈xξ | ξ < α〉 be a position in Gadm. Then there exists
exactly one x which codes this position. This can be proved by induction on α.
Uniqueness follows from the previous remark, and existence is proved using the
definition of x−−, y above.

Using the last remark we can freely switch between codes and positions, and
use terminology defined for one to apply for the other. For example we say that
k meters a position 〈xξ | ξ < α〉 iff it meters the unique code for this position.

Let x be a code, say for the sequence 〈xξ | ξ < α〉. We say that l =
(e,m0, . . . ,mi) is expected at x, or that l is the expectation at ~x = 〈xξ | ξ < α〉,
just in case that the following conditions hold:

1. There exists n < ω such that:
(a) for each n̄ ≤ n there is β ≤ α so that

Jβ+1[~x↾β] |= φe[n̄, c−1(m0), . . . , c
−1(mi), ~x↾β].

Let βn̄ denote the least such ordinal.
(b) The ordinals βn̄ (n̄ ≤ n) are increasing, and βn = α.

2. l is the least number for which condition (1) holds.
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Remark 1.8. Recall that the injection (∗, . . . , ∗) : ω<ω → ω that we are us-
ing for the coding here maps ω<ω into ω − {0}. It follows from this that the
expectation at x is never equal to 0.

Claim 1.9. Let x be a code of limit length, for the position ~x = 〈xξ | ξ < α〉
say. Then Jα[~x] is admissible if and only if there is no fixed number l which is
expected at ~x↾β for cofinally many β < α. Moreover, if Jα[~x] is not admissible,
then l meters x if and only if (a) l is expected at ~x↾β for cofinally many β < α;
and (b) l is the least number for which (a) holds. ⊣

The last claim begins to deal with the relationship between a code of limit
length and its initial segments. Let us now see how codes converge to a terminal
code.

Definition 1.10. Let x and x∗ be codes, for the positions ~x = 〈xξ | ξ < α〉
and ~x∗ = 〈x∗

ξ | ξ < α∗〉 say. x∗ is an n–extension of x just in case that:

1. The sequence ~x∗ extends the sequence ~x;
2. For each η ∈ [α, α∗), the unique number which meters ~x∗↾η is greater than

or equal to n; and
3. For each η ∈ [α, α∗), the expectation at ~x↾η is greater than or equal to n.

Claim 1.11. If x∗ is an n–extension of x then x∗ and x agree to n. ⊣

Claim 1.12. Let x∗ be an n–extension of x, and suppose x∗ is not terminal.
Let m meter x∗ and let l be the expectation at x∗. Let y be a real. Suppose that
m ≥ n and l ≥ n. Then x∗−−, y is an n–extension of both x and x∗. ⊣

Claim 1.13. Let α be a limit ordinal. Let 〈yξ | ξ < α〉 be a position. For each
β ≤ α let xβ code 〈yξ | ξ < β〉. Then xβ → xα as β → α.

Proof. Let j < ω be given. We wish to show that a tail-end of 〈xη | η < α〉
agrees with xα to j.

Since each number m < j can only meter xη for one η < α, and since α is a
limit, we can find β < α so that for each η ∈ [β, α), the number which meters xη

is ≥ j. It follows from this that xη and xα agree to j, for every η ∈ [β, α). ⊣

Claim 1.14. Let α be a limit ordinal. Let 〈yξ | ξ < α〉 be a position. Let
〈αn | n < ω〉 be an increasing sequence of ordinals, cofinal in α. Let xn code
〈yξ | ξ < αn〉. Suppose that for each n > 0, xn is an n–extension of xn−1. Then
〈yξ | ξ < α〉 is terminal.

Proof. Since xn is an n–extension of xn−1, no number below n is expected
at 〈yξ | ξ < β〉 for β ∈ [αn−1, αn). It follows that there is no number l which is
expected at 〈yξ | ξ < β〉 for cofinally many β < α. By Claim 1.9, 〈yξ | ξ < α〉 is
terminal. ⊣

§2. Rank games. We describe here an adaptation of the rank games of [6].
We will need these adapted games and the related results later on.

Let κ be a cardinal. We work in V, though we will often refer to the forcing
col(ω,<κ) over V. We assume throughout this section that:

(∗) for every Z ⊂ Vκ+1 there exists a measure µ on κ so that Z ∈ Ult(V, µ).
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Definition 2.1. By a location we mean a pair 〈p, ẋ〉 so that p is a condition
in col(ω,<κ), and ẋ ∈ Vκ is a name which is forced by p to be a code. A location
〈p∗, ẋ∗〉 is an n–extension of the location 〈p, ẋ〉 just in case that p∗ ≤ p and p∗

forces ẋ∗ to be an n–extension of ẋ (see Definition 1.10).

Let f : Vκ → Vκ − {∅} be the bijection defined by f(x) = x if x 6∈ ω, and
f(x) = 1 + x if x ∈ ω.

Definition 2.2. Let W ⊂ Vκ+1. Let 〈p, ẋ〉 be a location. Define the (p, ẋ)–
section of W to be the set of all U ⊂ Vκ so that {〈p, ẋ〉}× (f ′′U ∪ {∅}) belongs
to W .

The definition lets us join Vκ many subsets of Vκ+1 into one, in the following
precise sense: Suppose that for each location 〈p, ẋ〉 we have associated a set
Wp,ẋ ⊂ Vκ+1. Then there is a set W ⊂ Vκ+1 so that for each location 〈p, ẋ〉,
Wp,ẋ is precisely equal to the (p, ẋ)–section of W . (This can be seen easily by
setting W = { {〈p, ẋ〉} × (f ′′U ∪ {∅}) | U ∈ Wp,ẋ}.)

Remark 2.3. The use of the bijection f : Vκ → Vκ − {∅} in Definition 2.2 is
needed for arguments of the kind given in the previous paragraph. It is important
there that ∅ is not put into W , and for this reason we replace U by f ′′U ∪ {∅}.
But from now on we ignore this, abusing notation and writing {〈p, ẋ〉}×U where
strictly speaking we should write {〈p, ẋ〉} × (f ′′U ∪ {∅}).

Definition 2.4. Let W ⊂ Vκ+1, let 〈p, ẋ〉 be a location. The basic rank

game associated to κ, W , and 〈p, ẋ〉 is played according to the following rules:

• Player I starts the game by playing U in the (p, ẋ)–section of W .
• Player II ends the game by playing some pair 〈κ̄, W̄ 〉 so that: κ̄ is an

inaccessible cardinal smaller than κ, and larger than the Von Neumann
ranks of p and ẋ; W̄ ⊂ Vκ̄+1; and 〈κ̄, W̄ 〉 ∈ U .

I U

II 〈κ̄, W̄ 〉

Diagram 2. The basic rank game.

Notice that the basic rank game ends very much as it started—with κ̄, W̄ ,
and 〈p, ẋ〉 in the same relationship as κ, W , and 〈p, ẋ〉—but with κ̄ smaller than
κ. κ̄ and W̄ are chosen by player II, but I can regulate the choice, through the
requirement 〈κ̄, W̄ 〉 ∈ U in the second item. U in turn is regulated by the initial
set W , and the location 〈p, ẋ〉.

Definition 2.5. Let W ⊂ Vκ+1. In the inverted rank game associated to
κ and W players I and II collaborate to create, among other things, a sequence
of locations 〈pn, ẋn〉 (n < ω) so that each n > 0, 〈pn, ẋn〉 is an n–extension of
〈pn−1, ẋn−1〉. We set W0 = W , let p0 = ∅ and let ẋ0 name the code for the
empty position. The game proceeds according to Diagram 3 and the following
format, beginning with round 1.
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• At the start of round n we have a location 〈pn−1, ẋn−1〉, and a set Wn−1 ⊂
Vκ+1.

• Player II plays a location 〈pn, ẋn〉 and a set Un ⊂ Vκ so that: pn forces
a value for ẋn↾n, 〈pn, ẋn〉 is an (n − 1)–extension of 〈pn−1, ẋn−1〉, and Un

belongs to the (pn, ẋn)–section of Wn−1.
• Player I plays µn and Wn so that µn is a measure on κ, Wn ⊂ Vκ+1, and
〈κ,Wn〉 belongs to iµn

(Un). This ends round n.

I
II

· · · · · · · · ·
µn,Wn

pn, ẋn, Un
· · · · · ·

Diagram 3. Round n in the inverted rank game.

Notice the reversal of roles in the inverted rank game, compared to the basic
rank game. In the inverted game it is player II who plays the set Un, while player
I must come up with Wn. Player I is better off here than player II was in the
case of the basic rank game, as she is not asked to play κ̄ < κ. Instead of having
to move below κ, she gets to send κ up through the ultrapower embedding by a
measure of her choice. (This is illustrated in Diagram 4.)

iµn
(Un)

κ+1 Wn

κ Un

iµn

EE

pn, ẋn

Diagram 4. Pushing Un up.

Definition 2.6. We use TW to denote the tree of the inverted rank game
associated to κ and W .

Definition 2.7. Let r be a position in TW . Let pn, ẋn, Un be the final move
for II in r. Define πW (r) to be the value of ẋn↾n forced by pn. πW is then
a map from TW into ω<ω. It gives rise to a Lipschitz continuous embedding
πW : [TW ] → R, sending ~r ∈ [TW ] to

⋃
n<ω πW (~r↾n). (In viewing πW (~r) as a real

we are identifying each precode x with its corresponding real, see Remark 1.2.)

A position r in the inverted rank game is called whole if it ends with a
complete round (as opposed to just moves for II in that round). If r is a



GAMES ENDING AT THE FIRST ADMISSIBLE IN THE PLAY 7

whole position, covering rounds 1 through n − 1 say, then we refer to the triple
〈pn−1, ẋn−1,Wn−1〉 (see the first item in Definition 2.5) as the ending of r.

Lemma 2.8. Let Ψ be a strategy for I in (at least the first n rounds of)
the inverted rank game associated to κ and W . Let r be a whole position in
the game, covering rounds 0 through n − 1 say, played according to Ψ. Let
〈pn−1, ẋn−1,Wn−1〉 be the ending of r.

Let 〈pn, ẋn〉 be an (n − 1)–extension of 〈pn−1, ẋn−1〉, with pn forcing a value
for ẋn↾n. Let G denote the basic rank game associated to κ, Wn−1, and 〈pn, ẋn〉.
Let Σ be a strategy for I in G.

Then there are Un, µn, and Wn so that:

1. r⌢〈pn, ẋn, Un, µn,Wn〉 is a legal extension of r by one round in the inverted
rank game, played according to Ψ; and

2. iµ(Un) and 〈κ,Wn〉 form a play of iµ(G), according to iµ(Σ).

Proof. Let Un be Σ’s move in G. Then let µn and Wn be the moves played
by Ψ following r⌢〈pn, ẋn, Un〉. ⊣

Lemma 2.8 illustrates the reversal of roles discussed above. It shows how
strategies for player I in the basic and inverted rank games can be combined, to
produce complete rounds in both: I’s move in the basic rank game G doubles as
a move for II in the inverted rank game, and I’s move in the inverted rank game
doubles as a move for II in the basic rank game (shifted by iµ).

We shall need also a dual to Lemma 2.8, dealing with the case that Ψ and Σ
are strategies for player II. This dual is much more intricate than Lemma 2.8
(whose proof was nothing more than a simple combination of Ψ and Σ). Let us
start with some definitions.

Work with some fixed W , and a fixed strategy Ψ for II in (at least the first n

rounds of) the inverted rank game associated to κ and W .
A position r in the inverted rank game is medial if the last round in r covers

only the moves for player II. Let r be a medial position, covering rounds 1
through the first half of round n say, and ending with the move 〈pn, ẋn, Un〉 for
II. We refer to 〈pn, ẋn〉 as the end location of r. We say that 〈pn+1, ẋn+1, Un+1〉
is reachable from r just in case that there exists a legal moves 〈µn,Wn〉 for I
following r, so that Ψ’s reply to r⌢〈µn,Wn〉 consists of pn+1, ẋn+1 and Un+1.
Otherwise we say that 〈pn+1, ẋn+1, Un+1〉 is unreachable from r.

Let unrch(r) be the set { {〈p, ẋ〉} × U | 〈p, ẋ〉 is a location, U ⊂ Vκ, and
〈p, ẋ, U〉 is unreachable from r}.

Claim 2.9. Let r be a medial position played according to Ψ. Then there does
not exist a measure µ so that 〈µ,unrch(r)〉 is a legal move for I in the inverted
rank game following r.

Proof. Suppose for contradiction that 〈µ,unrch(r)〉 is legal, and play this
move for I following r. Let 〈p, ẋ, U〉 be Ψ’s reply. The rules of the inverted rank
game (specifically the second item in Definition 2.5) are such that U belongs to
the (p, ẋ)–section of unrch(r). In other words {〈p, ẋ〉} × U belongs to unrch(r),
so 〈p, ẋ, U〉 is not reachable from r. But this is a contradiction, since there is a
move for I following r that causes Ψ to reply with p, ẋ, and U , namely the move
〈µ,unrch(r)〉. ⊣
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The next lemma is a parallel of Lemma 2.8 for the case of strategies for player
II.

Lemma 2.10. Let Ψ be a strategy for player II in (at least the first n rounds
of) the inverted rank game associated to κ and W . Let r be a medial position in
the game, played according to Ψ.

Let 〈p, ẋ〉 be a location. Let G denote the basic rank game associated to κ,
unrch(r), and 〈p, ẋ〉. Let Σ be a strategy for II in G.

Then there are µ, U , and r∗ so that:

1. r∗ is a medial extension of r by one round in the inverted rank game, played
according to Ψ; and

2. U and 〈κ,unrch(r∗)〉 form a play of iµ(G), according to iµ(Σ).

Proof. Let Y be the set:

{ 〈τ,B〉 | τ < κ, B ⊂ Vτ+1, and there does not exist any
U which is legal for player I in G and so that Σ’s
reply to U is 〈τ,B〉. }

Y is thus the set of pairs which are not played by Σ.

Claim 2.11. Y does not belong to the (p, ẋ)–section of unrch(r). (In other
words {〈p, ẋ〉} × Y does not belong to unrch(r).)

Proof. Suppose that it does. By the rules of the basic rank game, Y is then
a legal move for player I in G. Play this move, and let 〈τ,B〉 be the reply given
by Σ. The rules of the basic rank game, specifically the rules in the second item
of Definition 2.4, demand that 〈τ,B〉 ∈ Y . But this contradicts the definition
of Y , since there is a legal move U for I which causes Σ to reply with 〈τ,B〉,
namely U = Y . ⊣

Corollary 2.12. There is a medial extension r∗ of r by one round in the
inverted rank game associated to κ and W so that r∗ is according to Ψ, and so
that II’s (namely Ψ’s) final move in r∗ is 〈p, ẋ, Y 〉.

Proof. This is immediate from the last claim and the definition of unrch(r):
From the fact that {〈p, ẋ〉} × Y does not belong to unrch(r) it follows that
〈p, ẋ, Y 〉 is reachable from r, so there is a move for player I following r that
makes Ψ reply with 〈p, ẋ, Y 〉. ⊣

Fix r∗ as in the last corollary. Note that unrch(r∗) is a subset of Vκ+1. Using
the large cardinal assumption (∗) from the beginning of this section we can
therefore fix a measure µ on κ so that unrch(r∗) belongs to Ult(V, µ).

Claim 2.13. 〈κ,unrch(r∗)〉 does not belong to iµ(Y ).

Proof. Suppose that it does. The rules of the inverted rank game are such
that 〈µ,unrch(r∗)〉 is then a legal move for player I following r∗. But this is in
contradiction to Claim 2.9. ⊣

Let W ∗ denote unrch(r∗). By the choice of µ, we know that 〈κ,W ∗〉 belongs
to Ult(V, µ). But by the last claim, 〈κ,W ∗〉 does not belong to iµ(Y ). From the
definition of Y it follows that there is a legal move U for player I in iµ(G) which
causes iµ(Σ) to reply with 〈κ,W ∗〉. U and 〈κ,W ∗〉 = 〈κ,unrch(r∗)〉 then form a
play of iµ(G) according to iµ(Σ). This completes the proof of Lemma 2.10. ⊣
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Remark 2.14. It’s worthwhile pointing out the use of the fact that W ∗ belongs
to Ult(V, µ) in the previous paragraph (and through it the use of the large car-
dinal assumption (∗)). Without this fact we wouldn’t be able to derive anything
from the knowledge that 〈κ,W ∗〉 6∈ iµ(Y ): 〈κ,W ∗〉 could fail to belong to iµ(Y )
simply because it fails to belong to Ult(V, µ).

Remark 2.15. Notice that we had some freedom in the choice of µ during the
proof of Lemma 2.10: we just needed the measure µ to be strong enough that
unrch(r∗) belongs to Ult(M,µ). The statement of Lemma 2.10 can thus be
strengthened to say that: there exists a set A ⊂ Vκ+1, so that for any µ strong
enough that A ∈ Ult(M,µ), there are U and r∗ so that conditions (1) and (2) in
Lemma 2.10 hold.

We will use Lemmas 2.8 and 2.10 later on. Let us end this section with some
words on pairs reachable from the empty position.

Let X be a collection of subsets of Vκ+1. Suppose that for each W ∈ X we
have a strategy ΨW for player II in the inverted rank game associated to κ and
W . We say that 〈p, ẋ, U〉 is reachable from the empty position (relative to the
collection of strategies {ΨW }W∈X) if there exists some W ∈ X so that ΨW ’s
first move is precisely 〈p, ẋ, U〉. Otherwise we say that 〈p, ẋ, U〉 is unreachable.

We use unrch(∅) to denote the set { {〈p, ẋ〉}×U | 〈p, ẋ〉 is a location, U ⊂ Vκ,
and 〈p, ẋ, U〉 is unreachable from the empty position}.

The following Claim is a parallel of Claim 2.9 to the case of the empty position.

Claim 2.16. unrch(∅) does not belong to X.

Proof. Suppose for contradiction that unrch(∅) belongs to X. Then we have
a strategy Ψunrch(∅). Let 〈p, ẋ, U〉 be the first move played by this strategy. The
rules of the inverted rank game are such that U belongs to the (p, ẋ)–section of
unrch(∅). In other words {〈p, ẋ〉} × U belongs to unrch(∅). But this contradicts
the definition of unrch(∅), since there is W ∈ X so that ΨW ’s first move is
〈p, ẋ, U〉, namely W = unrch(∅). ⊣

§3. Outline. Let M be a model of a sufficiently large fragment of ZFC−, and
let κ be a cardinal of M so that:

(A) κ is a limit of Woodin cardinals in M ;
(B) For every Z ⊂ M‖κ + 1 in M there exists a measure µ ∈ M on κ, so that

Z ∈ Ult(M,µ); and
(C) M‖κ + 1 is countable in V.

Condition (B) is simply the relativization of the large cardinal assumption (∗)
of the previous section, to M .

In the next few sections we will define game trees D and E in M , together with
embeddings ρ : D → ω<ω and χ : E → ω<ω (giving rise to Lipschitz embeddings,
which we also denote ρ and χ, from [D] and [E] respectively, into R). The results
below are stated with reference to these trees and embeddings.

Let Ψ be a strategy for player I on D. Suppose that Ψ is close to M , in the
sense that for every n < ω, the restriction of Ψ to positions of length n belongs to
M . Note that in this case there is a natural way to apply elementary embeddings
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on M to Ψ. More precisely, let Ψn be the restriction of Ψ to positions of length
n. Given an embedding j : M → M∗, we use j(Ψ) to mean

⋃
n<ω j(Ψn).

Define Ĝadm(Ψ,M, κ), or Ĝadm for short, to be played according to the rules
below, starting with mega-round 1.

At the start of mega-round α for α a successor ordinal, we have a sequence
of reals 〈yξ | ξ < α − 1〉, a model Mα which is an iterate of M = M1, and an
iteration embedding j1,α : M → Mα. The mega-round itself is played as follows:

1. To start the two players alternate playing natural numbers in the usual
fashion, producing together the real yα−1.

2. Player I then plays a measure µα in Mα and a length ω iteration tree T α

on Ult(Mα, µα).
3. Player II ends the mega-round playing a cofinal branch bα through T α.

We let Mα+1 be the direct limit along bα, let jα,α+1 : Mα → Mα+1 equal
jbα ◦ iµα where iµα is the ultrapower embedding by µα and jbα is the direct
limit embedding along bα, define the remaining embeddings jζ,α+1 (for
ζ < α) by composition, and pass to the next mega-round.

At the start of mega-round α for α a limit ordinal we have a sequence of reals
〈yξ | ξ < α〉 and an iteration 〈M ξ, jζ,ξ | ζ ≤ ξ < α〉 of M1 = M . Let Mα be the
direct limit of this iteration, and let jζ,α be the direct limit maps. Mega-round
α is played according to rules (2) and (3) above, giving rise to Mα+1 and j1,α+1.

Ĝadm continues until reaching the first α so that Jα[yξ | ξ < α] is admissible.
At that point the game ends. We let x code the sequence 〈yξ | ξ < α〉, let M∗

denote Mα, and let j : M → M∗ denote j1,α.

Player I wins the run of Ĝadm described above just in case that there exists

an infinite branch ~d through j(D), so that:

(P1) ~d is according to j(Ψ); and

(P2) j(ρ)(~d) is equal to x.

In other words, player I wins just in case that there is a play according to j(Ψ),
which projects to x.

Let Ω be a strategy for II on E. Suppose that Ω is close to M . Define

Ĥadm(Ω,M, κ), or Ĥadm for short, to be played according to the rules of Ĝadm

above, except that in Ĥadm player II plays the measures µα and the iteration

trees T α, and player I plays the branches bα. A run of Ĥadm is won by player II
just in case that there exists an infinite branch ~e through j(E), so that:

(Q1) ~e is according to j(Ω); and
(Q2) j(χ)(~e) is equal to x.

Notice that the payoff here is for player II. It mirrors precisely the payoff for I

in Ĝadm.

In the next few sections we will prove the following three lemmas on the games

Ĝadm and Ĥadm:

Lemma 3.1. Let Ψ be a strategy for player I in D, and suppose that Ψ is close

to M . Then player I has a winning strategy in the game Ĝadm(Ψ,M, κ).
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Lemma 3.2. Let Ω be a strategy for player II in E, and suppose that Ω is close

to M . Then player II has a winning strategy in the game Ĥadm(Ω,M, κ).

Lemma 3.3. Let Ψ be a strategy for player II in D, and let Ω be a strategy
for player I in E. (Note the reversal compared to the previous lemmas: here we
take a strategy for II in D, and for I in E.) Suppose that Ψ and Ω are close to

M . Then there is (in V) an infinite branch ~d through D, and an infinite branch
~e through E so that:

• ~d is according to Ψ;
• ~e is according to Ω; and

• ρ(~d) = χ(~e).

In the next section we define D and ρ. In Section 5 we prove Lemma 3.1. In
Section 6 we briefly say how to mirror the work on D, ρ, and Lemma 3.1, so as
to obtain E, χ, and Lemma 3.2. In Section 7 we prove Lemma 3.3.

Finally in Section 8 we use the three lemmas to prove determinacy for long
games ending at the first admissible. The reader may skip directly to this section,
to see right away how the lemmas are used.

§4. Basic definitions. We work with M and κ which satisfy the assumptions
of the previous section. Our goal is to define the tree D and the map ρ : D →
ω<ω.

Let κ̄ < κ. Let δ be the first Woodin cardinal of M above κ̄. For expository
simplicity fix a col(ω, δ)–generic g over M . Let Ȧ be a col(ω, δ)–name for a set of

codes in M [g]. Let Ȧ′ be the canonical name for (M‖δ)ω × Ȧ[g]. Let X = M‖κ̄.

By the auxiliary games map for κ̄ and Ȧ we mean the auxiliary games map
associated to Ȧ′, δ, and X, as defined in Neeman [5, §1A]. We refer the reader
to Chapter 1 of [5] for complete details. We will use the results of this chapter
in the proofs here.

Remark 4.1. In the definition above we are as usual viewing codes as reals,
through the identification x 7→ ϕ(x), see Remark 1.2. Both ϕ and the auxiliary
games map are continuous in such a way that the rules for the first n rounds in
A[x] depend only on x↾n (or equivalently on ϕ(x)↾n).

Definition 4.2. Let x be a code in a small generic extension of M . A rank

progression wrt x consists of finite sequences 〈κi,Wi, pi, ẋi | i ≤ n〉 and 〈Ȧi, Pi |
0 < i ≤ n〉 satisfying the following conditions:

1. κ0 = κ and κi+1 < κi for each i < n;
2. Wi ⊂ Vκi+1;
3. Each 〈pi, ẋi〉 is a location belonging to Vκi

. 〈p0, ẋ0〉 is the empty location
(meaning that p0 = ∅ and ẋ0 names the code for the empty position), and
for each i > 0, 〈pi, ẋi〉 is an (i − 1)–extension of 〈pi−1, ẋi−1〉.

4. For each i, pi forces the value of ẋi↾i to be precisely x↾i;
5. Ȧi is a col(ω, δi)–name for a set of codes, where δi is the first Woodin

cardinal of M above κi; and
6. Pi is a finite position (consisting of complete rounds) in Ai[x], where Ai is

the auxiliary games map for κi and Ȧi.
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For short we use {κi,Wi, pi, ẋi, Ȧi, Pi}i≤n to denote the rank progression. We
refer to n as the length of this progression.

By a rank progression we mean a sequence {κi,Wi, pi, ẋi, Ȧi, Pi}i≤n which
satisfies the conditions above for some x. A rank progression fits x if it is a rank
progression wrt x. Notice that only x↾max{n, lh(P1), . . . , lh(Pn)} is relevant
to Definition 4.2. If x and x∗ agree to max{n, lh(P1), . . . , lh(Pn)}, then x fits

{κi,Wi, pi, ẋi, Ȧi, Pi}i≤n iff x∗ does.

Definition 4.3. Let ~I = {κi,Wi, pi, ẋi, Ȧi, Pi}i≤n be a rank progression of
length n.

• By ~I↾k we mean the rank progression {κi,Wi, pi, ẋi, Ȧi, Pi}i≤k.
• Let j ≤ n be least so that j ≥ k or lh(Pj) > k. (If no such j exists let j = n.)

By ~I‖k we mean the rank progression {κi,Wi, pi, ẋi, Ȧi, P
′
i}i≤j where P ′

i =
Pi for i < j and P ′

j = Pj↾k. (Note that max{j, lh(P ′
1), . . . , lh(P ′

j)} ≤ k. So

if x fits ~I, and x∗ agrees with x to k, then x∗ fits ~I‖k.)

Let ζ be an ordinal, let x be a code, and let I = {κi,Wi, pi, ẋi, Ȧi, Pi}i≤n be
a rank progression. Let δ < κ be a Woodin cardinal of M .

We now work to define:

(A) A col(ω, δ)–name Ȧ(δ, ~I, ζ) for a set of codes;

(B) A meaning for the statement “(x, ~I, ζ) is good for I”; and

(C) A game G(x, ~I, ζ).

We make the definitions by simultaneous induction on ζ.

Definition 4.4. Define Ȧ(δ, ~I, ζ) to be the canonical name in col(ω, δ) for the

set of codes x so that: x fits ~I, and player I has a winning strategy in G(x, ~I, ζ).

Definition 4.5. Suppose that x fits ~I. We define G(x, ~I, ζ) under this as-

sumption. Let l be the expectation at x. G(x, ~I, ζ) starts with player I playing
some ordinal ζ∗ < ζ. The game continues according to one of the following cases.

Case 1. If n < l. In this case the players proceed according to Diagram 5.
Player I plays a location 〈pn+1, ẋn+1〉 in Vκn

which is an n–extension of 〈pn, ẋn〉,
and so that pn+1 forces the value of ẋn+1↾n + 1 to be precisely x↾n + 1. I and
II then play the basic rank game associated to κn, Wn, and 〈pn+1, ẋn+1〉. II’s
moves give rise to κn+1 and Wn+1.

At this point the game ends. Let δn+1 be the first Woodin cardinal of M

above κn+1. Let Ȧn+1 be the name Ȧ(δn+1, ~I, ζ∗). (This we can do inductively

since ζ∗ < ζ.) Let Pn+1 be the empty position in An+1[x]. Let ~I∗ be the rank

progression, of length n+1, which extends ~I with the objects (κn+1, Wn+1, etc.)
determined above.

Player I wins the run of G(x, ~I, ζ) described above just in case that (x, ~I∗, ζ∗)
is good for I. (Here again we apply induction, using the fact that ζ∗ < ζ.) ⊣

Case 2. If n ≥ l. In this case the game proceeds according to Diagram 6.
Let i = lh(Pl). I and II play round i in Al[x] following the position Pl. Let

P ∗
l = Pl−−, ai−I, ai−II be the position they generate. Let ~I ′ be the result of

replacing Pl in ~I by P ∗
l (and not changing anything else), and let ~I∗ = ~I ′↾l.
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Player I wins the run of G(x, ~I, ζ) described above just in case that (x, ~I∗, ζ∗) is
good for I. ⊣

I ζ∗ 〈pn+1, ẋn+1〉 Un+1

II κn+1,Wn+1

Diagram 5. The game G(x, ~I, ζ) if n < l.

I ζ∗ ai−I

II ai−II

Diagram 6. The game G(x, ~I, ζ) if n ≥ l.

Remark 4.6. Notice that l, the expectation at x, is not equal to 0 by Remark
1.8. Thus in case 2 we know that 0 < l ≤ n, and the reference to Al and Pl is

valid. (The rank progression ~I includes the objects Ȧi and Pi for 0 < i ≤ n, see
Definition 4.2.)

Finally, we define the meaning of the statement (x, ~I, ζ) is good for I. Let m

meter x. Let κ̄ < κm. Let δ̄ be the first Woodin cardinal of M above κ̄. Let Ȧκ̄

be Ȧ(δ, ~I‖m, ζ).1 Let Aκ̄ be the auxiliary games map for κ̄ and Ȧκ̄.

Definition 4.7. Let G∗(κ̄, x, ~I, ζ) be the game in which players I and II col-
laborate to produce a real y, and at the same time play moves in Aκ̄[x−−, y].
The first player to violate any of the rules of Aκ̄[x−−, y] loses. Infinite runs are
won by player II. The format of the game is displayed in Diagram 7.

Note that in defining the game we use the continuity of the map Aκ̄: the rules
for round n in Aκ̄[x−−, y] depend only on (x and) y↾n + 1.

Definition 4.8. (x, ~I, ζ) is good for I just in case that there are arbitrarily

large κ̄ below κm so that player I has a winning strategy in G∗(κ̄, x, ~I, ζ).

I y(0) a0−I a1−I . . .

II a0−II y(1) a1−II

Diagram 7. The game G∗(κ̄, x, ~I, ζ).

We have now completed the definitions indicated in items (A)–(C) above.
Recall that our goal is to define the tree D and the projection ρ. Let 〈ζ

L
, ζ

H
〉 be

the lexicographically least (minimizing first over ζ
H
) pair of local indiscernibles

for κ in M , see Neeman [5, Definition 1A.15]. Let x0 be the code for the empty

1~I‖m is defined also if lh(~I) < m, see Definition 4.3.
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position. For each W ⊂ Vκ+1 let ~IW be the rank progression of length 0 deter-
mined by the assignment W0 = W .

Definition 4.9. W is good for I just in case that (x0, ~IW , ζ
L
) is good for I.

Definition 4.10. Define D to be the tree
⋃

W is good for I

TW ,

and define ρ : D → ω<ω to be
⋃

W is good for I

πW .

(See Definitions 2.6 and 2.7 for the definitions of TW and πW .)

§5. A proof of Lemma 3.1. We work in this Section with the tree D and
the projection ρ of the previous section. In addition to these objects let us fix
Ψ, a strategy for I on D which is close to M . We work to prove that player I

has a winning strategy in Ĝadm(Ψ,M, κ).
Let 〈ζ

L
, ζ

H
〉 be the least pair of local indiscernibles for κ in M .

Definition 5.1. Let x be a code. A potential expanded rank progres-

sion (perp for short) wrt x consists of sequences 〈κi,Wi, pi, ẋi,Mi, ri, ζi | i ≤ n〉
and 〈Ȧi,Pi, µi | 0 < i ≤ n〉 satisfying conditions (1)–(8) below.

1. Mn = M ;
2. Each ri belongs to Mi;
3. ζ0 = ζ

L
, and ζi < ζi−1 for i > 0;

4. µi is a measure in Mi with critical point κi;
5. Ȧi is a col(ω, δi)–name for a set of codes in M∗

i , where M∗
i = Ult(Mi, µi),

and δi is the first Woodin cardinal of M∗
i above κi;

6. Pi is a position in Ai-piv[x], played according to σi-piv[x], where Ai-piv is

the pivot games map associated to Ȧi, δi, and X = M∗
i ‖κi, and σi-piv is the

corresponding pivot strategies map (see Neeman [5, §1C] for the definitions)
in M∗

i ;
7. Mi−1 is the final model given by the position Pi.

Pi includes a finite iteration tree Ti on M∗
i , with its final model Mi−1. Let

hi : M∗
i → Mi−1 be the embedding given by this tree. Pi includes further a

position in hi(Ai)[x]. Let Pi denote this position.

8. The sequence ~I = {κi,Wi, pi, ẋi, hi(Ȧi), Pi}i≤n is a rank progression wrt x,
in the sense of M0.

For short we denote the perp by ~E = {κi,Wi, pi, ẋi, Ȧi,Pi,Mi, µi, ri, ζi}i≤n. We

use ~I( ~E) to denote the rank progression in condition (8). We refer to n as the

length of ~E. By ~E|k we mean {κi,Wi, pi, ẋi, Ȧi,Pi,Mi, µi, ri, ζi}i≤k. This is a
perp over Mk.

Remark 5.2. Each of the maps σi-piv above takes two arguments: the real x

and a function ̺ : ω → M∗
i ‖δi + 1. ̺ must be onto M∗

i ‖δi + 1 for infinite runs
according to σi-piv[̺, x] to produce pivots, see Neeman [5, Lemma 1C.5]. We are
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suppressing the mention of ̺ completely here. Its choice is a matter of book-
keeping, which the careful reader will fold into the constructions below. Let us
only point out that it is in the choice of these maps that condition (C) at the
start of Section 3 (stating that M‖κ + 1 is countable in V) is used.

The potential expanded rank progression induces embeddings ji,i−1 : Mi →
Mi−1 (obtained by composing the ultrapower embedding by µi, to pass from Mi

to M∗
i , with the embedding hi : M∗

i → Mi−1). By composition then we obtain
embeddings jk,l : Mk → Ml for l ≤ k ≤ n.

Definition 5.3. Let ~E = {κi,Wi, pi, ẋi, Ȧi,Pi,Mi, µi, ri, ζi}i≤n be a perp

over M , and let ~I be as in condition (8) of Definition 5.1. We make the following
definitions:

• By µ( ~E) we mean µn, by δ( ~E) we mean δn, by r( ~E) we mean rn, by P( ~E)

we mean Pn, by Apiv( ~E) we mean An-piv, and by ζ( ~E) we mean ζn.

• We say that (x, ~E) is good for I just in case that (x, ~I, ζn) is good for I in
M0.

• By G(x, ~E) we mean the game G(x, ~I, ζn), as computed in M0.

Let µ be a measure on κ in M . Let iµ : M → Ult(M,µ) be the ultrapower
embedding by µ. Let δ be the first Woodin cardinal of Ult(M,µ) above κ. We
make the following additional definitions.

• By Ȧ(µ, ~E) we mean the name Ȧ(δ, iµ(~I), iµ(ζn)), as computed in iµ(M0).

• By G∗(x, µ, ~E) we mean the game G∗(κ, x, iµ(~I), iµ(ζn)), as computed in
iµ(M0).

More generally, we use G∗(x, µ, ~E, τ) to denote G∗(τ, x, iµ(~I), iµ(ζn)), and use

Ȧ(µ, ~E, τ) to denote Ȧ(δτ , iµ(~I), iµ(ζn)) where δτ is the first Woodin cardinal of
iµ(M0) above τ .

Definition 5.4. An expanded rank progression (erp for short) wrt x is

a potential expanded rank progression ~E wrt x which satisfies the following
conditions (in addition to the conditions in Definition 5.1) for each i ≤ n:

1. κi is precisely equal to jn,i(κ);
2. ri is a whole position in jn,i(D), played according to jn,i(Ψ);
3. The ending of ri is precisely 〈pi, ẋi,Wi〉;
4. ri belongs to the range of jn,i, and (if i < n) ri+1 strictly extends j−1

i+1,i(ri);

5. ~E|i belongs to the range of jn,i; and

6. (for i > 0) Ȧi is precisely equal to Ȧ(δi, ~I↾i−1, ζi−1) as computed over M0,
where δi is the first Woodin cardinal of M0 above κi.

Definition 5.5. By ~E↾k we mean j−1
n,k( ~E|k). (The pullback by jn,k makes

sense using condition (5) in Definition 5.4.) We say that ~E∗ extends ~E just in

case that ~E∗↾ lh( ~E) is equal to ~E. We say that ~E∗ and ~E agree to k just in case

that ~E∗↾k = ~E↾k.

Claim 5.6. Let x be a code. Suppose that 〈 ~En | n < ω〉 is a sequence of

expanded rank progressions wrt x, so that lh( ~En) = n and for each n > 0, ~En
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extends ~En−1. Then there exists an infinite branch ~r through D so that: ~r is
according to Ψ, and ρ(~r) = x.

Proof. Let ~r =
⋃

n<ω r( ~En). Chasing through the definitions we see that ~r

is an infinite branch through D, played according to Ψ. From condition (3) in
Definition 5.4 and condition (4) in Definition 4.2 it follows that ρ(~r) = x. ⊣

Definition 5.7. Let ~E = {κi,Wi, pi, ẋi, Ȧi,Pi,Mi, µi, ri, ζi}i≤n be an ex-

panded rank progression. By the nth level of ~E we mean the objects κn,

Wn, . . . ,Pn, . . . , ζn. ~E thus consists of its nth level and the objects in ~E|n − 1.
Recall that Pn includes an iteration tree, leading to the model Mn−1 and giving
rise to the embedding jn,n−1 defined above. We say that the nth level leads to
Mn−1 and jn,n−1.

Definition 5.8. Let ~E = {κi,Wi, pi, ẋi, Ȧi,Pi,Mi, µi, ri, ζi}i≤n be an ex-
panded rank progression. Let P∗ be a position in An-piv, extending Pn by
one round. Let T ∗ and T be the iteration tress in P∗ and Pn respectively. T ∗

then extends T . Let h be the embedding, given by T ∗, from the final even model
of T to the final even model of T ∗. Let ζ∗ be an ordinal smaller than h(ζn).

Define the line extension of ~E by P∗ and ζ∗ to be the progression ~E∗ de-
termined by the conditions:

• The nth level of ~E∗ consists of the objects in the nth level of ~E, with Pn

replaced by P∗ and ζn replaced by ζ∗; and

• ~E∗|n − 1 is equal to h( ~E|n − 1).

The shift by h in the last item is necessary: The nth line in ~E and the nth line

in ~E∗ lead to different models. h embeds the former into the latter.

Claim 5.9. Let x be a code. Let ~Ek (k < ω) be a sequence of expanded rank

progressions wrt x, so that, for each k > 0, ~Ek is a line extension of ~Ek−1.

Let µ = µ( ~E0) and let δ = δ( ~E0) (these are the same as µ( ~Ek) and δ( ~Ek) for

each k). Let n = lh( ~E0) (this is the same as lh( ~Ek) for each k). Let ~F = ~E0↾n−1

(this is the same as ~Ek↾n − 1 for each k).
Then there is a length ω iteration tree T on Ult(M,µ), so that for every

wellfounded cofinal branch b through T :

• Player I has a winning strategy in G(x, (jb ◦ iµ)(~F )) (as defined over Mb),

where Mb and jb are the direct limit model and embedding along b.

Proof. Let P∞ =
⋃

k<ω P( ~Ek). P∞ is then an An–pivot for x over Ult(M,µ).
(See [5, Lemma 1C.5]. It is here that Remark 5.2 comes into play. We continue
to suppress the function ̺ involved.)

Let T be the iteration tree given by P∞.

Suppose b is a cofinal wellfounded branch through T . The ordinals ζ( ~Ek) wit-
ness that the even branch of T is illfounded. (This follows from the requirement
ζ∗ < h(ζn) in Definition 5.8.) So b must be an odd branch.

Since P∞ is a An–pivot for x, we know that there is a col(ω, δ)–generic h over
Ult(M,µ) so that:

• x belongs to jb(Ȧ(µ, ~F ))[h].
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(We already folded into this the fact that Ȧn is equal to Ȧ(µ, ~F ), given by

condition (6) in Definition 5.4 and the definition of ~F here.) If follows from
this, Definition 5.3, and Definition 4.4, that player I has a winning strategy in

G(x, (jb ◦ iµ)(~F )). ⊣

Definition 5.10. Let ~E = {κi,Wi, pi, ẋi, Ȧi,Pi,Mi, µi, ri, ζi}i≤n be an ex-
panded rank progression. Let m < ω be given. Let j ≤ n be least so that

j ≥ m or lh(Pj) > m. (If no such j exists then let j = n.) Define ~E‖m to be

the expanded rank progression obtained from ~E↾j by further restricting Pj to
Pj↾m.

Recall that our goal here is to produce a winning strategy for player I in

the game Ĝadm(Ψ,M, κ). Fix an imaginary opponent willing to play for II. We
describe how to play against this opponent, and win. The description as usual
takes the form of a construction, joint with the opponent, of a run of the game.
We construct in mega-rounds. At the start of mega-round α, for α a successor
ordinal, we have:

(A) A position 〈yξ | ξ < α − 1〉 in Gadm. Let xα−1 code this position.
(B) An iterate Mα of M = M1 and an iteration embedding j1,α : M → Mα.

(C) An expanded rank progression ~Eα, over Mα, wrt xα−1 if α is a successor,
and wrt xα if α is a limit.

Inductively we make sure that:

(i) xα−1 belongs to a generic extension of Mα by a poset of size less than
κα = j1,α(κ).

(ii) (xα−1, ~Eα) is good for I, over Mα.
(iii) Let λ be a limit. Let k < ω. Suppose that for all sufficiently large α < λ,

the expectation at 〈yξ | ξ < α〉 is larger than k. Then for all sufficiently

large α < λ, ~Eλ and jα,λ( ~Eα) agree to k.

Let us now begin the construction for mega-round α. Let m = mα−1 meter
xα−1. Let µα be some measure on κα in Mα.

From the fact that (xα−1, ~Eα) is good for I it follows that, for some τ between

κα and iµα(κα), player I has a winning strategy in G∗(xα−1, µα, ~Eα, τ). (In
fact there are arbitrarily large such τ below iµα(κα).) By condition (i) the
game belongs to a small (relative to κα) generic extension of Ult(Mα, µα) and
since the game is open we can find a winning strategy for I in this extension.
Using this strategy, a construction (joint with the imaginary opponent) of the
kind done in [5] (for example in Section 1E and in Chapter 2) produces a real
yα−1, an iteration tree T α on Ult(Mα, µα), and a cofinal branch bα through the
tree T α, so that, letting hα be the direct limit embedding along bα and setting
xα = xα−1−−, yα−1, we get:

(iv) There is a generic gα so that xα belongs to hα(Ȧ(µα, ~Eα‖m, τ))[gα].

Let ~Fα+1 = jα,α+1( ~Eα‖m). Using the definitions in Section 3 it follows from
condition (iv) that:

(v) Player I has a winning strategy in G(xα, ~Fα+1), as computed over Mα+1.

Let l be the expectation at xα. Let n = nα = lh(~Fα+1). Note that:
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(vi) nα is either equal to lh( ~Eα), or else it is least so that nα ≥ mα−1 or

lh(P ( ~Eα↾nα)) > mα−1.

We now divide the construction into two cases, depending on whether l > n

or l ≤ n. (These two cases correspond to the two cases in Definition 4.5.)

Case 1. If n < l. G(xα, ~Fα+1) is then played according to the rules of case
1 in Definition 4.5. I’s strategy in the game, and the strategy j1,α+1(Ψ) for I
in j1,α+1(D), combine through Lemma 2.8 to produce ζn+1, pn+1, ẋn+1, Un+1,

µn+1, and Wn+1. (These are all the objects involved in moves in G(xα, ~Fα+1)

and moves in j1,α+1(D) following the position r(~Fα+1).) These objects (and the
assignment Pn+1 = ∅) define an expanded rank progression, of length nα + 1,

extending ~Fα+1. Let ~Eα+1 be this progression. We have:

(a) ~Eα+1 extends jα,α+1( ~Eα‖m), where m meters xα.

Moreover, the winning condition in Definition 4.5 is such that:

(b) (xα, ~Eα+1) is good for I, over Mα+1.

We can now pass to mega-round α + 1. ⊣ (Case 1)

Case 2. If n ≥ l. G(xα, ~Fα+1) is then played according to the rules of case
2 in Definition 4.5. I’s strategy in the game combines with the pivot strategies

map corresponding to Al to precisely produce a line-extension of ~Fα+1↾l. Let
~Eα+1 be this extension. For the record let us note then that:

(c) ~Eα+1 is a line extension of jα,α+1(( ~Eα‖m)↾l).

The payoff in case 2 of Definition 4.5 is such that:

(d) (xα, ~Eα+1) is good for I, over Mα+1.

This allows us to pass to mega-round α + 1. ⊣ (Case 2)

For the record let us note that:

(e) Pj( ~Eα+1) can be longer than Pj( ~Eα) only if j is expected at xα.

Suppose now that our construction has reached a limit mega-round λ. We
have, through the work in the previous mega-rounds, a position 〈yξ | ξ < λ〉,
and an iteration 〈M ξ, jζ,ξ | 1 ≤ ζ ≤ ξ < λ〉. Let Mλ be the direct limit of this
iteration, and let jζ,λ for ζ < λ be the direct limit embeddings. Let xλ code
〈yξ | ξ < λ〉.

The position 〈yξ | ξ < λ〉 may, or may not, be terminal in Gadm. Suppose first
that it is not terminal, and let l meter 〈yξ | ξ < λ〉. l is then the least number
which is expected at xα for cofinally many α < λ.

Let mα be the number which meters xα. Using conditions (iii), (vi), (a), (c),
and (e), using the fact that l is the least number expected at xα for cofinally
many α < λ, and using the fact that mα → ∞ as α → λ, we can find an
increasing sequence 〈αn | n < ω〉 of successor ordinals, cofinal in λ, so that:

• lh( ~Eαn) = l for each n; and

• for each n > 0, ~Eαn is a line-extension of jαn−1,αn( ~Eαn−1).

Moreover we can arrange that xαn−1 and xλ are in sufficient agreement that ~Eαn

is an expanded rank progression wrt xλ. (Notice that the codes xαn−1 converge
to xλ, by Claim 1.13.)
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Let ~E∗
n = jαn,λ( ~Eαn). Then each ~E∗

n is an expanded rank progression wrt xλ

over Mλ, and for each n > 0, ~E∗
n is a line extension of ~E∗

n−1. We are therefore
in a position to apply Claim 5.9.

Let µλ = µ( ~E∗
0 ). Let T λ be the iteration tree given by Claim 5.9. We play

these objects for I in mega-round λ. Let bλ be the response given by the imag-
inary opponent (playing for II). Let Mλ+1 be the direct limit along bλ, and let
jbλ be the direct limit embedding. Set jλ,λ+1 = jbλ ◦ iµλ .

Let ~Eλ = ~E∗
0↾l − 1 (this is the same as ~E∗

n↾l − 1 for each n). This assignment
satisfies condition (iii) above. This can be seen using the same condition below
λ, using conditions (vi), (a), (c), and (e), using the fact that mα → ∞ as α → λ,
and using the fact that l is the least number expected cofinally often below λ.

If Mλ+1 is illfounded then player II loses Ĝadm, and our job is done. So we
may assume that bλ leads to a wellfounded direct limit. By Claim 5.9 then:

• Player I has a winning strategy in G(xλ, jλ,λ+1( ~Eλ)), as computed in Mλ+1.

Let ~Fλ+1 = jλ,λ+1( ~Eλ). We can now continue following the construction in the
successor mega-round, from condition (v) onward.

The description above handles the construction of a limit mega-round λ in the
case that 〈yξ | ξ < λ〉 is not terminal in Gadm. Suppose now that 〈yξ | ξ < λ〉

is terminal. Ĝadm(Ψ,M, κ) ends at this point. It remains to check that it ends
with a victory for player I.

For each α < λ let mα meter 〈yξ | ξ < α〉 and let lα be the expectation
at 〈yξ | ξ < α〉. From the fact that 〈yξ | ξ < λ〉 is terminal it follows that
both mα → ∞ and lα → ∞ as α → λ. Using conditions (iii), (vi), (a), (c),

and (e) above it follows that for each n < ω, there is α < λ, so that jα,η( ~Eα)

and ~Eη agree to n for all η ∈ [α, λ). Let αn denote the least such n. Let
~En = jαn,λ( ~Eαn↾n). Then each ~En is an expanded rank progression for xλ over

Mλ (we are using here the fact that xα → xλ as α → λ), and ~En extends ~En−1

for each n > 0. Using Claim 5.6 it follows that there exists an infinite branch ~r

through j1,λ(D), so that ~r is according to j1,λ(Ψ), and so that j1,λ(ρ)(~r) = x.

This precisely is the winning condition for player I in Ĝadm(Ψ,M, κ).

Working with the model M , a cardinal κ in M satisfying the assumptions
in Section 3, the tree D of Section 3, and a strategy Ψ for I on this tree, we

described how to play for player I in the game Ĝadm(Ψ,M, κ), and win. This
proves Lemma 3.1.

§6. E, χ, and Lemma 3.2. The definition of E, the definition of χ, and
the proof of Lemma 3.2 precisely mirror Sections 4 and 5. Here we sketch the
notation involved in the definitions of E and χ. (We shall use this notation later
on, in Section 7.)

Let M and κ satisfy the assumptions in Section 3. We now mirror the defini-
tions in Sections 2 and 4.

Definition 6.1. Let Z ⊂ Vκ+1, let 〈p, ẋ〉 be a location. The mirrored basic

rank game associated to κ, Z, and 〈p, ẋ〉 is played according to the rules in
Definition 2.4, except that the roles of the players are reversed (and we use V ,
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Z, and Z̄ instead of U , W , and W̄ in the notation). The format of the mirrored
game is presented in Diagram 8.

I 〈κ̄, Z̄〉
II V

Diagram 8. The mirrored basic rank game.

Definition 6.2. Let Z ⊂ Vκ+1. The mirrored inverted rank game asso-
ciated to κ and Z is played according to the rules in Definition 2.5, except that
again the roles of the players are reversed (and we use V , Z, and Zn instead of
U , W , and Wn in the notation). The format of the mirrored game is presented
in Diagram 9.

I
II

· · · · · · · · ·
pn, ẋn, Vn

µn, Zn
· · · · · ·

Diagram 9. Round n in the inverted rank game.

Given Z ⊂ Vκ+1 we use UZ to denote the tree of the mirrored inverted rank
game associated to κ and Z. We use σZ : TZ → ω<ω to denote the natural
projection (mirroring Definition 2.7).

Let κ̄ < κ. Let δ be the first Woodin cardinal of M above κ̄. For expository
simplicity let g be col(ω, δ)–generic/M . Let Ḃ be a col(ω, δ)–name for a set of

codes in M [g]. Let Ḃ′ be the canonical name for (M‖δ)ω × Ḃ[g]. Let X = M‖κ̄.

By the mirrored auxiliary games map for κ̄ and Ḃ we mean the mirrored
auxiliary games map associated to Ḃ′, δ, and X, as defined in Neeman [5, §1D].

Definition 6.3. A mirrored rank progression wrt x consists of finite se-
quences 〈κi, Zi, pi, ẋi | i ≤ n〉 and 〈Ḃi, Qi | 0 < i ≤ n〉 satisfying the conditions

in Definition 4.2 (with Zi, Ḃi, and Qi replacing Wi, Ȧi, and Pi respectively),
except that now Qi is a position in Bi[x], where Bi is the mirrored auxiliary

games map for κi and Ḃi.

We write ~J = {κi, Zi, pi, ẋi, Ḃi, Qi}i≤n to refer to the mirrored progression.

We define ~J↾k and ~J‖k as in Section 4.

Let ζ be an ordinal, let x be a code, and let ~J = {κi, Zi, pi, ẋi, Ḃi, Qi}i≤n be
a mirrored rank progression. Let δ < κ be a Woodin cardinal of M . We work to
define:

(A) A col(ω, δ)–name Ḃ(δ, ~J, ζ) for a set of codes;

(B) A meaning for the statement “(x, ~J, ζ) is good for II”; and

(C) A game H(x, ~J, ζ).

The definitions are by induction on ζ, following Section 4, only with the roles of
the players reversed in the auxiliary moves:
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Definition 6.4. Ḃ(δ, ~J, ζ) is the canonical name in col(ω, δ) for the set of

codes x so that x fits ~J (this notion is defined as in Section 4) and player II has

a winning strategy in H(x, ~J, ζ).

Definition 6.5. Suppose that x fits ~J . Define H(x, ~J, ζ) to be played accord-
ing to the rules (of the two cases) in Definition 4.5, only with the roles of the
players reversed, the basic rank game (in case 1) replaced by the mirrored basic
rank game, and the map Al (in case 2) replaced by the mirrored auxiliary games

map Bl. Diagrams 10 and 11 present the format of H(x, ~J, ζ) in the two cases.

I κn+1, Zn+1

II ζ∗ 〈pn+1, ẋn+1〉 Vn+1

Diagram 10. The game H(x, ~J, ζ) if lh( ~J) is smaller than the
expectation at x (case 1).

I bi−II

II ζ∗ bi−I

Diagram 11. The game H(x, ~J, ζ) if lh( ~J) is greater than or
equal to the expectation at x (case 2).

Next we define the meaning of the statement (x, ~J, ζ) is good for II. Let m

meter x. Let κ̄ < κm. Let δ̄ be the first Woodin cardinal of M above κ̄. Let Ḃκ̄

be Ḃ(δ, ~J‖m, ζ). Let Bκ̄ be the mirrored auxiliary games map for κ̄ and Ḃκ̄.

Definition 6.6. Define H∗(κ̄, x, ~J, ζ) to be the game in which players I and
II collaborate to produce a real y, and at the same time play moves in Bκ̄[x−−, y].
The first player to violate any of the rules of Bκ̄[x−−, y] loses. Infinite runs are
won by player I. The format of the game is displayed in Diagram 12. (The
definition here precisely mirrors Definition 4.7. Note that here the mirrored
auxiliary games map is used, and infinite runs are won by I.)

Definition 6.7. (x, ~J, ζ) is good for II just in case that there are arbitrarily

large κ̄ below κm so that player II has a winning strategy in H∗(κ̄, x, ~J, ζ).

I y(0) b0−I b1−I

II b0−II y(1) b1−II . . .

Diagram 12. The game H∗(κ̄, x, ~I, ζ).

Let 〈ζ
L
, ζ

H
〉 be the lexicographically least pair of local indiscernibles for κ in

M . Let x0 be the code for the empty position. For each Z ⊂ Vκ+1 let ~JZ be
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the mirrored rank progression of length 0 determined by the assignment Z0 = Z.
Define finally:

• Z is good for II just in case that (x0, ~JZ , ζ
L
) is good for II,

• E is the tree ⋃

Z is good for II

UZ ,

• χ : E → ω<ω is the map
⋃

Z is good for II

σZ .

These definitions precisely mirror the definitions of D and ρ in Section 4.

Lemma 3.2 can now be proved through an argument which precisely mirrors
the proof of Lemma 3.1 in Section 5. We omit further details.

§7. Lemma 3.3. We work in this section to prove Lemma 3.3. Fix M and
κ satisfying conditions (A)–(C) of Section 3. Let D, E, ρ, and χ be the trees
and projections of Sections 4 and 6. Let Ψ be a strategy for II on D and let Ω

be a strategy for I on E. We have to find branches ~d ∈ [D] according to Ψ, and

~e ∈ [E] according to Ω, so that ρ(~d) = χ(~e).
We begin with definitions very much in the spirit of Section 5. (We use the

same terms, perp and expanded rank progression, though the definitions here
differ from the ones of Section 5 in some respects.) We then present the con-

struction of ~d and ~e.
Fix some h which is col(ω,<κ)–generic over M .

Definition 7.1. Let x be a code. A potential expanded rank progres-

sion (perp for short) with respect to x and 〈gi | 0 < i ≤ n〉 consists of sequences

〈κi,Wi, Zi, pi, ẋi,Mi, ri, si | i ≤ n〉 and 〈Ȧi, Ḃi, Pi, Qi, µi | 0 < i ≤ n〉 satisfying
conditions (1)–(11) below.

1. Mn = M ;
2. ri and si belong to Mi;
3. 〈pi, ẋi〉 is a location (the empty location if i = 0);
4. µi is a measure on κi in Mi;
5. Mi−1 = Ult(Mi, µi). We also use M∗

i to denote Ult(Mi, µi);
6. gi is col(ω, δi)–generic over M∗

i , where δi is the first Woodin cardinal of M∗
i

above κi;
7. Ȧi and Ḃi are col(ω, δi)–names for sets of codes in M∗

i ;
8. Pi is a position in Ai[x], played according to σi-gen[x], where Ai is the

auxiliary games map associated to (M‖δi) × Ȧi, δi, and Xi = M∗
i ‖κi over

M∗
i , and σi-gen is the corresponding generic strategies map (defined relative

to the generic gi);
9. Qi is a position in Bi[x], played according to τi-gen[x], where Bi is the

mirrored auxiliary games map associated to (M‖δi) × Ḃi, δi, and Xi =
M∗

i ‖κi over M∗
i , and τi-gen is the corresponding mirrored generic strategies

map (defined relative to the generic gi);
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10. The sequence ~I = {κi,Wi, pi, ẋi, Ȧi, Pi}i≤n is a rank progression wrt x, in
the sense of M0; and

11. The sequence ~J = {κi, Zi, pi, ẋi, Ḃi, Qi}i≤n is a mirrored rank progression
wrt x, in the sense of M0

We use ~E to denote perps, refer to n as the length of the perp, and define ~E|k
to be the perp, over Mk, consisting of the objects corresponding to i ≤ k. We

say that ~E is a perp wrt x if there exists some sequence 〈gi | 0 < i ≤ n〉 so that
~E is a perp wrt x and 〈gi | 0 < i ≤ n〉.

The dependence of Definition 7.1 on the sequence of generics 〈gi | 0 < i ≤ n〉
comes in through conditions (8) and (9). We sometimes have to emphasize the

dependence on gn, and in this case we say that ~E is a gn–perp wrt x. We follow
similar notation in connection with Definition 7.2 below.

We use ~I( ~E) and ~J( ~E) to denote the progressions in conditions (10) and
(11). We use ji : Mi → Mi−1 to denote the ultrapower embedding by µi, and
use jk,l : Mk → Ml for l ≤ k to denote the embeddings obtained from the jis
through composition.

We follow the terminology of Definition 5.3, adapted to the current settings.

For example we use µ( ~E) to denote µn, use P ( ~E) to denote Pn, etc.

We say that (x, ~E) is good for I just in case that (x, ~I( ~E), ζ
L
) is good for I

in M0. ζ
L

here is the lower ordinal in the lexicographically least pair of local

indiscernibles for κ in M . We define good for II similarly, using ~J .

By G(x, ~E) we mean the game G(x, ~I( ~E), ζ
L
), as computed in M0. We define

H(x, ~E) similarly, using ~J .
The definitions so far are adaptations of the ones in Definition 5.3. We adapt

the last two clauses of that definition similarly, to define Ȧ(µ, ~E), Ḃ(µ, ~E),

G∗(x, µ, ~E), and H∗(x, µ, ~E).

Definition 7.2. An expanded rank progression (erp for short) wrt x is

a potential expanded rank progression ~E wrt x which satisfies the following
conditions (in addition to the conditions in Definition 7.1) for each i ≤ n:

1. κi is precisely equal to jn,i(κ);
2. ri is a medial position (the empty position if i = 0) in jn,i(D), played ac-

cording to jn,i(Ψ), and similarly si is a medial position (the empty position
if i = 0) in jn,i(E), played according to jn,i(Ω);

3. The end location of ri is equal to 〈pi, ẋi〉, and similarly with si;
4. pi ∈ h, and x is an i–extension of ẋi[h];
5. unrch(ri) (as computed over Mi, relative to the strategy jn,i(Ψ)) is precisely

Wi, and similarly unrch(si) is precisely Zi;
6. ri and si belong to the range of jn,i, and (if i < n) ri+1 and si+1 strictly

extend j−1
i+1,i(ri) and j−1

i+1,i(si) respectively;

7. ~E|i belongs to the range of jn,i; and

8. (for i > 0) Ȧi is precisely equal to Ȧ(δi, ~I↾i − 1, ζ
L
) as computed over M0,

where δi is the first Woodin cardinal of M0 above κi, and similarly Ḃi is

precisely equal to Ḃ(δi, ~I↾i − 1, ζ
L
).
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By ~E↾k we mean j−1
n,k( ~E|k). (The pullback by jn,k makes sense using condition

(7) in Definition 7.2.) We say that ~E∗ extends ~E just in case that ~E∗↾ lh( ~E) is

equal to ~E. We say that ~E∗ and ~E agree to k just in case that ~E∗↾k = ~E↾k.

Remark 7.3. There are some structural differences between the definitions
here and those in Section 5. For example here we deal with the actual auxiliary
games map rather than the pivot games map, and with the generic strategies
maps rather than the pivot games maps. Apart from these structural differences
the key change is in conditions (2) and (5) of Definition 7.2, where instead of
using whole positions we use medial positions, and instead of talking about the
ending of ri we talk about unrch(ri).

Claim 7.4. Suppose that 〈 ~En | n < ω〉 is a sequence of expanded rank pro-

gressions, so that for each n > 0, ~En strictly extends ~En−1. Then there are

infinite branches ~d ∈ [D] and ~e ∈ [E], according to Ψ and Ω respectively, so that

ρ(~d) = x = ρ(~e).

Proof. Let ~d =
⋃

n<ω r( ~En), and let ~e =
⋃

n<ω s( ~En). Chasing through the

definitions it is easy to check that ~d ∈ [D] is played according to Ψ, ~e ∈ [E] is

played according to Ω, and ρ(~d) = χ(~e). ⊣

Definition 7.5. Let ~E and ~E∗ be expanded rank progressions of the same

length n. ~E∗ is a line extension of ~E just in case that: P ∗
n strictly extends Pn;

Q∗
n strictly extends Qn; and other than this the two progressions are the same.

Claim 7.6. Let ~E0 be an expanded rank progression of length n+1 wrt a code

x0. Let g be col(ω, δ( ~E))–generic over Ult(M,µ( ~E)), so that ~E0 is a g-erp wrt

x0. Suppose that 〈xk, ~Ek | 0 < k < ω〉 are such that for each k < ω:

1. xk+1 is a code which extends xk;

2. ~Ek+1 is a g-erp wrt xk+1; and

3. ~Ek+1 is a line extension of ~Ek.

Let x∞ code the union of the sequences coded by xk, k < ω. Suppose finally that

〈xk, ~Ek | k < ω〉 belongs to Ult(M,µ( ~E0))[g].

Let ~E = ~E0|n. Then player II has a winning strategy in G(x, ~E), and player

I has a winning strategy in H(x, ~E).

Proof. Let Ȧ denote Ȧ( ~E0) and let A denote A( ~E0).

By condition (3), P ( ~Ek+1) strictly extends P ( ~Ek). Let ~P =
⋃

k<ω P ( ~Ek). ~P

is then a generic run of A. (This uses condition (8) of Definition 7.1.) Using

Lemma 1B.2 of [5] it follows that x 6∈ Ȧ[g]. By condition (8) of Definition 7.2 it

follows that x 6∈ Ȧ(δ( ~E0), ~I( ~E0)↾n, ζ
L
)[g]. By Definition 4.4 (and since x ∈ M [g])

this means that I does not have a winning strategy in G(x, ~E0|n) = G(x, ~E). The
game is finite, and hence determined, so II must have a winning strategy.

A similar argument using the positions Q( ~Ek) shows that I has a winning

strategy in H(x, ~E). ⊣

Claim 7.7. Let ~E be an expanded rank progression leading to models Mi for
i ≤ n and embeddings jk,l : Mk → Ml for l ≤ k ≤ n. Then for each i ≤ n,
jn,i(ζL

) = ζ
L

and jn,i(ζH
) = ζ

H
.
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We use the claim implicitly below, when talking about ζ
L

where formally we
should have its image by some embedding jn,i.

Proof of Claim 7.7. Using the fact that Mi ⊂ M , and that any element
of Mi‖jn,i(κ + ω) is coded by an element of M‖κ + ω, one can check that
〈ζ

L
, ζ

H
〉 is a pair of local indiscernibles for jn,i(κ) in Mi. 〈jn,i(ζL

), jn,i(ζH
)〉

is the lexicographically least such pair by the elementarity of jn,i. From this and
the fact that jn,i(α) ≥ α for every ordinal α it follows that 〈jn,i(ζL

), jn,i(ζH
)〉 =

〈ζ
L
, ζ

H
〉. ⊣

Lemma 7.8. Suppose that x belongs to M [h]. Let ~E be an expanded rank

progression wrt x. Suppose that II has a winning strategy in G(x, ~E), and I has

a winning strategy in H(x, ~E).

Let n = lh( ~E) and let l be the expectation at x. Suppose that n < l.

Then there exists a code x∗ ∈ M [h], and expanded rank progressions ~E∗ and
~F wrt x and x∗ respectively so that:

1. lh( ~E∗) = n + 1, lh(P ( ~E∗)) = 0, and ~E∗ extends ~E;
2. x∗ extends x and lh(x∗) = lh(x) + 1;

3. ~F = ~E∗‖m where m meters x; and

4. II has a winning strategy in G(x∗, ~F ) and I has a winning strategy in

H(x∗, ~F ).

Proof. Let 〈pn, ẋn〉 be the end-location of rn = r( ~E) if n > 0 (this is the
same as the end location of sn), or the empty location if n = 0. Note that x is
then an n–extension of ẋn[h].

Let ẋn+1 ∈ M be a col(ω,<κ)–name so that ẋn+1[h] = x. Fix pn+1 ∈ h which
forces a value for ẋn+1↾n + 1, and forces ẋn+1 to be an n–extension of ẋn.

Let G denote the game G(x, ~I, ζ
L
) and let G′ denote the game G(x, ~I, ζ

H
) (with

both games computed in M0). Since n < l, the games are played according to
case 1 of Definition 4.5, illustrated in Diagram 5.

By assumption II has a winning strategy in G. Using the indiscernibility of ζ
L

and ζ
H

it follows that II has a winning strategy in G′. Let Σ be such a winning
strategy.

Play ζ∗ = ζ
L

and the location 〈pn+1, ẋn+1〉 fixed above as first moves for I in
G′. The game continues subject to the rules of the basic rank game associated
to κ, Wn, and 〈pn+1, ẋn+1〉. Σ induces a strategy for I in this basic rank game.
Wn is equal to unrch(rn) by condition (5) of Definition 7.2, and rn is according
to Ψ by condition (2) of that definition. We are therefore in a position to apply
Lemma 2.10. Let µn+1, Un+1, and rn+1 be given by that lemma.

Let νn+1, Vn+1, and sn+1 be obtained similarly, working with the game H =

H(x, ~J, ζ
L
) and a mirror image of Lemma 2.10.

By Remark 2.15, we have some freedom in the choice of µn+1 and νn+1: any
sufficiently strong measure would do in each case. We may therefore take µn+1 =
νn+1.

Let ~E∗ be the expanded rank progression of length n + 1 which extends ~E

using the objects pn+1, ẋn+1, µn+1, rn+1, sn+1 fixed above, and the assignments

Pn+1 = Qn+1 = ∅. These assignments determine ~E∗ completely.
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Let ~I denote ~I( ~E∗) and let ~J denote ~J( ~E∗).

Our use of a winning strategy for II in G′ guarantees that (x, ~I, ζ
L
) is not good

for I. This means that for all sufficiently large κ̄ < κ, player II has a winning

strategy in G∗ = G∗(κ̄, x, ~I, ζ
L
).

Similarly (x, ~J, ζ
L
) is not good for II, and this means that for all sufficiently

large κ̄ < κ, player I has a winning strategy in H∗ = H∗(κ̄, x, ~J, ζ
L
).

Fix κ̄ < κ large enough to witness both statements above, and large enough
that x belongs to M [h↾κ̄]. Let σ∗ be a winning strategy for II in G∗ and let τ∗

be a winning strategy for I in H∗.
Let m meter x. Let δ̄ be the first Woodin cardinal of M above κ̄. Let ḡ

be col(ω, δ̄)–generic/M with M [ḡ] = M [h↾δ̄ + 1]. Let Ȧ denote Ȧ(δ̄, ~I‖m, ζ
L
),

and define Ḃ similarly. Let σgen and τgen be the generic and mirrored generic
strategies maps associated to these names (using the generic ḡ).

σ∗, σgen, τ∗, and τgen combine (in the manner of the argument in [5, §1E]) to

produce a real y in M [h↾δ̄ + 1] so that x−−, y belongs to neither Ȧ[ḡ] nor Ḃ[ḡ].

Let x∗ = x−−, y for this y. Finally, let ~F = ~E∗‖m.

One can now check that x∗, ~E∗, and ~F satisfy the demands in the conclusion
of Lemma 7.8. ⊣

Lemma 7.9. Work under the assumptions of Lemma 7.8, but suppose that

l ≤ n. Let gl be col(ω, δ( ~E↾l))–generic over Ult(M,µ( ~E↾l)), and suppose that
~E↾l is a gl-erp.

Then there exists a code x∗, and expanded rank progressions ~E∗ and ~F , sat-
isfying the conditions in the conclusion of Lemma 7.8, but with condition (1) of
that lemma replaced with the following condition:

1. (a) ~E∗ is a line extension of ~E↾l,

(b) lh(P ( ~E∗)) = lh(P ( ~E↾l)) + 1, and

(c) ~E∗ is a gl-erp.

Proof. Since l ≤ n, the game G(x, ~E) is played according to case 2 in Defin-

ition 4.5, and similarly with H(x, ~E). The proof of the current lemma is similar

to that of Lemma 7.8, only obtaining ~E∗ through plays under case 2 (illustrated
in Diagrams 6 and 11). These plays are constructed using a winning strategy for

II in G(x, ~E), a winning strategy for I in H(x, ~E), and the generic and mirrored

generic strategies associated to the names Ȧ( ~E↾l) and Ḃ( ~E↾l), where in both
cases the generic used is gl. We leave the precise details to the reader. ⊣

Using Lemmas 7.8 and 7.9 we will next construct an increasing sequence of
codes and expanded rank progressions with respect to these codes. At the end
of the construction we will be in a position to apply Claim 7.4, and through this
application prove Lemma 3.3.

Definition 7.10. Let x ∈ M [h] be a code and let ~E be an expanded rank

progression of wrt x. We say that ~E is suitable for x if II has a winning strategy

in G(x, ~E) and I has a winning strategy in H(x, ~E).

Definition 7.11. Let ~E be suitable for x. Let n = lh( ~E). We say that ~E is
saturated wrt x if there is no pair 〈x∗,m〉 so that:
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1. x∗ ∈ M [h] extends x;
2. m meters x∗↾ζ for some ζ ∈ [lh(x), lh(x∗));

3. m ≤ n or m < max{lh(P1( ~E)), . . . , lh(Pn( ~E))}; and

4. ~E‖m is suitable for x∗.

Definition 7.12. Let ~E be suitable for x. Let n = lh( ~E). Let l ∈ (0, n]. Let

gl be col(ω, δ( ~E↾l))–generic over Ult(M,µ( ~E↾l)). Suppose that ~E↾l is a gl–erp.

We say that ~E is gl–maximal at l if there is no triple 〈x∗, ~E∗, ~F 〉 so that:

1. x∗ ∈ M [h] extends x strictly;
2. l is expected at x∗↾ξ for some ξ ∈ [lh(x), lh(x∗));

3. ~E∗ is a line extension of ~E↾l;

4. ~E∗ is a gl–erp;

5. ~F = ~E‖m where m is the least number which meters x∗↾ξ for some ξ ∈
[lh(x), lh(x∗)); and

6. ~F is suitable for x∗.

We say that ~E is 〈gl | 0 < l ≤ n〉–maximal if it is gl–maximal at l for each

l ∈ (0, n]. ~E is maximal if it is 〈gl | 0 < l ≤ n〉 maximal for some sequence of
generics 〈gl | 0 < l ≤ n〉.

Claim 7.13. Suppose that ~E is suitable wrt x, and maximal. Let n = lh( ~E)
and let l be the expectation at x. Then l > n.

Proof. Otherwise an application of Lemma 7.9 would contradict the maxi-

mality of ~E at l. ⊣

Claim 7.13 is crucial for our plans to find an increasing sequence of expanded
rank progressions. It shows that given a maximal progression we can use Lemma
7.8, and this lemma gives an extension of the original progression. To continue
this process inductively we must make the extension maximal too. This is done
in the next lemma.

Lemma 7.14. Let ~E be suitable, saturated and maximal wrt a code x ∈ M [h].

Then there is a pair 〈x∗, ~E∗〉 so that:

1. x∗ ∈ M [h] is a code which strictly extends x;

2. ~E∗ is suitable, saturated and maximal wrt x∗; and

3. ~E∗ strictly extends ~E.

Proof. Let n = lh( ~E). If there is a code x′ ∈ M [h], extending x, so that

x′ is suitable for ~E and n + 1 meters x′, then fix such a code x′. Otherwise let
x′ = x. Notice that either way:

(∗) There is no code x∗ so that x∗ extends x′ strictly, x∗ is metered by n + 1,

and ~E is suitable for x∗.

Let l be the expectation at x′. By Claim 7.13, l > n. We may therefore

apply Lemma 7.8. Let x′′, ~E′′, and ~F be given by that lemma. Then ~E′′

extends ~E and ~F = ~E′′‖m where m meters x′. Note that m > n and m ≥

max{lh(P1( ~E)), . . . , lh(Pn( ~E))}, since otherwise we would have a contradiction

to the saturation of ~E. It follows that ~F extends ~E.
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Let x0 = x′′ and let ~E0 = ~F . Let g be col(ω, δ( ~E0))–generic over Ult(M,µ( ~E0)),
with M [g] ⊃ M [h].

Working inductively (in M [g]) construct ~Ek and xk as follows:

• Extend xk to a code x′
k ∈ M [h] so that x′

k↾ξ is metered by k for some

ξ ∈ [lh(xk), lh(x′
k)), and x′

k is suitable for ~Ek if possible. Otherwise set
x′

k = xk.
• Extend x′

k to a code x′′
k ∈ M [h] so that x′′

k↾ξ is metered by n + 1 for some

ξ ∈ [lh(x′
k), lh(x′′

k)), and x′′
k is suitable for ~Ek if possible. Otherwise set

x′′
k = x′

k.

• Extend x′′
k to a code xk+1 ∈ M [h] and line extend ~Ek to a g-erp ~Ek+1, with

lh(P ( ~Ek+1)) = k+1, n+1 expected at xk+1↾ξ for some ξ ∈ [lh(x′′
k), lh(xk+1)),

and ~Ek+1 suitable for xk+1. If no such extension exists, then terminate the
construction.

If the construction terminates, at stage k say, then ~E∗ = ~Ek and x∗ = x′′
k

witness the conclusion of Lemma 7.14, and we are done.
Suppose, towards a contradiction, that the construction does not terminate at

any k < ω. Let x∞ code the union of the sequences coded by xk, k < ω. By
construction n + 1 is expected at x∞↾ξ for cofinally many ξ < lh(x∞). So x∞ is

metered by n + 1. By Claim 7.6, II has a winning strategy in G(x∞, ~E0↾n) and

I has a winning strategy in H(x∞, ~E0↾n). In other words, ~E0↾n is suitable for

x∞, where this is interpreted over the model M∗ = Ult(M,µ( ~E0)). But since
n + 1 meters x∞, this contradicts condition (∗) above. ⊣

Let x̄0 code the empty sequence, and let ~E0 be the (unique) erp of length 0.
~E0 includes a value for W0, and by Definition 7.2, this value is precisely unrch(∅)
(where “reachable” is relative to the strategy Ψ). Now Ψ is a strategy for II on⋃

W is good for I TW . By Claim 2.16, Tunrch(∅) cannot belong to this union. So

W0 = unrch(∅) is not good for I. In other words (x̄0, ~I( ~E0), ζL
) is not good for I.

By similar reasoning (x̄0, ~J( ~E0), ζL
) is not good for II.

Now an argument similar to the one ending the proof of Lemma 7.8 produces
a real y in a small generic extension of M so that II has a winning strategy in

G(x0, ~E) and I has a winning strategy in H(x0, ~E), where x0 codes x̄0−−, y. ~E0

is thus suitable for x0. Since lh( ~E0) = 0, ~E0 is trivially maximal and saturated.

We are therefore in a position to apply Lemma 7.14. Let ~E1 and x1 be given
by that lemma. The lemma is specifically set up to allow iterated applications.

Working inductively, let ~Ek+1 and xk+1 be given by an application of Lemma

7.14 to ~Ek and xk. We have, for each k < ω:

1. xk ∈ M [h] is a code and ~Ek is suitable, saturated, and maximal wrt xk;

2. ~Ek+1 strictly extends ~Ek.

Using Claim 7.4 we can now obtain infinite branches ~d ∈ [D] and ~e ∈ [E] so that
~d is according to Ψ, ~e is according to Ω, and ρ(~d) = χ(~e). This completes the
proof of Lemma 3.3
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§8. Determinacy proofs. We say that a set C ⊂ R
<ω1 belongs to a point-

class Γ just in case that the set (of reals) {x | x is a code for a sequence in
C} belongs to Γ. In this section we use the lemmas of Section 3 to prove the
determinacy of games Gadm(C) for C in Γ, for various pointclasses Γ.

Theorem 8.1. Suppose that there exists a class model M and a cardinal κ in
M so that:

(A) κ is a limit of Woodin cardinals in M ;
(B) For each Z ⊂ M‖κ + 1 in M there is a measure µ ∈ M on κ so that

Z ∈ Ult(M,µ);
(C) M‖κ + 2 is countable in V; and
(D) M is weakly iterable (see Neeman [5, Appendix A] for the definition).

Then the games Gadm(C) are determined for all C in <ω2 − Π1
1.

Theorem 8.1 is optimal in the sense that the minimal inner model for assump-
tions (A)–(D) does not satisfy the statement “Gadm(C) is determined for all C

in <ω2 − Π1
1.”

Proof of Theorem 8.1. Let D, E, ρ, and χ be the trees and embeddings
of Section 3. Let C ⊂ R

<ω1 be given, let C∗ ⊂ R be the set of codes for elements
of C, and suppose that C∗ is <ω2 − Π1

1. We work to prove that Gadm(C) is
determined.

The idea of the proof is quite simple. Consider the game where players I and II

play on D to produce ~d ∈ [D], and in addition they play auxiliary moves following
the rules in Martin’s proof of determinacy for <ω2 − Π1

1 sets, with I trying to

witness membership of ρ(~d) in C∗, and II trying to witness the opposite. Using
Lemma 3.1 we will show that if I has a winning strategy in this game, then I wins
Gadm(C). A similar argument using E and Lemma 3.2 will provide a condition
under which II has a winning strategy in Gadm(C). Finally, a use of Lemma 3.3
will show that one of these conditions must hold.

Let us begin the argument. Let u0, u1, . . . be the first ω uniform Silver indis-
cernibles for reals. Replacing M by L(M‖κ + 2) we may assume that:

(E) M has the form L(M‖κ + 2).

u0, u1, . . . are then indiscernibles for M .
Let η < ω2 be such that C∗ is η − Π1

1. The case η = 0 is trivial. We may
therefore assume η > 0. Increasing η if needed we may assume, for simplicity,
that it is odd.

Let k be such that η belongs to the interval (ω ·k, ω ·k +ω]. Let C be Martin’s
auxiliary games map for the set C∗, see Neeman [5, pp.74–75] for an outline of
its definition. C assigns to each code x a game C[x], on ordinals below uk, in a
Lipschitz continuous manner.

Let D∗ ∈ M be the game in which I and II play on D to produce some ~d ∈ [D],

and in addition to that play moves in C[ρ(~d)]. (Each round of D∗ consists of a

round in D followed by a move in C[ρ( ~D)]. Note that in phrasing this format
we are using the fact that both ρ and C are Lipschitz continuous.) Let E∗ ∈ M

be the game in which I and II play on E to produce ~e ∈ [E], and in addition to
that play moves in C[χ(~e)]. In both games infinite runs are won by player I.
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The games map C is definable in M from u0, . . . , uk. It follows that D∗ and
E∗ are definable in M from the same parameters.

Claim 8.2. If I has a winning strategy in D∗ then (in V) I wins the game
Gadm(C).

Proof. Let Ψ∗ ∈ M be a winning strategy for I in D∗. We may take Ψ∗ to
be definable over M from u0, . . . , uk, since D∗ is definable in this manner.

Say that a position 〈β0, . . . , βn−1〉 in C[x] is good (over M) if the ordinals
played by II, namely the ordinals βi for odd i, are indiscernibles for M , and the
ordinals played by I are definable over M from the ordinals played by II and
additional parameters in {u0, . . . , uk} ∪ M‖κ + 2. This is an adaptation to the
current settings of the definitions in [5, pp. 75,80].

Let Ψ, a strategy for I on D, be obtained from Ψ∗ by ascribing indiscernible
moves for II in the instances of C that come up during the play. Precisely,

each position ~d↾n according to Ψ comes equipped with a sequence of ordinals

〈β0, . . . , βn−1〉 so that ~d↾n and ~β↾n together form a position according to Ψ∗, and

so that ~β↾n is good. This requirement on positions according to Ψ determines
the strategy Ψ uniquely.

Applying Lemma 3.1, let Σ be a winning strategy for I in Ĝadm(Ψ,M, κ). Let
Γ be an iteration strategy for M . Σ and Γ together give rise to a strategy for I in
Gadm(C). Let us denote this strategy by σ. We must check that σ is a winning
strategy for I. Let ~y be a run of Gadm(C) played according to σ. We work to
show that ~y belongs to C.

Let α = lh(~y) and let x code ~y. As ~y is played according to σ, it comes with a

corresponding run 〈M ξ, jζ,ξ | ζ ≤ ξ < α〉 of Ĝadm(Ψ,M, κ). The run is played
according to Σ, and the iteration maps jζ,ξ are all according to Γ.

Since Γ is an iteration strategy, each of the models Mξ, ξ ≤ α, is wellfounded.
Moreover, since the iteration is countable, the direct limit map j1,α fixes the
uniform indiscernibles.

Reading the payoff condition for Ĝadm(∗) and using the fact that Σ is a winning

strategy for I we see that there exists an infinite branch ~d through j1,α(D) so
that:

1. ~d is according to j1,α(Ψ); and

2. j1,α(ρ)(~d) = x.

Now j1,α(Ψ) is the strategy obtained from j1,α(Ψ∗) by ascribing indiscernible

moves for II. Using the properties of the game j1,α(C)[j1,α(ρ)(~d)] (see [5, pp. 75,
80], and [5, Fact 2D.11] for the specific properties we need; these properties are

due to Martin [2]) it follows that j1,α(ρ)(~d) belongs to C∗. j1,α(ρ)(~d) is equal to
x by condition (2). So x ∈ C∗, and hence ~y ∈ C, as required. ⊣

Claim 8.3. If II has a winning strategy in E∗ then (in V) II wins the game
Gadm(C).

Proof. Similar to Claim 8.2, using this time Lemma 3.2, and revising the
notion of a good position to reverse the roles of the players (so that I’s moves
are indiscernibles). The relevant facts on good positions now are the ones in
[5, p.75]. The use of [5, Fact 2D.11] in the proof of Claim 8.2 is replaced here
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by a use of [5, Fact 2D.2], and this fact leads to the conclusion that ~y does not
belong to C, and is therefore won by II, as required. ⊣

Claim 8.4. It is impossible that II wins D∗ and I wins E∗.

Proof. Assume towards a contradiction that Ψ∗ is a winning strategy for II
in D∗ and Ω∗ is a winning strategy for I in E∗. Let Ψ, a strategy for II on D, be
obtained from Ψ∗ by ascribing indiscernible moves for I. Let Ω, a strategy for I
on E, be obtained from Ω∗ by ascribing indiscernible moves for II. Both Ψ and

Ω are close to M . Applying Lemma 3.3, we find ~d ∈ [D] and ~e ∈ [E] so that

1. ~d is according to Ψ;
2. ~e is according to Ω; and

3. ρ(~d) = χ(~e).

From condition (1) it follows (through an argument similar to the one in Claim

8.3) that ρ(~d) 6∈ C∗, and from condition (2) it follows (through an argument
similar to the one ending the proof of Claim 8.2) that χ(~e) ∈ C∗. This is a

contradiction since ρ(~d) = χ(~e) by condition (3). ⊣

D∗ and E∗ are both closed games, and hence determined. Claims 8.2, 8.3,
and 8.4 together therefore imply that Gadm(C) is determined. This completes
the proof of Theorem 8.1. ⊣

A model M of a sufficiently large fragment of ZFC∗−Powerset is said to satisfy
adm(α) just in case that there is a cardinal κ in M so that, in M :

(A) κ is a limit of Woodin cardinals;
(B) For every Z ⊂ M‖κ + 1 there is a measure µ on κ so that Z ∈ Ult(M,µ);

and
(C) M‖κ + α = Pα(M‖κ) exists.

This terminology only makes sense for α ≥ 2, since we need M‖κ+2 for condition
(B).

Theorem 8.5. (For countable α ≥ 1.) Suppose that there exists a weakly
iterable model M which satisfies adm(1 + α + 1), with M‖κ + 2 countable in V.
Then the games Gadm(C) are determined for all C ⊂ R

<ω1 in ∆0
α+4.

Proof. Let C ⊂ R
<ω1 be given, let C∗ be the set of codes for positions in C,

and suppose that C∗ is ∆0
α+4. We work to show that Gadm(C) is determined.

Let D, E, ρ, and χ be the trees and embeddings of Section 3. Note D and E

are trees on M‖κ+2. Observe that A = ρ−1(C∗) ⊂ [D] and B = χ−1(C∗) ⊂ [E]
are ∆0

α+4. Let {Al}l<ω be an enumeration of all Π0
α subsets of [D] which are

needed to define A. Let {Bl}l<ω be an enumeration of all the Π0
α subsets of [E]

needed to define B. Working in M Let D∗ be a cover (in the sense of Martin [3])
of D which unravels all sets in {Ak}l<ω. M contains exactly enough levels of the
Von Neumann hierarchy above M‖κ + 2 to unravel these sets, and D∗ is a tree
on M‖κ + 1 + α + 1. Similarly let E∗ be a cover of E which unravels {Bl}l<ω.
Let A∗ ⊂ [D∗] be the pre-image of A, and let B∗ ⊂ [E∗] be the pre-image of
B. Let GD∗(A∗) denote the game on D∗ with payoff A∗, and define GE∗(B∗)
similarly. A∗ is a ∆0

4 subset of [D∗] and B∗ is a ∆0
4 subset of [E∗]. It follows that

in M , both GD∗(A∗) and GE∗(B∗) are determined. The following three claims
are thus enough to establish the determinacy of Gadm(C).
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Claim 8.6. If (in M) I wins GD∗(A∗) then (in V) I wins Gadm(C).

Claim 8.7. If (in M) II wins GE∗(B∗) then (in V) II wins Gadm(C).

Claim 8.8. It is impossible that (in M) II wins GD∗(A∗) and I wins GE∗(B∗).

The proofs of these claims are similar to the proofs of Claims 8.2, 8.3, and 8.4
respectively. The only difference is that now we convert from Ψ∗ (respectively
Ω∗) to Ψ (respectively Ω) not using indiscernibles, but rather using the fact that
D∗ is a cover of D (respectively, E∗ is a cover of E). ⊣ (Theorem 8.5.)

The next theorem improves Theorem 8.5 in the case that α < ω, reducing the
assumption adm(1 + α + 1) to adm(α + 1).

Theorem 8.9. (For countable α ≥ 1.) Suppose that there exists a weakly
iterable model M which satisfies adm(α + 1), with M‖κ + 2 countable in V.
Then the games Gadm(C) are determined for all C ⊂ R

<ω1 in ∆0
α+4.

Proof. Let D, E, ρ, and χ be the trees and embeddings of Section 3. It is
enough to show that Π0

1 subsets of D (respectively E) can be unraveled by a
cover using a tree on M‖κ + 2. With this one can modify the proof of Theorem
8.5 so that D∗ and E∗ are trees on M‖κ + α + 1, instead of M‖κ + 1 + α + 1,
allowing for a proof that uses adm(α + 1) instead of adm(1 + α + 1).

D and E are trees on M‖κ + 2, and in general one cannot expect to unravel
subsets of trees on M‖κ + 2 using trees still on M‖κ + 2. But the trees D and
E have a special property that makes this possible. Specifically, for the tree D

say:

1. Player II’s moves come from M‖κ + 1;

2. ρ(~d) depends only on player II’s moves in ~d;
3. The future of the game from a position in which II had just played depends

only on II’s moves in that position.

Using these properties of D, one can construct a demi-cover D∗ of D which
unravels a given countable collection of Π0

1 sets, and which uses a tree on M‖κ+2.

A demi-cover is very much like a cover, except that in lifting a play ~d ∈ [D] to a

play ~d∗ ∈ [D∗] one is allowed to change I’s moves in ~d. Such a change is harmless
by conditions (2) and (3). It is condition (1) that allows keeping the demi-cover
a tree on M‖κ + 2. We omit the actual construction, and refer the reader to
Neeman [4, 8.3–8.7] for more information on demi-covers. ⊣

Remark 8.10. The argument of Theorems 8.5 and 8.9 holds for payoff sets in
the relativized pointclass ∆0

α+4(z) for z ∈ M . Since any real z can be absorbed
into a small generic extension of an iterate of M , the conclusion of the theorem
can be strengthened to apply to the boldface pointclass, ∆0

α+4. A similar remark
holds for Theorem 8.1.

Corollary 8.11. Let M satisfy adm(α + 1). Then the statement “Gadm(C)
is determined for every C in ∆0

α+4” holds in M .

Proof. This follows from the proofs of Theorems 8.5 and 8.9. Note that
GD∗(A∗) and GE∗(B∗) are determined inside M . Working inside M , find a
countable elementary submodel H which has the winning strategies in these
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games, satisfies enough of ZFC∗−Powerset for the results of Section 3, and satis-
fies adm(α + 1). Let M̄ be the transitive collapse of H. Inside M , the model M̄

is weakly iterable. Working inside M apply Claims 8.6, 8.7, and 8.8 to M̄ , and
conclude that Gadm(C) is determined. ⊣

Corollary 8.11 is optimal in the sense that ∆0
α+4 cannot be replaced by Σ0

α+4.
The minimal iterable inner model for adm(α + 1) is not a model of the state-
ment “Gadm(C) is determined for all C in Σ0

α+4.” This can be seen through a
computation of the complexity of the canonical wellordering of the reals in this
inner model. The key point in the computation is that the relevant comparison
process can be presented as a game ending at the first admissible relative to the
play, using a combination of the methods of Steel [8, Proof of 1.10] and Steel [7].

Corollary 8.11 holds for α ≥ 1, as adm(β) only makes sense for β ≥ 2. It
therefore covers the pointclasses ∆0

γ for γ ≥ 5. For γ ≤ 4, optimal proofs of the

determinacy of Gadm(C) for all C in ∆0
γ are not known.

Let M and κ satisfy assumptions (A)–(C) in Section 3. Let D, E, ρ, and χ

be the trees and embeddings of Section 3.
Let A ∈ M be a forcing notion, and let a be A–generic/M . Let Ψ̇ ∈ M be an

A–name and suppose that Ψ̇[a] is a strategy for I on D.

Define Ĝ′
adm(Ψ̇,M, κ) to be played according to the rules of Ĝadm described in

Section 3, but with the following modified payoff: I wins just in case that there

exist ~d and aα so that:

0. aα is A
α–generic/Mα where A

α = j1,α(A);

1. ~d is according to Ψα where Ψα = j1,α(Ψ̇)[aα]; and

2. j1,α(ρ)(~d) = x.

j1,α : M → Mα is the iteration embedding created through the moves in Ĝ′
adm,

see Section 3. The difference between the payoff here and the payoff in Section 3
is in the addition of aα, and the fact that in condition (1) we do not take j1,α(Ψ),

where Ψ = Ψ̇[a], but instead shift Ψ̇ by j1,α and interpret it using a generic over
Mα.

Lemma 8.12. Suppose that Ψ̇[a] is a strategy for player I on D. Suppose that
both M‖κ + 2 and PM (A) are countable in V. Then (in V) I wins the game

Ĝ′
adm(Ψ̇,M, κ).

Proof. This is similar to the proof in Section 5, with the following modifica-
tions:

Perps should be redefined to include objects {āi}i≤n, with each ai an element
of Mi.

Definition 5.4 should be revised to add the following condition on expanded
rank progressions: āi is a condition in jn,i(A). Further, the clause “played
according to jn,i(Ψ)” in condition (2) of Definition 5.4 should be revised to say

that “āi forces that ri is played according to jn,i(Ψ̇).” Finally, a clause should

be added to condition (4) in Definition 5.4 requiring that āi+1 extends j−1
i+1,i(āi).

Claim 5.6 should be revised to say that r is according to Ψ̇[a] where a =⋃
n<ω(ā( ~En)).
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And last, but not least, a new book-keeping element should be added to the
construction, for choosing the objects āi at each stage of the construction. This

should be done in such a way that the object a =
⋃

n<ω(ā( ~En)) generated by
the application of Claim 5.6 at the end of the argument gives rise to a generic
filter over Mα. ⊣

Suppose now that δ > κ, and M |=“δ is a Woodin cardinal.” Let Ȧ ∈ M

be a col(ω, δ)–name for a set of reals. Define the game Ĝ(adm + 1, Ȧ,M, κ, δ)

to be played as follows: The game starts by following the rules of Ĝadm, to
produce ~y = 〈yξ | ξ < α〉, and an iterate Mα of M with iteration embedding
j1,α : M → Mα. (Note that Lα[yξ | ξ < α] is then admissible.) The game
continues with precisely one additional mega-round. In this one extra mega-
round player I plays a length ω iteration tree T α on Mα, and player II plays a
cofinal branch bα through T α. This ends the game. We set Mα+1 equal to the
direct limit along bα, set jα,α+1 equal to the direct limit embedding, and define
j1,α+1 by composition. Player I wins just in case that there exists some g so
that:

1. g is col(ω, j1,α+1(δ))–generic/Mα+1; and

2. x ∈ j1,α+1(Ȧ)[g], where x codes ~y.

Given a col(ω, δ)–name Ḃ ∈ M for a set of reals we define the mirror image

game Ĥ(adm+1, Ḃ,M, κ, δ). This game starts by following Ĥadm, and continues
with II playing T α and I playing bα. (Both must satisfy the demands listed

above, in the definition of Ĝ(adm + 1, . . . ).) We define Mα+1 and j1,α+1 as

above. Player II wins this run of Ĥ(adm + 1, . . . ) just in case that there exists
some h so that:

1. h is col(ω, j1,α+1(δ))–generic/Mα+1; and

2. x ∈ j1,α+1(Ḃ)[h], where x codes ~y.

Theorem 8.13. Assume that M and κ satisfy conditions (A)–(C) in Section
3, and that δ > κ is a Woodin cardinal of M . Suppose that VM

δ+2 is countable in

V and let g be col(ω, δ)–generic/M . Let Ȧ ∈ M and Ḃ ∈ M be col(ω, δ)–names
for sets of reals. Then at least one of the three cases below holds:

1. (In V) I wins the game Ĝ(adm + 1, Ȧ,M, κ, δ);

2. (In V) II wins the game Ĥ(adm + 1, Ḃ,M, κ, δ); or

3. In M [g], there exists some code x so that x belongs to neither Ȧ[g] nor Ḃ[g].

Moreover, M can distinguish which of these conditions holds. Precisely, there
are formulae φI(adm + 1, ∗) and φII(adm + 1, ∗) (defined uniformly over all M ,

κ, and δ) so that: If M |= φI(adm + 1, Ȧ, κ, δ) then condition (1) hold; if M |=
φII(adm+1, Ḃ, κ, δ) then condition (2) holds; and otherwise condition (3) holds.

Proof. Let D, E, ρ, and χ be the trees and projections of Section 3. Let A
be the auxiliary games map (see Neeman [5, §1A]) associated to (M‖δ) × Ȧ, δ,
and X = M‖κ + 2. Let B be the mirrored auxiliary games map (see [5, §1D])

associated to (M‖δ) × Ḃ, δ, and X = M‖κ + 2.
Define D∗ to be the game in which players I and II play on D to produce

~d ∈ [D], and in addition to that play moves in A[ρ(~d)]. More precisely, round n
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of D∗ starts with moves in round n of D, and continues with moves in round n

of A[ρ(~d↾n + 1)]. (In phrasing this format we are using the Lipschitz continuity
of ρ and the Lipschitz continuity of the auxiliary games map A.) Infinite runs
of D∗ are won by player II.

Define E∗ similarly, with the tree E, the projection χ, and the mirrored aux-
iliary games map B. Infinite runs of E∗ are won by player I.

Lemma 8.14. If (in M) I wins D∗, then (in V) I wins Ĝ(adm + 1, Ȧ, κ, δ).

Proof. Let A = col(ω,M‖δ+1), and let a be A–generic over M . Let Ψ∗ ∈ M

be a winning strategy for I in D∗.

Claim 8.15. There is a strategy Ψ on D in M [a], so that: for every play ~d

according to Ψ, there exists a length ω iteration tree T on M , so that for every
wellfounded cofinal branch b through T , there is col(ω, jb(δ))–generic g over Mb

with ρ(~d) ∈ jb(Ȧ)[g].

Proof. This is a direct application of the methods of Neeman [5, §1E]. Let
ϕ ∈ M [a] enumerate M‖δ + 1 in order type ω. Let Apiv be the pivot strategies
map (see [5, §1C]) corresponding to A, and let σpiv be the corresponding pivot
strategies map.

Define Ψ by using σpiv to ascribe moves for II in (shifts of) Apiv. Precisely,

each run ~d of Ψ comes equipped with a run P = (T ,~a) of Apiv[ϕ, ρ(~d)], played

according to σpiv[ϕ, ρ(~d)], and so that for each n < ω, ~d↾n and ~a↾n form a
position of the shift of D∗ to the 2nth model of T , according to the shift of Ψ∗

to that model. This property of runs of Ψ determines Ψ completely.
It is easy to check, using the methods in [5, Chapter 1], that the strategy Ψ

described above satisfies the requirement of the claim. ⊣

Let Ψ̇ be the canonical A–name for the strategy Ψ given by the last claim.
Lemma 8.14 now follows through an application of Lemma 8.12 with the name
Ψ̇, followed by an application of the property of Ψ given by Claim 8.15 (or more
precisely the shift of this claim to Mα). ⊣

Lemma 8.16. If (in M) II wins E∗, then (in V) II wins Ĥ(adm + 1, Ḃ, κ, δ).

Proof. This is a precise mirror image of the previous lemma. ⊣

Lemma 8.17. If (in M) II wins D∗ and I wins E∗, then there exists a code

x ∈ M [g] so that x belongs to neither Ȧ[g] nor Ḃ[g].

Proof. We work throughout the proof in M [g]. Let Ψ∗ be a strategy for II
in D∗ and let Ω∗ be a strategy for I in E∗. Let σgen be the generic strategies
map corresponding to A, and let τgen be the mirrored generic strategies map
corresponding to B, see Neeman [5, §§1B,1D]. σgen and τgen belong to M [g].

Ψ∗ and σgen combine to produce a strategy Ψ for player II in D, with the

property that every run ~d according to Ψ comes equipped with a run ~a of A[ρ(~d)],

according to σgen[ρ(~d)], so that ~d and ~a together form a run of D∗ according to
Ψ∗.

Ω∗ and τgen similarly combine to produce a strategy Ω for I in E.
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Applying Lemma 3.3 we get ~d ∈ [D] and ~e ∈ [E] so that ~d is according to Ψ,

~e is according to Ω, and ρ(~d) = χ(~e). By absoluteness we may find such ~d and ~e

in M [g]. Let x = ρ(~d) = χ(~e).

From the fact that ~d is according to Ψ it follows that there exists an infinite

run ~a of A[ρ(~d)] according to σgen[ρ(~d)]. ~a is a generic run of A[ρ(~d)]. Using

[5, Lemma 1B.2] it follows that ρ(~d) 6∈ Ȧ[g].

A similar argument shows that χ(~e) 6∈ Ḃ[g].

The code x = ρ(~d) = χ(~e) therefore witnesses the truth of Lemma 8.17. ⊣

D∗ and E∗ are both determined in M , being open and closed respectively.
Lemmas 8.14, 8.16, and 8.17 therefore demonstrate that at least one of the
conditions (1), (2), (3) in Theorem 8.13 must hold. The formulae φI and φII can
be obtained by noticing that the games D∗ and E∗ above are definable in M

from κ, δ, Ȧ (for D∗), and Ḃ (for E∗). ⊣ (Theorem 8.13.)

Let C ⊂ R
<ω1 . Define G(adm + θ, C) to be played as follows: players I and

II collaborate in the usual fashion to produce reals yξ, until reaching the first
α so that Lα[yξ | ξ < α] is admissible. They then continue to play, in the
usual fashion, to produce reals yα+ξ for ξ < θ. The game ends with a sequence
〈yξ | ξ < α + θ〉, and player I wins iff this sequence belongs to C.

By the code for a sequence 〈yξ | ξ < α + θ〉 produced through a play of
G(adm + θ, C) we mean the sequence 〈x〉⌢〈yξ | ξ ∈ [α, θ)〉 where x codes 〈yξ |
ξ < α〉 (in the sense of Section 1). C ⊂ R

<ω1 is Γ in the codes if the set of
codes for elements of C belongs to Γ.

Theorem 8.18. Let θ be a countable ordinal. Suppose that there exists a
weakly iterable class model M and κ ∈ M so that:

(A) κ is a limit of Woodin cardinals in M ;
(B) For every B ⊂ M‖κ + 1 in M there exists a measure µ ∈ M on κ so that

Z ∈ Ult(M,µ);
(C) There are (in order) θ Woodin cardinals 〈δξ | ξ < θ〉 of M above κ; and
(D) M‖ supξ<θ(δξ + 1) is countable in V.

Then the games G(adm + θ, C) are determined for all C in <ω2 − Π1
1.

Proof. Combine Theorem 8.13 with the results of [5, Chapter 2]. ⊣

Theorem 8.18 too is optimal, in the sense that the determinacy proved does
not hold inside the minimal iterable class model for conditions (A)–(C) of the
theorem.
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