NOTES FOR MATH 535A: DIFFERENTIAL GEOMETRY

KO HONDA

1. REVIEW OF TOPOLOGY AND LINEAR ALGEBRA
1.1. Review of topology.

Definition 1.1. A topological spacés a pair (X, 7) consisting of a seX and a collection] =
{U,} of subsets oK, satisfying the following:
10, XeT,
(2) if Ua, Uﬁ eT, thenUa N Ug eT,
) ifU, € T forall « € I, thenU,c;U, € T. (Here[ is an indexing set, and is not
necessarily finite.)

T is called atopologyfor X andU,, € T is called anopen sebf X.

Example 1: R* = R x R x --- x R (ntimes) = {(z1,...,2,) | z; € R,i = 1,...,n}, called
real n-dimensional space
How to define a topology  onR"? We would at least like to include open balls of raditebout
y € R™

Bi(y) ={z eR" ||z —y| <r},
where

& =yl = V(w1 —y1)? + -+ (20— ya)?.
Question:I1s 7y = {B,(y) | y € R",r € (0, 00)} a valid topology forfR"?
No, so you must add more open setg§do get a valid topology foR™.
T={U|VyeU3B,(y) CcU}.
Example 2A: S* = {(z,y) € R? | 22 + *> = 1}. A reasonable topology of' is the topology
induced by the inclusiofi! c R2.

Definition 1.2. Let (X, 7) be a topological space and I¢t: Y — X. Then thanduced topology
YT ={f"YU)|U € T}is atopology ort".

Example 2B: Another definition ofS* is [0, 1]/ ~, where[0, 1] is the closed interval (with the
topology induced from the inclusidf, 1] — R) and the equivalence relation identifiés- 1. A

reasonable topology aft! is thequotient topology
1
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Definition 1.3. Let (X, 7) be a topological spacey be an equivalence relation ok, X = X/ ~
be the set of equivalence classestgfandr : X — X be the projection map which sendss X
to its equivalence clasig]. Then thequotient topology7 of X is the set of’ ¢ X for which
7~1(V) is open.

Definition 1.4. Amapf : X — Y between topological spacesdentinuousf f~1(V) = {z €
X|f(x) € V}is open whenever C Y is open.

Exercise: Show that the inclusioi$' C R? is a continuous map. Show that the quotient map
[0,1] — S = [0, 1]/ ~ is a continuous map.

More generally,

(1) Given atopological spadeX, 7) and amag : Y — X, the induced topology oK is the
“smallest™ topology which makeg continuous.

(2) Given atopological spadeX, 7) and a surjective map : X — Y/, the quotient topology
onY is the “largest” topology which makescontinuous.

Definition 1.5. Amapf : X — Y is ahomeomorphisnis there exists an inversg! : ¥ — X
for which f and f~! are both continuous.

Exercise: Show that the two incarnations 6t from Examples 2A and 2B are homeomorphic

Zen of mathematics: Any world (“category”) in mathematics consists of spacesb{écts”) and
maps between spaces (“morphisms”).

Examples:

(1) (Topological category) Topological spaces and comtirsumaps.
(2) (Groups) Groups and homomorphisms.
(3) (Linear category) Vector spaces and linear transfaonat

1.2. Review of linear algebra.

Definition 1.6. A vector spacé” over a fieldk = R or C is a setl” equipped with two operations
V x V — V (called addition) andc x V' — V (called scalar multiplication) s.t.

(1) V is anabelian groupunder addition.
(a) (Identity) There is a zero elemeis.t.0 + v =v 4+ 0 = v.
(b) (Inverse) Giveny € V there exists an elemente V st.v +w =w+v = 0.
(c) (Associativity) v, + ve) + vz = v1 + (vg + v3).
(d) (Commutativityy +w = w + v.
2) (@) lv=w.
(b) (ab)v = a(bv).
(€) a(v +w) = av + aw.
(d) (a+ b)v = av + bu.

IFigure out what “smallest” and “largest” mean.
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Note: Keep in mind the Zen of mathematics — we have defined objeetsdv spaces), and now
we need to define maps between objects.

Definition 1.7. A linear map¢ : V' — W between vector spaces ovesatisfiesp(v; + vg) =
o(v1) + ¢(v2) (V1,12 € V) ando(cv) = ¢ - ¢(v) (c € kandv € V).

Now, what is the analog dfomeomorphisrm the linear category?

Definition 1.8. A linear map¢o : V' — W is anisomorphismif there exists a linear map : W —
V such thatp o ¢ = id andy o ¢ = id. (We often also say is invertible)

If V andIV are finite-dimensionaf then we may take base$v,, ..., v,} and{w,, ..., w,,} and
represent a linear magp: V' — W as anm x n matrix A. ¢ is then invertible if and only itn = n
anddet(A) # 0.*

Examples of vector spacestet¢ : V. — W be a linear map of vector spaces.
(1) Thekernelker ¢ = {v € V' | ¢(v) = 0} is a vector subspace of.
(2) Theimageim ¢ = {¢(v) | v € V'} is a vector subspace oF .
(3) LetV C W be a subspace. Then thaotientiV/V = {w + V | w € W} can be given the
structure of a vector space. Haret+ V = {w+v | v € V'}.
(4) Thecokernelcoker ¢ = W/ im ¢.

2, means you should look up its definition.
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2. REVIEW OF DIFFERENTIATION

2.1. Definitions. Let f : R™ — R" be a map. The discussion carries oveftoU — V for open
setsU ¢ R™andV C R™.

Definition 2.1. The mapf : R™ — R" is differentiableat a pointz € R™ if there exists a linear
mapL : R™ — R" satisfying

(1)

whereh € R™ — {0}. L is called thederivative of f atz and is usually written adf (x).

o F+ ) = f@) = L)

h0 1| =0

Exercise: Show that iff : R™ — R™ is differentiable at: € R™, then there is a uniqué which
satisfies Equation (1).

Fact 2.2.If f is differentiable atr, thendf(x) : R™ — R™ is a linear map which satisfies

_ o St t) — f(z)
2) df (x)(v) = lim ; :
We say that thelirectional derivativeof f atx in the direction ofv exists if the right-hand side
of Equation (2) exists. What Fact 2.2 says is thaf i differentiable atr, then the directional
derivative of f atx in the direction ofv exists and is given byf (z)(v).

2.2. Partial derivatives. Lete; be the usual basis elemgt ..., 1,...,0), wherel is in thejth
position. Thenif (x)(e;) is usually called theartial derivativeand is written a%; (z) or 0, f(z).

More explicitly, if we write f = (f1,..., f,)T (hereT means transpose), whefe: R™ — R,

then T
of . _ (9h 9 fn
) = (G @)

anddf (x) can be written in matrix form as follows:

Wr(w) ... 2(w)
df () = : : :
Ue(z) ... Y=(a)

The matrix is usually called th#&acobian matrix

Facts:
(1) If 0,(0; f) and0;(0; f) are continuous on an open setr, theno; (0, f)(x) = 9;(0; f)(z).
(2) df (x) exists if all%(y), i=1,...,n,j5 =1,...,m, exist on an open set x and each
9i is continuous at:.

Ox;

Shorthand: Assumingf is smooth, we writé)* f = 07" 05* ... 0;* f wherea = (aq, ..., ay).
Definition 2.3.
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(1) f issmoothor of classC™ atx € R™ if all partial derivatives of all orders exist at.
(2) fisof classC* atx € R™ if all partial derivatives up to ordek exist on an open set x
and are continuous at.

2.3. The Chain Rule.

Theorem 2.4(Chain Rule) Let f : R® — R™ be differentiable atz andg : R™ — R" be
differentiable atf(x). Theng o f : R — R" is differentiable at: and

d(g o f)(z) = dg(f(x)) o df (x).
Draw a picture of the maps and derivatives.

Definition 2.5. Amapf : U — V is aC>-diffeomorphism iff is a smooth map with a smooth
inversef~!: V — U. (C'-diffeomorphisms can be defined similarly.)

One consequence of the Chain Rule is:
Proposition 2.6. If f : U — V is a diffeomorphism, thedy (x) is an isomorphism for al: € U.

Proof. Let g : V' — U be the inverse function. Theno f = id. Taking derivativesdg(f(x)) o
df () = id as linear maps; this give a left inverse ffi(z). Similarly, a right inverse exists and
hencedf (x) is an isomorphism for alt. O
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3. MANIFOLDS
3.1. Topological manifolds.

Definition 3.1. A topological manifoldof dimensionn is a pair consisting of a topological space
X and a collectiond = {¢,, : U, — R"},<; of maps (called amtlasof X) such that:

(1) U, isan open set ok andU,¢;U, = X,

(2) ¢, is a homeomorphism onto an open sulasgt/,,) of R™.

(3) (Technical condition 1)X is Hausdorff.

(4) (Technical condition 2)X is second countable.

Each¢,, : U, — R", also denoted byU,,, ¢,), is called acoordinate chart

Definition 3.2. A topological spaceX is Hausdorffif for any x # y € X there exist open sets,
andU, containingz, y respectively such thdf, N U, = 0.

Definition 3.3. A topological spacé X, 7) is second countablé there exists a countable sub-
collection7, of 7 and any open set/ € 7 is a union (not necessarily finite) of open sets in
To-

Exercise: Show thatS! from Example 2A or 2B from Day 1 (already shown to be homeorhiarp
from an earlier exercise) is a topological manifold.

Exercise: Give an example of a topological spa&ewhich is not a topological manifold. (You
may have trouble proving that it is not a topological mamfahough. You may also want to find
several different types of examples.)

Observe that in the land of topological manifolds, a squackacircle are the same, i.e., they are
homeomorphic! That is not the world we will explore — in otleards, we seek a category where
squares are not the same as circles. In other words, we needtives!

3.2. Differentiable manifolds.

Definition 3.4. Asmooth manifolds a topological manifold X, A = {¢,, : U, — R"}) satisfying
the following: For everylJ, N Us # 0,

Ppo ¢;1 : 0o (Ua NUp) — ¢(Us N Up)
is a smooth map. The maps o ¢, ! are calledtransition maps

Note: In the rest of the course when we refer to a “manifold”, we maasmooth manifold”,
unless stated otherwise.
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4. EXAMPLES OF SMOOTH MANIFOLDS

Today we give some examples of smooth manifokes.each of the examples, you should also
verify the Hausdorff and second countable conditions!

(1) R” is a smooth manifold Atlas: {id : U = R® — R"} consisting of only one chart.

(2) Any open subsdt’ of a smooth manifold/ is a smooth manifold. Given an atlés,, : U, —
R"}) for M, an atlas folV is {¢a|vnv, : Ua N U — R"}.

(3) Let M,,(R) be the space of x n matrices with real entries, and let
GL(n,R) = {A € M,(R) | det(A) # 1}.

GL(n,R) is an open subset af/,(R) ~ R, hence is a smooth?-dimensional manifold.
GL(n,R) is called thegeneral linear groumf n x n real matrices.

(4) If M and N are smoothn- and n-dimensional manifolds, then thegaroduct M x N can
naturally be given the structure of a smog@th + n)-dimensional manifold. Atlas{¢, x ¥3 :

Uy x V3 = R™ x R"}, where{¢,, : U, — R™} is an atlas fotl/ and{v3 : V3 — R"} is an atlas
for N.

(5) St = {2% + y* = 1} is a smooth 1-dimensional manifold.

(i) One possible atlas: Open séfs = {y > 0}, Uy = {y < 0}, U3 = {= > 0}, Uy =
{z < 0}, together with projections to the-axis or they-axis, as appropriateCheck the
transition maps!

(i) Another atlas: Open sets, = {y # 1} andU, = {y # —1}, together with stereographic
projections fromU; toy = —1 andU, toy = 1. The map¢, : U; — R is defined
as follows: Take the lind.(, ) which passes througf, 1) and(z,y) € U;. Then let
¢ be thez-coordinate of the intersection point betweeép, ,y andy = —1. The map

¢9 : Uy — R is defined similarly by projecting frorf0, —1) toy = 1. Check the transition
maps!

(6) S = {7+ -+ 22, =1} C R"™. Generalize the discussion from (5).
(7) In dimension 252, T2, genusy surface.
(8) (Real projective spac®P" = (R™™ — {(0,...,0)})/ ~, where
(xo, @1, ..., xy) ~ (txo,tzy,. .., tx,), t€R—{0}.
RP" is called thereal projective spacef dimensionn. The equivalence class @f, ..., z,) is

denoted byz, . .., z,].

SStrictly speaking, this should say “can be given the stmgctii a smooth manifold”. There may be more than one
choice and we have not yet discussed when two manifolds arsstime.
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Consider/y = {z, # 0} with the coordinate chatt, : Uy — R™ given by

T Tn T T
[xo,xl,...,xn]: 1, — . .., — = —,...,— .
Zo Zo Zo Zo

Similarly, takeU; = {z; # 0} and definep; : U; — R". What about transition maps; o o1
(Explain this in detail.)

(9) (Group actions) The-torus7? = R?/Z?. The discrete grouf? acts onR? by translation:
7? x R?* — R?
((m,n), (z,y)) = (m+z,n+y).
Note that for each fixe@n, n), we have a diffeomorphism
R? — R?,

(z,y) — (m+x,n+y).

R?/Z? is the set of orbits oR? under the action of2. (One orbit is(z, y) + Z2.)
Equivalently, the-torus is obtained from the “fundamental domajiy'1] x [0, 1] by identifying

(0,y) ~ (1,y) and(z,0) ~ (z,1), i.e., the sides and the top and the bottom. The assignment

R? — R?/Z?, x — [z], is injective when restricted to the interior of the fundarta domain.
Then-torusT™ = R" /7" is defined similarly.

Next time: Try to answer the question of what it means for two atlasee@kamel/ to be “the
same”.



NOTES FOR MATH 535A: DIFFERENTIAL GEOMETRY 9

5. SMOOTH FUNCTIONS AND SMOOTH MAPS
Today we discuss smooth functions on a manifold and smoofis metween manifolds.

5.1. Choice of atlas. Let (M, T') be the underlying topological space of a manifold, ahd=
{(Ua, ¢a)}, A2 = {(V3,5)} be two atlases.

Question: When do they represent tsamesmooth manifold?
Definition 5.1. Two atlases4, and.4, on M are compatiblef
Ypoda
Pa(Ua N Vi) 7= 5(Us N V)
is a smooth map for all pairg, N Vj # 0.

If A; and.A, are compatible, then we can takle= A; U A, which is compatible with bott,
andAg.

Definition 5.2. Given a smooth manifold\/, A), its maximal atlasA, .. = {(U., ¢.)} is an atlas
which is compatible witb4 and contains every atlad’ > A which is compatible wittA.

5.2. Smooth functions.

Some more zen:You can study an object (such as a manifold) either by loo&irthe object itself
or by looking at the space of functions on the object. In thmotogical category, the space of
functions would beZ?(A1), the space of continuous functioris: M — R. The function space
perspective has been especially fruitful in algebraic getoyn

Question: What is the appropriate space of functions for a smooth rakh(f\/, A)?

Definition 5.3. Given a smooth manifold/, A), a functionf : M — R is smoothif
fooda':¢a(Ua) > R
is smooth for each coordinate chdft,,, ¢,,) of A.

Note that the definition of a smooth function &h depends on the atlas.

The space of smooth functiorfs: A/ — R with respect toA is written asC'Y (M ). When A is
understood, we writ€'>(M).

Lemma 5.4. Two atlasesA; and.A, are compatible if and only i€'% (M) = C%, (M).

Proof. Supposed; = {(U,, ¢.)} and Ay = {(V3,15)} are compatible. It suffices to show that
Cx (M) D Cx(M). If feCx (M), thenf oy’ : 4hs(Vs) — R is smooth for all3. Now

3) foda' :¢alUaNVs) =R

can be written agf o %‘1) o (g0 ¢, '), and each of o qul andys o ¢! is smooth (the latter is
smooth becausd; and.A, are compatible); hence (3) is smooth for@lhnd . This implies that
fodt: ¢a(U,) — Ris smooth for alk.
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SupposeC Y (M) = C%,(M). We use the existence blimp functionsi.e., smooth functions
h:R — [0,1] such thati(z) = 1 on|a,b] andh(xz) = 0 oNR — [¢, d], wherec < a < b < d. (The
construction of bump functions is HW.)

In order to show that the transition maps

Vg0 bt pa(Ua NV3) = (U, NV5) C R™

are smooth, we postcompose with the projection R” — R to thejth R factor and show that
m;othgo ¢t is smooth. Given: € ¢3(U,NV3), letx € B.(x) C Ba.(x) C 15(U, NV3) be small
open balls around. Using the bump functions we can construct a functfoan 3(U, N V3)
which equalsr; on B.(z) and0 outsideB,.(z); f can be extended to the rest df by setting
f = 0. fisclearly inC>(A,). SinceC% (M) = C% (M), foso ¢, is smooth. This is
sufficient to show the smoothnessmgfo 15 o ¢! and hence ofi5 o ¢ O

Pullback: Let ¢ : X — Y be a continuous map between topological spaces. Then there i
naturally definegullback map

¢ CU(Y) — CV(X)
given by f — f o ¢. Note that pullback isontravariant i.e., the direction is fronY” to X, which
is the opposite from the original map

Consider the smooth manifold/, A). If ¢ : M — M is a homeomorphism, thes : C°(M) =
C%(M). AlthoughCY (M) = ¢*(C¥(M)), in generalC’Y (M) # ¢*(CX(M)).

Definition 5.5. Two C*°-structuresC%’ (M) and C'%, (M) are equivalentf there exists a homeo-
morphism of\/ which takesU'® (M) ~ C% (M).

Amagzing fact: (Milnor) S” has several inequivalent smooth structures! (Not amagisgl has
only one smooth structure.)

Major open question: (Smooth Poincaré Conjecture) How many smooth structuwres$t have?

5.3. Smooth maps. In the category of smooth manifolds, we need to define theogypjate maps,
calledsmooth maps

Definition 5.6. A map¢ : M — N between manifolds is smooth if for apnye M there exist
coordinate chartgU,, ¢.), (V3,¥s) such thaty, > p, V3 > f(p), and the composition

oot b 0
Ga(Ua) > Us = Vi = 15(Vp)
is smooth.

Remark 5.7. For the above definition, we need to tdke > p which is “sufficiently small” so that
»(U,) C Vp. So this means that we should be using a maximal atlas (oaat &*“large enough”
atlas).

Lemma5.8. ¢ : M — N is smoothif and only if¢*(C>(N)) C C*>°(M).
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The proof is similar to that of Lemma 5.4.

Definition 5.9. A smooth map : M — N is adiffeomorphismif there exists a smooth inverse
o~ ':M — N.

Upshot: Smooth maps between smooth manifolds can be “reduced” totbnmaaps fromR™ to
R™.
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6. THE INVERSE FUNCTION THEOREM
6.1. Inverse function theorem.

Definition 6.1. A smooth mag : M — N between two manifolds isdiffeomorphismif there is
asmoothinvers¢=! : N — M.

The inverse function theorem, given below, is the most irtgodrbasic theorem in differential
geometry. It says that an isomorphism in the linear categopjies a local diffeomorphism in the
differentiable category. Hence we can move from “infinitesi” to “local”.

Theorem 6.2(Inverse function theorem)et f : U — V be aC' map, wherd/ andV are open
sets ofR™. If df (z) : R® — R™ is an isomorphism, thefi is alocal diffeomorphismmearz, i.e.,
there exist open set$, > x andVy(,) > f(z) such thatf|y, : U, — Vy(,) is a diffeomorphism.

Partial proof. Refer to SpivakCalculus on Manifold$or a complete proof.

Assume without loss of generality that= 0 and f(0) = 0. We will only show that for all
y € V near0 there exists’ € U near0 such thatf (z’) = y. First pickz; such thatlf (0)(x;) = y;
this is possible sincéf(0) is an isomorphism. We then compafér;) anddf(0)(z,) = y: By
the differentiability of f, for any sufficiently smalk > 0 there exist®y > 0 such that whenever
|z1] < § we have:

|[f (1) = F(0) = df (0)(z1)| = | /(1) — y| < elan.
In other words, the erroff(z;) — y| is much smaller thanz;|. Next we takez, such that
df (z1)(x2) =y — f(z1). Then we have:

|f(w1 +22) — f(21) — df (21)(22)] = [ f (21 + 72) — y| < efas].

Now, sincef is in the class™?, df (%) is invertible for allz near0 and there exists a constafit> 0
such that the norm ofdf (z))~! is < C. Hencelxy| < Cly — f(z1)| < Cel|z1|. We then repeat
the process to obtain, =5, ..., andf(z; + z2 +...) = y. (This process is usually callétewton
iteration.) O

6.2. lllustrative example. Let f : R? — R, (z,y) — z* + y?. We would like to analyze thievel
setsf~!(a), wherea > 0. To that end, we consider
F:R? =R (2,y) = (f(z,9),9).

Let us use coordinates, y) for the domainR? and coordinatesu, v) for the rangeR?. We

Compute:
20 2
= (5 ).

Let us restrict our attention to the portian> 0. Sincedet(dF(z,y)) = 2x > 0, the inverse
function theorem applies and there is a local diffeomonpiigtween a neighborhodd, ,, C R?
of a point(z,y) on the level seff(z,y) = a and a neighborhoolr, ) of F'(z,y) on the line
u = a.
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In particular,f ~*(a) Uy, is mapped tdu = a} NVp(,,,); in other words ' is a local diffeomor-
phism which “straightens outf~!(a). Hencef~!(a), restricted tar > 0, is a smooth manifold.
Check the transition functions!

Interpreted slightly differently, the paif, y can locally be used as coordinate functionsRm
providedz > 0.

6.3. Rank. Recall that thelimensiorof a vector spac#’ is the cardinality of a basis fdr. If
is finite-dimensional, thefr ~ R™ for somem, anddim V' = m.

Definition 6.3. Therankof a linear mapL : V' — W is the dimension din(L).

Definition 6.4. Therankof a smooth mag : R™ — R™ atx € R™ is the rank ofdf (z) : R™ —
R™. The mapf hasconstant rankf the rank ofdf (z) is constant.

We can similarly define the rank of a smooth mjapM — N at a pointr € M by using local
coordinates.

Claim 6.5. The rank atr € M is constant under change of coordinates.

Proof. We compare the ranks af(y, o f o ¢') andd(is o f o ¢[§1), where¢,, : U, — R™,
Yo : Vo = R, U, C M, V3 C N, andgg, 15 are defined similarly. The invariance of rank is due
to the chain rule:

d(go fods') = d((Wsovy')o(Waofod,')o (s 0ds))
= d(ygous') od(ao fo!)od(d7" o ¢p),
and by observing that(vys o ¢ ') andd(¢,' o ¢) are linear isomorphisms. O
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7. SUBMERSIONS AND REGULAR VALUES
7.1. Submersions.

Definition 7.1. LetU ¢ R™ andV C R" be open sets. A smooth maAp U — V' is asubmersion
if df (x) is surjective for allr € U. (Note that this means that > n and thatf has full rank.)

Definition 7.2. Let M be a manifold with maximal atlagl = {¢, : U, — R™} and letN be
a manifold with maximal atla$8 = {¢3 : V3 — R"}. Then a smooth map : M — N is a
submersiorif all ¢3 o f o ¢! are submersions, where defined.
Prototype: f: R™ x R" — R™, (21, ..., Timan) = (T1,. -, Tpn)-

Theorem 7.3(Implicit function theorem, submersion versioet f : U — V be a submersion,
whereU C R™ andV C R" are open sets witm > n. Then for eaclp € U there exist
U D U, > p and a diffeomorphisn’ : U, = W C R™ such that

foF ™ W R"
is given by

(1, Tm) > (X1, .o, ).

Proof. Write f = (f1, ..., f.) wheref; : U — R, and define the map

F:U—>VxR"™™,

(1, s @m) = (f1y s frs Tagty oo oy T
Here we choose the appropriatg, 1, ..., z,, (after possibly permuting some variables) so that
dF(x) is invertible. Then/ is a local diffeomorphism by the inverse function theorem,

fOF_l(fl,...,fn,ZEn+1,...,.I'm) = (fl,...,fn),

and F' satisfies the conditions of the theorem. O

Carving manifolds out of other manifolds: The implicit function theorem, submersion version,
has the following corollary:

Corollary 7.4. If f : M — N is a submersion, thefi~'(y), y € N, can be given the structure of
a manifold.

Proof. The implicit function theorem above gives a coordinate thhout each point irf ~(y).
HW: Check the transition functions!! O

Example: The easy way to prove that the circi® = {z? + 4> = 1} C R? can be given the
structure of a manifold is to consider the map

f:R*—{(0,0)} = R, f(z,y)=2"+1y%

The Jacobian idf (z,y) = (2z,2y). Sincez andy are never simultaneously zero, the rankipf
is 1 at all points ofR? — {(0,0)} and in particular ort*. Using the implicit function theorem, it
follows thatS* is a manifold.
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7.2. Regular values and Sard’s theorem.

Definition 7.5. Let f : M — N be a smooth map.

(1) A pointy € N is aregular valueof f if df (z) is surjective for alle € f~1(y).
(2) A pointy € N is acritical valueof f if df (x) is not surjective for some € f~1(y).
(3) A pointz € M is acritical pointof f if df (x) is not surjective.

()

The implicit function theorem implies that!(y
is a regular value of.

can be given the structure of a manifoldif

Example: Let M = {2 + y* + 2% = 1} C R3. Consider the map
R =R, (2,y,2) 2% +y° + 25
Then M = f~'(1). The Jacobian is given byf(z,y,2) = (327 3y? 32%) and the rank of

df (z,y, z) is one if and only if(x,y,2) # (0,0,0). Since(0,0,0) ¢ M, it follows that1 is a
regular value off. HencelM can be given the structure of a manifold.

Exercise: Prove thats™ ¢ R**! is a manifold.

Example: Zero sets of homogeneous polynomialsRi#”. A polynomial f : R**!' — R is
homogeneous of degreeif f(tx) = tif(x) forallt € R — {0} andxz € R""'. The zero set
Z(f) of fisgiven by{[zo,...,x,] | f(xo,...,z,) = 0}. By the homogeneous conditiof( f) is
well-defined. We can check whethg( /) is a manifold by passing to local coordinates.

For example, consider the homogeneous polynorfiial, 1, v2) = z3 + 23 + 23 of degree 3
onRRP2. Consider the open sét = {z, # 0} C RP?. If we letz, = 1, then onl ~ R? we have
f(z1,79) = 1+ 23 + x3. Check thab is a regular value of (z1, z»)! The open set$z; # 0} and
{zy # 0} can be treated similarly.

More involved example: Let SL(n,R) = {A € M,(R) | det(A) = 1}. SL(n,R) is called the
special linear groupf n x n real matrices. Consider the determinant map

FiR” SR, A det(A).
We can rewritef as follows:
R - xR" =R, (a,...,a,)— det(aq,...,a,),
wherea; are column vectors and = (ay, ..., a,) = (a;).

First we need some properties of the determinant:

Q) fler,...,e,) = 1.

(2) flay,...,ca; +cal, ... an) =c¢;- flar,... a5 ....0,) + ¢ - flay, ... a5 ... a,).

) fl...,a,,a1,...)=—f(..,ai1,a4...).
(1) is anormalization, (2) is calledultilinearity, and (3) is called thalternating property It turns
out that (1), (2), and (3) uniquely determine the determifamction.
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We now computelf (A)(B):
4F(A)(B) =lim LA D) = J(A)

t—0 t
B det(ay + tby, ..., a, +tb,) — det(aq, ..., ay)
20 t

Y det(aq,...,a,) + t[det(by, as, ..., a,) + det(ay, by, ..., a,)
=lim
t—0 t

+--otdet(ay, ..., an_1,b,)] +t2(...) — det(ay,...,a,)
t
=det(by, as,...,a,) +---+det(ay,...,a,_1,b,)
It is easy to show that is a regular value off (it suffices to show thadf(A) is nonzero for any
A € SL(n,R)). For example, také = ca; wherec € R andb; = 0 for all i # 1.
Theorem 7.6(Sard’s theorem)Let f : U — V be a smooth map. Thetmost every poiny € R"
is a regular value.

The notion ofalmost every poinvill be made precise later. But in the meantime:

Reality Check: In Sard’s theorem what happens when< n?
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8. IMMERSIONS AND EMBEDDINGS

8.1. Some more point-set topology.We first review some more point-set topology. Létbe a
topological space.
(1) A subsel” C X is closedif its complementX — V = {z € X |« ¢ V'} is open.
(2) TheclosureV of a subsel’ C X is the smallest closed set containivig
(3) Asubsetl’ C X isdensdf U NV # () for every open set/. In other words)” = X.
(4) A subsetl” C X is compactf it satisfies the followindinite covering propertyany open
cover{U,} of V (i.e., theU, are open and, U, = V') admits a finite subcover.
(5) A metric space is compact if and only if every sequenceahamvergent subsequence.
(6) A subset of Euclidean space is compact if and only if itlesed andooundedi.e., is a
subset of somé&,.(y).
(7) Amapf : X — Y is properif the preimagef~—!(V) of every compact set’ C Y is
compact. (Remark: If : X — Y is continuous, then the image of every compact set is
compact.)

8.2. Immersions.

Definition 8.1. LetU C R™ andV C R" be open sets. A smooth mAp U — V' is animmersion
if df (x) is injective for allz € U. (Note this means > m.) A smooth mayg : M — N between
manifolds is anmmersionif f is an immersion with respect to all local coordinates.

Prototype: f: R™ — R™, n >m, (z1,...,2m) — (T1,...,ZTm,0,...,0).

Theorem 8.2(Implicit function theorem, immersion versianlet f : U — V' be an immersion,
whereU ¢ R™ andV C R" are open sets. Then for apyc U, there exist open sets D U, > p,

V D Vi) 3 f(p) and a diffeomorphisrty : Vj,) — W C R" such that
Gof:U,—R"
is given by
(X1, oy Tm) = (21,0, T, 0,...,0).
Proof. The proof is similar to that of the submersion version. Defireemap
F:UxR"™™ — R",
(T15 s oy Yt 1y - Yn) = (f1(2) oo Fn(@)s frnt1 () + Ymsrs - oo ful(@) + yn),

wherex = (zy,...,z,) and f(x) = (fi(x),..., fu(x)). We can check thatF" is nonsingular
after possibly reordering thA, . .., f,, and thatF"~! o f : U, — R" is given by

(1, o ) = (T1, .0, T, 0,...,0).
We then set; = F—1. dJ

Zen: The implicit function theorem tells us that under a constank condition we may assume
that locally we can straighten our manifolds and maps anépdewe are doing linear algebra.
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Examples of immersions:
(1) Circle mapped to figure 8 iR2.
(2) The mapf : R — C, t — €%, which wraps around the unit circle' c C infinitely many
times.
(38) The mapf : R — R?/Z?,t — (at, bt), whereb/a is irrational. The image of is densen
R2/72.

8.3. Embeddings and submanifolds.We upgrade immersions: M — N as follows:

Definition 8.3. Anembeddingf : M — N is an immersion which is one-to-one and proper. The
image of an embedding is calledsabmanifoldof V.

The “pathological” examples above are immersions but nddeztdings. Why? (1) and (2) are not
one-to-one and (3) is not proper.

Proposition 8.4. Let M and N be manifolds of dimension andn with topologies7 and7”. If
f: M — N is an embedding, thefi }(7") = T.

Proof. It suffices to show thaf~!(7”) D T, since a continuous mapsatisfiesf~*(7’) C 7. Let

x € M andU be a small open set containing Then by the implicit function theorenj can be
written locally asU — R”, 2’ — (2/,0) (where we are using’ to avoid confusion with). We
claim that there is an open sét C R™ such that’ N f(M) = f(U): Arguing by contradiction,
suppose there exigte f(U) and asequender;}°, C M such thatf(z;) — y but f(z;) & f(U).
The set{y} U {f(x;)}2, is compact, sq f~*(y)} U {z;}32, is compact by properness, where we
are recalling that is one-to-one. By compactness, there is a subsequefeglof/hich converges
to f~(y). This implies thatr; € U and f(z;) € f(U) for sufficiently largei, a contradiction. [
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9. TANGENT SPACES DAY |

9.1. Concrete example.ConsiderS? = {z* + y* + 2> = 1} C R?. We recall the defini-
tion/computation of théangent pIanéF(a,b,C)S2 from multivariable calculus. We use the fact that
S? is the preimage of the regular valu®f f, where

f R =R, f(r,yz2)=2+9y+22—1.
The derivative off at the pointa, b, c) is:
df(a,b,c)(x,y, 2)" = (2a,2b,2¢)(x,y, 2)".

The tangent directions are directiofas y, z) wheredf (a, b, ¢)(z,y, z)* = 0. Therefore, the tan-
gent plane is the plane through b, ¢) which is parallel taxz + by + cz = 0. More explicitly,

T(a,b,c)s2 ={ar+by+cz=a*+b*+c* =1}
Definition 9.1. Let M be a submanifold dR™. Then we can defing, M/ as follows: Pick a small

neighborhood’,, ¢ R™ of p and a functionf : U, — R™ such thatM N U, is a level set off.
ThenT,M is the set of vectors € R™ such thatif (p)(v) = 0.

Some issues with this definition:

(1) Need to verify thaf), M/ does not depend on the choicefof U, — R™. (Not so serious.)
(2) The definition seems to depend on hbihis embedded iR™. In other words, the definition
is not intrinsic

We will give several definitions df, M which are intrinsic, in increasing order of abstraction!!

9.2. First definition. Let M be a smootl-dimensional manifold. It/ C M is an open set, then
let C>(U) be the set of smooth functiorfs: U — R.

Notation: Let f,g : U — R whereU C R. Thenf = O(g) if there exists a constait such that
|f(t)] < C|g(t)] for all ¢ sufficiently close td). For examplet = cost + O(t?) neart = 0.

Definition 9.2 (First definition) Thetangent spac@él)M (here(1) is to indicate that it’s the first
definition) toM at p is the set of equivalence classes

TV (M) = {smooth curves : (—¢,,e,) — M,¥(0) = p}/ ~,

wherey; ~ v, if fovy(t) = foye(t)+O(t?) for all pairs ( f, U) whereU is an open set containing
pandf € C>*(U). Heree, > 0 is a constant which depends on

Letxy,...,x, be coordinate functions for an open setc M.

Theorem 9.3(Taylor’s theorem) Let f : U C R® — R be a smooth function arfle U. Then we
can write
flz)=a+ Z a;x; + Z a;;(z)x;x;,
7 ,]

on an open rectanglé—ay, by) x - -+ X (—ay,, b,) C U which contain$), wherea, a; are constants
anda;;(x) are smooth functions.
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Proof. We prove the theorem for one variahleBy the Fundamental Theorem of Calculus,

g(1) — g(0) = / J(t)dt.

Substitutingg(t) = f(tz) and integrating by parts (i.ef,udv = uwv — [ vdu) with u = < f(tz)
andv =t — 1 we obtain:

Fa) =50 = [ Grtead
=z f(tx) - (t = 1)|i—, —/0 (t — Da?- f"(tz)dt

1
=~ O)(-1) ~a* [ (= 1) e
0

= f(0)- @ +h(z) 2”.

Here we writeh(x) = — fol (t — 1) f"(tx)dt. This gives us the desired result
f(@) = f(0)+ f(0) - &+ h() - 2*

for one variable. O
Corollary 9.4. v, ~ , ifand only ifx;(71(t)) = z;(12(t)) + O(t?) fori=1,...,n.
Corollary 9.5. If M is a submanifold oR™, theny; ~ ~, if and only ify{(0) = ~5(0).

Remark: At this point it's not clear WhetheTlgl)M has a canonical vector space structure. Here’s
one possible definition: Choose coordinates (x1, ..., z,) aboutp = 0. If we write y;,v, €
TISI)M with respect tar, then we can do additiono +; 4+ = o 75 and scalar multiplicationz o ;.
However, the above vector space structure depends on theeabiocoordinates. Of course we
can show that the definition does not depend on the choiceafinmtes, but the vector space

structure is clearly canonical in the definitionﬁﬁz)M from next time.
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10. TANGENT SPACES DAy Il

10.1. Sheaf-theoretic notions.We first discuss some sheaf-theoretic notions.

The setC>(U) of smooth functiong : U — R is analgebra overR, i.e., it has operations- f,
f-9,f+g, wherece Randf,g € C>(U).

LetV C M be any set, not necessarily open. Then we define
ce(V)y=A{(f,U)|UDV,f:U— Rsmooth}/ ~ .

Here(f1,Ur) ~ (f2, Us) if there exists C U C U; N U, for which f; |y = f2|y. When we refer
to asmooth function of, what we really mean is an element@ (1), since we need open sets
to define derivatives.

Given open seté/; C U,, there exists a naturaestriction mappgf 2 C®(Uy) — C=(Uy),
f = flu,- ThenC> (V) is thedirect limit* of C>°(U) for all U containingV’.

Example: WhenV = {p}, C>({p}) (written simply asC'*(p)), is called thestalkat the pointp
or the set ofyerms of smooth functiom p.

10.2. Second definition.

Definition 10.1 (Second definition) A derivationis an R-linear mapX : C*°(p) — R which
satisfies the Leibniz rule:

X(fg)=X(f) 9p)+ f(p) - X(9).
The tangent spacESz)M is the set of derivations at

By definition, 7. M is clearly a vector space ovE

Remark: It does not matter whetheY/ is a manifold — it could have been Euclidean space
instead, sinc€'>(p) only depends on a small neighborhoodof

Exercise: If X is a derivation, thetX (c) = 0, ¢ € R.

Examples.
(1) X; = a%- Take local coordinate functions, . . ., z,, nearp = 0. Then letX (f) = %(0).
Check: this is indeed a derivation agé (z;) = 4;;.
(2) Giveny : (—e,e) — M with v(0) = p, aefineX(f) = (f ov)’(0). This is usually called
the directional derivative off in the directiony. It is easy to check that twe ~ +' give
rise to the same directional derivative.

Lemma 10.2.If M is ann-dimensional manifold, thedim T,SZ)M =n.

Proof. Take local coordinates;,...,z, so thatp = 0. Let X; = %. Then X;(z;) = 0;;

and clearly theX; are linearly independent. Thusm TIEQ)M > n. Now, given some derivation
X, supposeX (z;) = b;. Then the derivatio’ = X — Zj b; X; satisfiesY (z;) = 0 for all
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z;. By Taylor's Theorem, anyf € C*°(p) can be written as + > a;z; + Y a;;z;x;. By the
derivation property, all the quadratic and higher termsistanand hencé’(f) = 0. Therefore
dim T2 M = n. O

Lemma 10.3. The first two definitions ¢f, M/ are equivalent.

Proof. Given~y : (—¢,¢) — M with v(0) = p, we defineX (f) = (f o 7)'(0) as in the example.
Since we already calculatetdm 7,,M = n for the first and second definitions, we see this map is
surjective and hence an isomorphism. O

10.3. Third definition. DefineF, C C*(p) to be germs of functions which afeatp. F, is an
ideal of C>°(p). This means that if € 7, andg € C*~(p), thenfg € F,. Let F} C F, be the
ideal of C>°(p) generated by products of elements/&/, i.e., consisting of elements’ f;¢; s,
whereg,, o1, € F,.

Definition 10.4 (Third definition) 7,” M = (F,/F2)*, i.e., Ty M is the dual vector space (the
space ofR-linear functionals) ot/ 7.

Equivalence of/}” M and7}* M: Recall that a derivatioi : C>(p) — R satisfiesX (const) =
0. Show thatX : 7, — R factors throughfg. (Pretty easy, since it's a derivation.) Hence we have

a linear magly” M — T, M. Now note thatlim(F,/F2) = n by Taylor's Theorem.

F»/F} is called thecotangent spacatp, and is denoted M. If f € C*(p), thenf — f(p) € F,,
and is denotedf (p), when viewed as an elemefiit— f(p)] € F,/F}.
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11. THE TANGENT BUNDLE

11.1. The tangent bundle. Let T'M = U,¢p T, M. This is called theangent bundleWe explain
how to topologize (i.e., give a topology) and give a smoathcitire on the tangent bundle.

Consider the projection : 7'M — M which sends any € 7T,M top. LetU C M be an open
set with coordinates;, . .., z,. Since an element € T,M is written asy ", a,-a%, we identify

7 1(U) ~ U x R™ by sending the point € TM to (zy,...,z,,a,...,a,). By this identification
we can induce a topology ar*(U) from U x R"; at the same time, we also obtain a local chart
for 7=1(U).

Check the transition functions. Let x = (x4, ..., z,) be coordinates oY andy = (vy1, ..., yn)
be coordinates ofY. We need to show that the induced topologieston(U) and=~*(V') are
consistent and that the transition functionsmon (U N V') are smooth.

Let (x,a) be coordinates om~!(U) and (y,b) be coordinates om~!(V). Think of y as a
function ofz onU N V. Write 2¢ = (ayz ) In terms ofy coordinates,

Jy;
Z 8@ Z 8sz dy;

This is easily verified by thinking of evaluation on funct®ohusp; = >, a;5.* ay] :

Theng € T'M corresponds t@z, a) or (y, %a), whereq is viewed as a column matrix.

Computation of the Jacobian of the transition function. The Jacobian matrix of the transition
map(z,a) — (y, %a) is:

oy Oy 3@/ 0
% 9% ) % 8 :
( dr Oa Zk 8:(:ngk B_Z
The two terms on the bottom are obtained by differentiating >, gi’;

Thus we obtain a smooth manifaldV/ and aC>-functionTM = M.

11.2. Examples of tangent bundles.

Example: The tangent bundle off ¢ R". TU ~ U x R* ¢ R" x R". A tangent vector
is described by a pointzy,...,z,) € U, together with a tangent directidia4, ..., a,) € R",
written asy_, a; 2.

Example: S? C R? S? = {27 + 23 + 23 = 1}. A multivariable calculus definition of’S?
is the following: Think of7'S? C R? x R3 with coordinatez, y) wherex = (z1, z2,x3) and
v = (y1,y2,y3). At z € S?, T,,5? is the set of pointg such that: - y = 0. Therefore:

TS? ={(r,y) eR* xR | |[z| = 1,7 -y = 0}
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HW: Show that the tangent bundl&S? defined in this way is diffeomorphic to our “official defi-
nition” of the tangent bundle.

11.3. Complex manifolds.

More abstract example: S? defined by gluing coordinate charts. Lét= R? andV = R?, with
coordinateszy, y1), (22, y2), respectively. Alternatively, think &2 = C. TakeUNV = C—{0}.
The transition function is:
U~ {0} *% v — {0},
2=,
z

with respect to complex coordinates= = + iy. With respect to real coordinates,

& )
— — :

S? has the structure of @omplex manifold

Definition 11.1. A function¢ : C — C is holomorphic(or complex analytiyif
do _ . 9(z+h) = 9(2)
dz h—0 h
exists for allz € C. Hereh € C — {0}.
A functiong : C* — C™ is holomorphic if
% — im G210 zithy oo zn) — 021,05 20)
aZZ' h—0 h
exists forallz = (z1,...,2,) andi = 1,...n.

Definition 11.2. A complex manifold is a topological manifold with an atlgs,,, ¢}, where
¢ : Uy, — C"andgg o ¢ ' : C* — C™ is a holomorphic map.

Remark: A holomorphic mapf : C — C, when viewed as a map: R? — R?, is a smooth map.
Hence a complex manifold is automatically a smooth manifold

Compute the JacobiansRewriting as a magyy : R? — {0} — R? — {0}, we compute:

O B 9 [z _ 2 2
Oz \ z2+y? Oy \ z2+y? 1 <y -z —2zy )

Joow = | 4 —y o (_~y - (22 + y2)? 2oy y? — 22

ox \ 22442 ) By \22+y?
Remark: It is not a coincidence that;; = a9 andas; = —aqs.

Explain that7'S? is obtained by gluing two copies ¢R? — {0}) x R? together via a map which
senday, ax)” over(wzy, y1) to J(ai, ax)’ over(xq, o).
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12. COTANGENT BUNDLES AND 1-FORMS

12.1. The cotangent bundle. An element of the cotangent spa&gM is df (p) = [f — f(p)],
which we often write without brackets. It is not hard to seattifi =, ..., x, are local coordi-
nates neap, thendx(p), ..., dr,(p) are linearly independent and hence form a basigfoVv/.
Therefore, an element @if; M can be written ad’ a;dx;.

We now “topologize” thecotangent bundlg™M = U, T;M. Again we have a projection
7 : T*M — M. Given a coordinate chatt C M, we identify7='(U) ~ U x R™. This induces
the topology and smooth structure on'(U).

Transition functions. Take charté/, vV C M, and coordinatize~!(U) andr=*(V) by (z, a) and
(y,b), wherea corresponds tQ  a;dx; andb corresponds td _ b;dy;.

Lemma 12.1.0n the overlag/ NV, dy; = 3. 2% dx;.

J Ox;

Similarly, if f is a smooth function of, thendf = 3. 2L dz;

jam Jr

Proof. If p € U NV, then, using Taylor’'s theorem,

dyi(p) = yi(x) = yi(p) = gi” (p)( Z gi; O

We denote this more simply dg = %dz. Thendz = (%)_ dy. Hencey a;dz; = 3 a;[(22)~Y;dy;

and(z, a) — (y, ((5£)~)7a), if we write a as a column matrix.
Exercise: Compute the Jacobian of the transition function.

12.2. Functoriality. Let f : M — N be a smooth map between manifolds. Then we can define
two natural maps.

Contravariant functor. f induces the mag'(f(p)) TN C*(p) which restricts taFy,) TN Fp.
(Check this!) This descends to the quotient
f* . T;ck(p)N — T;M,
dg — dgo f.
(The functor takes the category of “pointed smooth mangfglde., pairs(M, p) consisting of a

smooth manifold and a poipte M and smooth mapg : (M, p) — (N, f(p)), to the category of
R-vector spaces. The functor is contravariant, i.e., regedirections.)

Covariant functor. f also induces the map
f : T M — Tf(p)N

given by X — X o f*. (Here we are using,M = T M) This makes sense:

T;(p)N —> T;M AR
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f« is often called thelerivative map

Exercise: Define the derivative map in terrﬂél)M and show the equivalence with the definition
just given.

12.3. Properties of 1-forms.

Definition 12.2. LetT*M = M be the cotangent bundle.Aform overU c M is a smooth map
s : U — T*M such thatr o s = id.

Note that a 1-form assigns an element/{jf\/ to a givenp € M in a smooth manner. The space
of 1-forms onU is denoted! (U). The space of 1-forms oli is anR-vector space.

1. We often writeQ’(M) = C>°(M). Then there exists a map: Q°(M) — QY(M), g — dg.

2. Giveng : M — N, there is no natural map*M — T*N unlesse is a diffeomorphism.
However, there existg* : Q1(N) — Q1 (M), 0 — ¢*0. (¢*0 is called thepullbackof 6.)

3. Lety : L - M and¢ : M — N be smooth maps between smooth manifolds and bet a
1-form onN. Then(¢ o ¥)*0 = ¢*(¢*0). [Exercise. Note however that the order of pulling back
is reasonable.]

4. There exists a commutative diagram:
QN) L QM)
al, o ld
Q(N) LoQl(M)
i.e.,d o ¢* = ¢* od. Check this for HW by unwinding the definitions.

5.d(gh) = gdh + hdg. Check this for HW.
Example: § = 2%dy + ydz onR2. Consideri : R — R2, ¢~ (¢,0). Theni*d = 0.
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13. LIE GROUPS
13.1. Lie groups.

Definition 13.1. A Lie groupG is a smooth manifold together with smooth mapsG' x G — G
(multiplication) andi : G — G (inverse) which maké&' into a group.

Definition 13.2. A Lie subgroupHd C G is a subgroup ofs which is also a submanifold @f.
A Lie group homomorphism : H — G is a homomorphism which is also a smooth map of the
underlying manifolds.

Examples:

(1) GL(n,R) ={A € M,(R) | det(A) # 0}. We already showed that this is a manifold. The
productAB is defined by a formula which is polynomial in the matrix ee¢rof A and B,
sou is smooth. Similarly prove thatis smooth.

(2) SL(n,R) = {A € M,(R) | det(A) = 1} is a Lie subgroup of7L(n, R).

(3) O(n) = {A € M,(R) | AAT = id}.

(4) SO(n,R) = SL(n,R) N O(n).

More invariantly, given afR-vector spacé’, let GL(V') be the group oR-linear automorphisms
VSV,

Definition 13.3. A Lie group representatiois a Lie group homomorphis : G — GL(V') for
someR-vector spacé’.
13.2. Extended example:O(n).

1. AAT = [ impliesdet(AAT) = det(I) = det(A) = +1. Here we are usindet(AB) =
det(A) - det(B) anddet(AT) = det(A).

2. Note thatO(n) C GL(n,R) but O(n) is not quite a subgroup o¥L(n,R). O(n) has two
connected components

SO(n) = O(n) N{det(A) =1} = O(n) N SL(n,R)
and A, - SO(n) = O(n) M {det(A) = —1}, whereA, — <_01 (1’) € O(n) N {det(A4) = —1}.

3. ShowO(n) is a submanifold of7L(n,R). Consider the map : GL(n,R) — Sym(n) given
by A — AAT, whereSym(n) is the symmetria: x n matrices with real coefficients. We compute
that

dp(A)(B) = ABT + BAT = AB" 4+ (AB")T,
Since for any symmetric matri&’ there is a solution to the equatiohB” = C' (hereA is fixed
and we are solving foB), it follows thatd¢(A) is surjective.

. . . n(n+1 n(n—1
4. dim O(n) = dim GL(n,R) — dim Sym(n) = n? — ™ - ) = > )
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5. SO(n) is the group of “rigid rotations” of5”~! c R". To see this, writed = (ay,...,a,)7,
whereq; are column vectors. ThedA” = id implies thata! a; = 6,5, and{ay, ..., a,} forms an
orthonormal basis foR™ with the usual inner product. (HW: The extra ingredientlef = 1 is
necessary for to be a “rigid rotation”.)

6. Show compactness. Sin€&n) = ¢~ (id), it follows thatO(n) is closed. It is also bounded by
the previous paragraph.

7. Exercise:SO(2). Elements are of the forrfvos 6, sin 6; — sin 0, cos §). ShowSO(2) is diffeo-
morphic toS*.

8. ConsiderSO(3). These are the rigid rotations 6f = {22 + y% + 22 = 1} C R®. Prove that
every elementd of SO(3) which is not the identity has a unique axis of rotatioriRh In other
words, there is a unigue line through the originRA which is fixed byA, and A is given by a
rotation about this axis.
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14. VECTOR BUNDLES

14.1. Vector bundles. The tangent bundl&)/ = M and the cotangent bundi& A/ = M are
examples ofrector bundles

Definition 14.1. Areal vector bundle of rank over a manifoldV/ is a pair (E,r : E — M) such
that:

(1) =—!(p) has a structure of aiR-vector space of dimensidn
(2) There exists a coveil/, } of M such thatr—(U,) = U, x R* which restricts to a vector
space isomorphism~!(p) = R¥
A rank1 vector bundle is often calledlane bundle

(2) is usually stated as: admits adocal trivialization.

Definition 14.2. A sectionof a vector bundler : £ — M overU C Misasmoothmap: U — E
such thatr o s = id. A section oveiV/ is called aglobal section

We writeI'( £, U) for the space of sections &f; we writeI'(E) if U = M. Note thatl'(E, U) has
anR-vector space structure.

Sections ofl'M are calledvector fieldsand we often writeX (M) = I'(T'M). Sections ofl™* M
are calledL-formsand we often writ€)! (M) = T'(T*M).

14.2. Transition functions, reinterpreted. Considerr : TM — M and local trivializations

7Y U) ~ U xR, 774(V) ~ V xR". Letx = (x1,...,x,) be the coordinates far and

y = (w1, ..,yn) be the coordinates fdr. We already computed the transition functions
¢Uvi(UmV) XRH—)(UHV) x R"

(z,a) = (y(2), 5(2)a),

where the domain is viewed as a subsat/oft R", the range is viewed as a subsetok R", and
a=(ay,...,a,)". Alternatively, think of¢; as
Py UNV — GL(H, ]R),

0
r = 2 (x).

1. For double intersectioris NV, we havedyy o ®yyy = id.

9z Oy

2. For triple intersection&, N Uz N U, with coordinates:, y, z, we haveZ = 9 G0

i.e.,

(chain rule),

Qu,v, = Pu,u, © Pusu, -
This is usually called theocycle condition
What's this cocycle condition? This cocycle condition (triple intersection property) igarly

necessary if we want to construct a vector bundle by patdoigether{U, x R"}. It guarantees
that the gluings that we prescribe, i.ey, v, from U, to U, etc. arecompatible
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On the other hand, if we can find a collectipiy, i, } (for all U, Ug), which satisfies the cocycle
condition, we can construct a vector bundle by glufibgy x R™} using this prescription.

Considerr : T*M — M. In a previous lecture we essentially computed that thesitian
functions®y : U NV — GL(n,R) are given byr — ((%(z))‘l)T. The inverse and transpose
are both necessary for the cocycle condition to be met.

14.3. Constructing new vector bundles out of’M. Let M be a manifold andU,} an atlas
for M. View T'M as being constructed out §t/, x R"} by gluing using transition functions
dy,u, : Ua NUg — GL(n, R) which satisfy the cocycle condition.

Consider a representatipn GL(n,R) — GL(m,R).

Examples of representations:
(1) p: GL(n,R) - GL(1,R) = R*, A — det(A).
(2) p: GL(n,R) — GL(n,R), A— BAB™'.
() p: GL(n,R) — GL(n,R), A — (A7),

We can use and gluelU, x R™ together using:
po®y.u,: UsNUg — GL(n,R) = GL(m,R).

Observe that the cocycle condition is satisfied sintg a representation. Therefore we obtain a
new vector bundl@'M x, R™, calledT'M twisted byp.

Examples of bundles obtained by twisting:

(1) Givesrise to a line bundle which is usually denotgt7" M.
(3) Gives the cotangent bundlé& M.
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15. MORE ON VECTOR BUNDLES ORIENTABILITY

15.1. Orientability. Let GLT(k,R) € GL(k,R) be the Lie subgroup of x k& matrices with
positive determinant. Observe th@L(k, R), like O(k), is not connected, and has two connected
components; Lt (k; R) anddiag(—1,1,...,1) - GL*(k; R).
Let E 5 M be a rankk vector bundle {U,} be a maximal open cover of/ on which
7 U,) ~ U, x R¥, and
®UaU5 U, N Ug — GL(/{Z,R),

be the transition functions.

Definition 15.1. £ — M is anorientable vector bundlé there exists a subcover such that every
dy, v, factors throughG L+ (k, R) (i.e., the image 0Py, isin GL* (k,R)).

Definition 15.2. A manifold)/ is orientablef T'AM — M is an orientable vector bundle.
It is not easy to prove, directly from the definition, that tbBowing examples araotorientable.

Example: The Mobius bandB is obtained from0, 1] x R by identifying (0,¢) ~ (1, —t). By
following an oriented basis along the length of the band, eethat the orientation is reversed
when we crosg1} x R. HenceB is not orientable.

Example: The Klein bottleXK is obtained fromj0, 1] x [0, 1] by identifying(0,¢) ~ (1,1 —t) and
(s,0) ~ (s,1). Itis not orientable.

Example: RP? = R? — {0}/ ~, wherex ~ tz,t € R — {0}. This is the set of lines through
the origin of R3. Take the unit spher§?. ThenRP? is the quotient 052, obtained by identifying
x ~ —x. By following an oriented basis fromto —z, we find thafRP? is not orientable. Observe
that there is a two-to-one map: S? — RP?, which is called therientation double cover

Classification of compact 2-manifolds (surfaces).The oriented ones areS?, 7%, surface of
genusg. The nonorientable ones ari&P?, Klein bottle, and one whose orientation double cover
is an orientable surface of gengs

Remark 15.3. Recall \" T'M from last time. The orientability of/ is equivalent to the existence
of a global sectiors € T'(A\" 7'M, M) which is nonvanishing (i.e., never zero).

15.2. Complex manifolds. Let GL(n,C) = {A € M, (C) | det A # 0}.
Claim 15.4. GL(n,C) is a Lie subgroup ofL(2n, R).

Proof. We'll explain p : GL(1,C) — GL(2,R) and leave the general case as HW. Consider
z € GL(1,C). If we write z = z + iy, thenp maps

(37
2=+ +— .
Yy

It is easy to verify thap is a homomorphism (i.e., a representation). U
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Example: Recall S? as a complex manifold, obtained by gluing togethiee= C andV = C via
the mapz — % The transition function, written in real coordinatesy), was:
Sy :UNV — GL(2,R),
1 y? — 22 —2xy
(z,y) — m ( 2wy Y2 —a? )
By Claim 15.4 exists a factorization:
Oy UNV = GL(1,C) — GL(2,R).
Also note that the determinant is positive,$bois oriented.

Exercise: Show thatGL(n,C) C GL*(2n,R). This implies that complex manifolds are always
orientable.
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16. INTEGRATING 1-FORMS, TENSOR PRODUCTS
16.1. Integrating 1-forms.

Let C' be an embedded arc i/, i.e., it is the image of some embedding: [c,d] — M. In
addition, we assume thét is oriented In this case, the direction/orientation 6harises from the
usual ordering on the real line. Letbe a 1-form onV/. Then we define thantegral of w overC

to be:
d
def *
/w = / Y w.
C c

If ¢ is the coordinate oft, d|, theny*w (in fact any 1-form) will have the fornf(¢)dt

Lemma 16.1.The definition does not depend on the particular orientafioeserving parametriza-
tion~ : [¢c,d] — M.

Proof. Take a differenty; : [a,b] — M. Then there exists an orientation-preserving diffeomor-
phismg : [a,b] — [c,d] such thaty, = v o g. (In our case, orientation-preserving meas) = ¢
andg(b) = d.) Now, viw = (y o g)*w = g*(v*w), and

/w—/f f)dt = /f /abvfw- -

Now we know how to integrate 1-forms. Over the next few weekswill define objects that we
can integrate on higher-dimensional submanifolds (ndtgusves), called:-forms. For this we
need to do quite a bit of preparation.

16.2. Linear algebra. We define some notions in linear algebra. The vector spacesaveon-
cerned with do not need to be finite-dimensional, but you nugnpese they are if you want.
LetV, W be vector spaces ov&:.

1. (Direct sumlV & W. Asasety @ W =V x W. Addition is given by(vy, wy) + (vg, ws) =
(v1 + v9, w1 + wy) and scalar multiplication is given by(v, w) = (cv,cw). dim(V & W) =
dim (V) + dim(W).

2. Hom(V,W) = {R-linearmapsy : V — W}. In particular, we havé’* = Hom(V,R).
dim(Hom(V, W)) = dim (V) - dim(W).

3. (Tensor product)y @ W.

Informal definition.Supposé/ andiV are finite-dimensional, and I¢b, ..., v, }, {w1, ..., w,}
be bases fov andWW, respectively. Thefv @ W is a vector space which has

{fviow;li=1,....m;j=1,...,n}
as a basis. Elements bf® W are linear comblnatlonE L0 @ W
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Definition 16.2. LetV, ..., V,, U be vector spaces. Amap: V; x --- x V,, — U is multilinear
if ¢ is linear in eachV; separately, i.e.¢ : {v1} x --- x V; x --- x {vp} — U is linear for each
v; €V}, j #i. If k=2, we sayp is bilinear.

Formal definition.V ® W is a vector spacg together with a bilinear map: V' x W — Z, which
satisfies the followinginiversal mapping propertyGiven any bilinear map : V- x W — U, there
exists a linear map : Z — U such thaty = ¢ o i.

Actual constructionStart with thefree vector spacé’(S) generated by a sét. By this we mean
F(S) consists of finite linear combinations, a;s;, wheres; € S, a; € R, and we are treating
distincts; € S as linearly independent. (In other wordsis a basis fot#'(S).) In our case we take
F(V x W).

In V' @ W, we want finite linear combinations of things that look like w. We also would like
the following:

(U1+vg)®wzvl®w+vg®w,

v ® (W +ws) = v R w; + v ws,

cvew)=(w)dw=1v® (cw).

We therefore consideR(V, W) C F(V x W), the vector space generated by the “bilinear rela-
tions”
(01 + v, w) — (v, w) — (v2, w),
(anl + wZ) - (anl) - (U>w2)>
(CU, ’LU) - C(Ua 'LU),
(v, cw) — c(v, w).

Then the quotient spadé(V x W)/R(V,W)isV @ W.

Verification of universal mapping propertith V@ W defined as above, léet V xW — VoW
be (v, w) — v ® w. The bilinearity ofi follows from the construction of” @ . (For example,
i(v1 +v2,w) = (V1 +02) QW =V QW+ Vs W = (v, w) +i(v2, w).) ¢ MAPSY _, a;v; @ W; +>
> aio(vi, w;). This map is well-defined because all the element8(df, 17') get mapped to.
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17. TENSOR AND EXTERIOR ALGEBRA

17.1. More on tensor products. Recall the definition of the tensor productldse W = F(V x
W)/R(V,W) and the universal property. The universal property is udefuahe following reason:

If we want to construct a linear map W — U, itis equivalent to check the existence of a bilinear
mapV x W — U.

Dimension oft” ® WW. Supposé/, W are finite-dimensional. Then we claidim(V @ W) =
dim V - dim W. To see this, consider the m&y @ W — Hom(V, W) which sendsf ® w — fw,
where fw : v — f(v)w. The universal mapping property guarantees the well-definof this
map. dim Hom(V, W) can be easily calculated to lkm V' - dim W. Now, it suffice to check
surjectivity and injectivity. Surjectivity: lef; be dual to a basigvy, ..., v, } for V, i.e., fi(v;) =
d;;; also let{wy, ..., w,} be a basis foil’. Then any linear map iflom(V, W) is of the form
> a;; fiw;, i.e., comes frond  a;; f; ® w;. Details are left for HW.

Properties of tensor products.

DVRW~WelV.
2 (VeaW)eU~VeWeU).

1. Worked out. It’s difficult to directly get a well-defined m& @ W — W ® V/, so start with
a bilinear mapl’ x W — W x V. — W @ V, where(v,w) — w ® v. It then lifts to a map
VoW — WV which sends @ w — w ® v. Itis easy to verify injectivity and surjectivity.

The second property ensures us that we do not need to wrigathases when we take a tensor
product of several vector spaces.

LetA:V — VandB : W — W be linear maps. Then we have
A B:VeW VoW

and
AQB: VW =V W

We denotel/®* for the k-fold tensor product of/. Then we have a representation GL(V) —
GL(V®*), A— A®---® A. This gives us an associated vector bundle twisteg. by

The tensor algebral’ (V) = R@& V & V2 @ V¥ 4+ ... The multiplication is given byv; ®
”‘®Us><vs+1®"‘®vt) =1 R Q.

17.2. The exterior algebra. We define\ V' to beT'(V')/Z, whereZ is a (2-sided) ideal generated
by elements of the form®wv, i.e., elements df are finite sums of terms that look likg2v®@v®1ns,,
wheren,, o € T(V'). Elements of\ V are denoteq _ a;, ;,vi, A---Av;,. TheninT' (V) we have

v A v = 0. Also note tha{v; + vs) A (v1 + v2) = v1 A vy + v A vy + vy A vy + vg A vse. The first
and last terms are zero, 8pA vy, = —vy A v;. Therefore, we may assume thak - - - < i, in the
expression above\ V is clearly an algebra, i.e., there is a multiplication n given elements,

nin AV.
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We define\" V to be the degreé terms of A V.

Alternating multilinear forms. A multilinear form¢ : V x --- x V. — U is alternating if
d(v1, . U, Vigt, k) = —1 - P(vr, ... v01, 0, ... v). Recall that transpositions generate
the full symmetric grougsy. If (1,...,k) — (i1,..., i), ando is the number of transpositions
needed, thep(vy, ..., v) = (=1)7¢(vyy, - - -, iy ).

Universal property./\"C Vandi:V x---xV — /\"C V satisfy the following. Given an alt~ernating
multilinear mapg : V x --- x V — U, there is a linear map : A"V — U such that = ¢ o i.

Proposition 17.1. Given a basige, . . ., e, } for V, a basis forA\" V consists of degrek mono-
mialse;, A- - -Ae;, Withiy < --- < i,. Thereforedim A*V = 0for k > n, anddim A"V = <Z>
for k <n.

If V' = R3 with baSiS{el, €2, 63}, then/\o V =R, /\1 V= ]R{61, €2, 63}, /\2 V= ]R{61 N e, er N\
€3, €2 N\ 63}, /\3V = R{el Neg A 63}, and/\k V=0k>3.
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18. DIFFERENTIAL k-FORMS

18.1. Basis for/\’“ V. We'll give the proof of Proposition 17.1 in several stepsisleasy to see
that{e; A---Ae;, |1 <iy,...,i, < n}spans\" V. Moreover, by the anticommutation relations,
aNe;Nej ANb=—aNejNe;NbandaNe; Ne; ANb=10,50{e; N\---Nej, |1 <iyp <--- <i <n}
spans\" V.

1. If &k > n, /\"C V = 0. This is clear since it is impossible to find< i; < --- < i < n.

2.1k =n, A"V = R, and the basis is given iy A - - - A ¢,,. Sincee; A - -+ A e, spans\* V/, it
remains to show that; A --- A e,, is nonzero! This is done by defining an alternating multéine
formV x --- x V — R (n copies ofl”). Then by the universal propertfy” V' cannot be zero and
hence must b&. Details are HW.

3.1f1 <k < n,thenwe show thafte;,, A- - -Ae;, |1 < iy < --- <ip < n}islinearly independent.

Indeed, suppos§41<m<4 a;, ... N ANe, = 0. For each summand, there is a unique term
L1 Uk Y . .

e;, \--- Nej; . which kills all the other summands and gives;, ;. e1 A --- A e,. Hence this

implies that they;, _;, are zero.

.....

.....

Remark: For anyv,...,v, € Vo1 A--- A £ 01in /\’C Vifand only if vy, ..., v, are linearly
independent.

18.2. Tensor calculus on manifolds.We have now constructed®* and \* V, given a finite-
dimensional vector spadé. Also note that there exist natural representations GL(V) —

GL(V®) andp, : GL(V) — GLN* V).

Example: dim V' = 2. Basis{v;,v2}. AV has basiq1, vy, v, v A v}, If A: V — Viislinear
and Send&- = a1V + AoUa, 1 = 1, 2, thenA(Ul A ’Ug) = AUl A AUQ = det(A)vl N\ Vo.
Thus we can formi'M x ,, V& = @, TM andTM x,, \*V = A" TM. Also can formg, T* M
and \" T+ M.

We'll focus on A" T* M in what follows. Sections of\" 7+ are called:-forms and locally
look like:

11 <--<ip
Denote by (M) the sections of\" 7* M.

Pullback: Let¢ : M — N be a smooth map between manifolds, and k-form. Then we can
define the pullback*w in a manner similar to 1-forms:

P'w = Z (fll ~~~~~ ikogﬁ)'dgbil/\“'/\dgbik'
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Check:The global well-definition, i.e., independent of choice obddinates.
18.3. The exterior derivative. We can define the extensiahp : QF — Q1 ofd: Q° — Q' as
follows (in local coordinates, . . ., x,):
(1) If f € Q°, thendf = >, $Ldu;.
(2) If w= ZI f]dl’] € Qk, thendkw = ZI df] Adzg.
Herel = (iy,...,1%) is an indexing set andr; = dx;, A - - - A dz;, . We will often suppress the
in dy,.
HW: Check thatl, is well-defined and independent of the choice of local cowtts.
Example onR3. ConsideiR? with coordinatesz, y, z). Consider
PR S A X0
The firstd is thegradient
of of of
d: df = —=d —dy + =dz.
f—=df o 9:+8y y+8zz
The second is thecurl
h
d: fdx+ gdy + hdz — (0_ —@) dydz + . ...
dy 0z
The lastd is thedivergence

d: fidy Ndz + fodz N dx + fzdx N\ dy — %+%+% dz ANdy Ndz.
or Oy 0z

Note: We will often omit theA.
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19. DE RHAM COHOMOLOGY
This material is nicely presented in Bott & Tu.
Lemma 19.1. The exterior derivative satisfies the (skew-commutative) Leibniz rule:
(4) d(a A B) = (da) A B+ (=1)fa A (dB),
wherea € QF and s € O, andk or I may be zero (in which case we ignore thie
Lemma 19.2.d; o di—1 = 0.
Proof. Ford? : Q° — Q2, we compute:

dodfzd( 8fd9:> :Zﬁdxj/\dxizo.

[
i ij

Whena = dx;, we verify thatda = d(dx;) = 0.
Now if o = f;dx;, then

da = dfr Ndxy + f[d(dl’[) =dfr Ndxy,
dzOé == (dzf[) VAN dl’[ - df[ N d(dl’j) = O,

which proves the lemma. O

Consider:
(5) 0Bt An2B ..., ondhg
wheren = dim M.

Example: If M = R3, thend, = grad, di = curl, dy = div. Thend? = 0 is equivalent to
div(curl) = 0, curl(grad) = 0.

Sincedy o d,_; = 0, we havelm d;,_; C Kerd,. This leads to the following definition:
Definition 19.3. Thekth de Rham cohomology group 61 is given by:
HEL (M) Ker dy,/ Tm ;.
Definition 19.4. Letw € QF(M). Thenw is closed ifdw = 0 and isexactif w = dn for some

n € Q1 (M).

Facts: The de Rham cohomology groups are diffeomorphism invasiahthe manifold)/, and
are finite-dimensional if\/ is compact or admits a finite atlas.

Definition 19.5. A sequence of vector spaces — C" iy ol B cite s said to
beexactif Imd;_; = Ker d; for all <.
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The de Rham cohomology groups measure the failure of Equatio beexact
We will often write H* (M) instead of %, (M).
Examples.
1. M = {pt}. ThenQ®(M) = R andQ* (M) = 0,7 # 0. We haveH’(pt) = R and H(pt) = 0,
v > 0.
2. M = R. ThenQ°(M) = C°°(R) andQ!' (M) ~ C>=(R) because every-form is of the form
fdx. Now,d : f — %dz can be viewed as the map
d: C*(R) — C*(R),
f=r
It is easy to see thdferd = {constant functionsand henceH°(R) = R. Next,Imd is all of
C>(R), since given any we can take its antiderivativf f(¢)dt. Therefore, H'(R) = 0. Also
H'(R) = 0fori > 1 sinceQ’ = 0 fori > 1.
3. M = S'. View S' asR/Z with coordinates:. Then
Q°(S') = {Periodic functions ofR with period1}.

Q1(S1) is also the set of periodic functions d@by identifying f(z)dz — f(x). H°(S') = R
as before. Nowf7!(S') = Q! /Imd andIm d is the space of all'*-functions f(x) with integral
fol f(z)dz = 0. HenceH'(S') = R. We also have aexact sequence

0—>R—>Q°$Q11>R—>O.

Lemma 19.6. H°(M) ~ R if M is connected.
Proof. df = 0 if and only if f is locally constant. O

Lemma 19.7.1f M = M, U M,, thenH*(M) ~ H*(M,) & H*(M,) for all £ > 0.

HW: Prove the lemma.
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20. Day 19

20.1. Pullback. Let¢ : M — N be a smooth map between manifolds.

Lemma 20.1.d o ¢* = ¢* o d.

HW: Verify the lemma. This follows easily by computing in localardinates.

Corollary 20.2. There is an induced map‘ : H*(N) — H*(M) on the level of cohomology.

Proof. Let w be a closedi-form on NV, i.e.,w € QF(N) satisfiesdw = 0. Then,¢*w satisfies
do*w = ¢*(dw) = 0. Now, if w is exact, i.e.w = dn, then¢*w = ¢*dn = d(¢*n) is exact as well.
0]

20.2. Mayer-Vietoris sequences.This is a method for effectively decomposing a manifold and
computing its cohomology from its components.

Let M = U UV, whereU andV are open sets. Then we have natural inclusion maps
(6) Unv e ouv 4 M.
Hereiy andiy are inclusions ot/ NV into U and intoV'.
Example: M =S, U=V =R, UNV =RUR.
Theorem 20.3.We have the following long exact sequence:
0— HOM) S HOWU) @ HO(V) "8 HOWU N V) =
— HY(M) S B (U)o HY(V) Y H\UNV) —
— ...

Remark: 0 —- A — B exact meanst — B is injective. A — B — ( exact meansl — B is
surjective. Hencé — A — B — 0 implies isomorphism.

The proof of Theorem 20.3 will be given over the next coupléectures, but for the time being
we will apply it:

Example: ComputeH*(S!) using Mayer-Vietoris.

20.3. Poincaré lemma. The following lemma is an important starting point when ggime Mayer-
Vietoris sequence to compute cohomology groups.

Lemma 20.4(Poincaré lemma)Letw € QF(R") for k > 1. Thenw is closed if and only if it is
exact.

In other words,H*(R") = 0 for k& > 1. We will give the proof later, together with some other
homotopy-theoretic properties.
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20.4. Partitions of unity.

Definition 20.5. Let {U,} be an open cover a¥/. Then a collection of functionsf, > 0} is a
partition of unity subordinate tdU, } if:

(1) Supp(fa) C U,. Here the suppordupp( f.) of f, is the closure ofz € M | f,(x) # 0}.
(2) At every pointr € M, there exists a neighborhoadd(x) of x such that the set

{fa | fa|N(m) 7& 0}
is finite. If we writefy, ..., f; for the nonzero functions, th(ﬁf:1 fi(z) = 1.

Proposition 20.6.If {U,} is an open cover a¥/, then there exists a partition of unity subordinate
to {U,}.

Proof. The proof is done in stages.

Step 1.Consider the functiorf : R — R:

[ eV forz >0
f@_{o forxz <0

It is easy to show that > 0 and f is smooth.

Step 2.Takeg : R — Rtobeg,,(z) = f(z—a)- f(b—x). (Suppose < b.) Theng(z) is abump
function
e g=>0,

o supp(g) = [a,b],
e g>0o0n(a,b).

Step 3.Construct a bump function dny, b1] x -- - x [a,, b,] C R™ with coordinategz, ..., z,)
by letting ¢(z) = ga,p, (1) - - - Ganb, (). Thene is supported ofay, by] X --- X [an, b,] and is
positive on the interior.

Step 4. We will only treat the case wher&/ is compact. For each € M, choose an open
neighborhood!,, of p of the form (a;,b,) % --- x (an,b,) Whose closure is contained inside
someU,,. For eachl,, constructp, as in Step 3. Now, sinc&/ is compact, there exists a finite

collection of{py, ..., px} where{U,, } coverM. Note thath:1 ¢, > 0 everywhere on\/. If we
lety, = %, then) +, = 1. Finally, we associate to eagh an open set/,, for whichU,, C U,.
Thenv, is the sum of all the), associated t&/,. O
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21. SOME HOMOLOGICAL ALGEBRA

21.1. Short exact sequence Supposell = U U V. Then we have
unv"uuv S M.
1y andiy, are two inclusions, one intg and the other intd’.

Proposition 21.1. The following is a short exact sequence.

7) 0 QI(M) S Qi(U) e (V) T QiU nv) = 0.

Proof. We prove that;, — i, is surjective. (The rest of the exact sequence is easy.) Padidon
of unity {py, pv} subordinate tdU, V'}. Thenpy + py = 1. Givenw € Q(U NV, considepyw
onU and—pyw onV. This works. O

21.2. Short exact sequences to long exact sequencésetting from the short exact sequence to
the long exact sequence is a purely algebraic operation.

Define acochain complexC, d): - -- — C" Sy ot B oitl | tobea sequence of vector
spaces and maps with,; o d; = 0 for all i. (C,d) gives rise toH'(C) = Kerd;/Imd;_;, theith
cohomology of the complex.

A cochainmapp : A — Bis:

di

di_2 _ 1 dy, diy1
A1 ooAF B gkt ;

d)k—lJ/ ¢kl ¢k+1J/

di_2 _ di—1 dy, dk41
Bk 1 ) Bk k N Bk—i—l ,

which satisfiesl;, o ¢, = ¢ 1 0 d.
A cochain mapp : A — B induces a map on cohomology:

¢: H*(A) — H"(B).

The verification is identical to that of the special case oRtiam.

Given an exact sequente— A 2BA e~ 0, (i.e., we have collections of —+ A* — B* —
C" — 0 and all the maps are cochain maps),
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dk41 di41 di41

@ P
0 s Ak+1 k+1 \ Bk+1 k+1; Ck+1 s 0
dy, dy, dy,

0 — Ak %, gk ook 4

dk71 dkfl dk*l

we always get a long exact sequence:

L HMA) % mMB) s mhe) 2

Verification of Ker1, D Im ¢,. Supposédb] € Im ¢,. Thenb = ¢ra + db/, wherea € A* and
V' € B¥1 Now, vpb = ¥y (dra) + tp(dV') = d(1x_1b'). Therefore[yb] = 0 € H*(C).

Verification of Ker ¢, C Im ¢. Supposéb] € Ker ¢y. Thenyb = dc/, ¢ € C*~1. Next, use the
fact thatB*—! — C*1 — 0to find®’ € B*! such that! = v,_,b'. Thenyb = d(¢y_1V') =

Y (db'). Hence, by the exactneds;- db' = ¢ (a) for somea € A*. (Check thatla = 0.) Thus,
orlal = [b].

Definition of §;, : H*(C) — H*"'(A). Let [¢] € H*(C). Thendc = 0. Also we haveh € B*
with ¢.b = c by the surjectivity ofB* — C*. Considerb. Sincey(db) = d(b) = dec = 0,
there exists an € A*"! such thatp,1a = db. Let [a] = §;[c]. Here,da = 0, sincegy, o(da) =
d(¢r1a) = d(db) = 0, and A**? — B**+2 s injective. We need to show that this definition is
independent of the choice of choice ofb, and choice ofi. This is left for HW.

HW: Verify the rest of the exactness.
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22. INTEGRATION

Let M be ann-dimensional manifold ang € Q"(M). We will try to make sense of,, w

22.1. Brief review of integration on R"™. For more details see Spivak.
Given a functionf : R = [ay, b1] X [an,b,] — R, take a partition? = (P, ..., P;) of R into
small rectangles. Consider the upper and lower bounds

Pbiﬁwmwwmzmm=2wmwwm>

Definition 22.1. The functionf is Riemann-integrablér simplyintegrabl¢ if for any s > 0 there
exists a partitionP such thatU/ (f, P) — L(f, P) < e. If f is integrable, then we define

/Rfdxl...dxn = li}l;nU(f,P) = li}r)nL(f, P).

Similarly we can definng fdxy...dx,, whereU C R"isanopensetand : U — Ris a
function with compact support.

Theorem 22.2.1f f is a continuous function with support on a compact set, thenintegrable.

Change of variables formula.lf g : [a, b] [c, d] is smooth, then

/ /og

/ f= fogldl.
g([a.b)) [

Let U, V C R" be open sets with coordinatés,, ..., z,), (yi,...,y,), and¢ : U = V a
diffeomorphism. Then:

/V F@)dn . / 16 ‘

In light of the change of variables formulg,, w makes sense only whe¥ is orientable, since
the change of variables for anform does not have the absolute value. At any ratéorms
have the wonderful property of having the correct transtdram property (modulo sign) under
diffeomorphisms.

This can be rewritten as:

dl’l d

22.2. Orientation. Recall thatM is orientableif there exists a subatlagy, : U, — R"} such
that the Jacobiang,; = d(¢s o ¢, ') have positive determinant.

Proposition 22.3. M is orientable if and only if there exists a nowhere zeffiormw on M.
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Proof. SupposeV/ is orientable. Take a partition of unityf, } subordinate td/,,. Letxy, ..., x,
be the coordinates aofi,. Constructu, = f,x1 A -+ A dx,. w, IS @ smoothm-form on M with
support contained it/,. Letw = ) _ w,. This is nowhere zero, since anfy,, o ¢g1)*w5 =
fa 0 (¢ao gb[gl) det(Jgo)dxy A --- A dz,,. The key point here is thatet(.Jg,) are positive, so
fa 0 (¢a o gb/;l) det(Jz,) > 0. At any pointp € M, at least onef, is positive, and thev, are
additive sow is nowhere zero oft/.

On the other hand, suppose there exists a nowherenzyon w on M. GivenU,, we choose
coordinatesry, ..., z, so thatdz; A --- A dx, is a positive function times. Once we do this,
clearly J, 5 has positive determinant. O

Since then-form w is nowhere zero, what this says is thigt 7+ M is isomorphic tolM/ x R as a
vector bundle, i.e., is @ivial vector bundle.

On a connected manifold/, any two nowhere zera-formsw andw’ differ by a function, i.e.,

3 a positive (or negative) functiofi s.t.w = fw’. We define an equivalence relatian~ «’ if

w = fw'andf > 0. Then there exist two equivalence classes-and each equivalence class is
called anorientationof M.

The standard orientation df* is dxy A - - - A dx,,.

Equivalent definition of orientation. The setF'r(V') of ordered bases (drame9 of a finite-
dimensional vector spadé of dimensiom: is diffeomorphic toGL(V') (albeit not naturally): Fix
an ordered basi@, . . ., v,). Then any other basisvy, . . ., w,) can be written agAvy, . . ., Av,),
A € GL(V). Therefore, there is a bijectiafir (V) ~ GL(V'), and we induce a smooth structure
on Fr(V) from GL(V'). (Note however that there is a distinguished peihtc GL(V') but no
distinguished basis i#'r(17).) SinceGL(V') has two connected componenis; (V') has two
components, and each component is calledraantationfor V. An orientationfor ) is a choice
of orientation for eacly, A/ which is smooth inp € M. [We can construct thééame bundle
Fr(M)=U,Fr(T,M) by topologizing as follows. Locally neas identify its neighborhood with
R"™ andU,er F'r(T,R™) = Fr(R™) x R". The frame bundle is fiber bundleover A/ whose fibers
are diffeomorphic ta~L(V').]

22.3. Definition of the integral. Choose an oriented atld®,, : U, — R"} for M. We then

define:
IXE > | @i,

where{f,} is a partition of unity subordinate td’/,}. We will often be lazy and writha faw

instead off;, (¢,")*(faw) O [;; (¢a)«(faw)

HW: Check that the definition ofM w does not depend on the choice of oriented gttas: U, —
R™} as well as on the choice §ff,, } subordinate tqU., }.
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23. STOKES THEOREM

23.1. Manifolds with boundary. We enlarge the class of manifolds by allowing ones “with lebun
ary”. These are locally modeled on the half-pldiie= {z; < 0} C R".

Definition 23.1. A Hausdorff, second countable topological space manifold with boundaryf
there exists an atla§(U.,, ¢.)}, whereg,, : U, — H" is a homeomorphism onto an open subset of
H™ and the transition functiong,, o gbgl are smooth. The boundary 61, denoted M/, is the set

of points ofM which lie on the boundary of some half-pldfié under some magp,,. Equivalently,

it is the non-interior points of\/. M is an(n — 1)-dimensional manifold.

Example: Then-dimensional unit balB™ = {(zy,...,x,) € R"[z? +--- + 22 < 1}. 9B" =
St

Proposition 23.2.1f M is an orientable manifold with boundary, théd/ is an orientable mani-
fold.

Proof. Let {U,} be an oriented atlas fav/. Then we take an atlag/,} for M as follows. Let
Vo = Uy N{x; = 0} € H" = {z; < 0}. (Note that if anyp € M is mapped t@H" under a
coordinate chart, themcannot be mapped to the interiorldéf under any other coordinate chart.)

If (32, 5%, ..., 5=) is an oriented basis fa¥/ onU,,, then let(;%, ..., 2-) be an oriented basis
for 9M. This works because an outward normal ve%gelrwill go to another outward vector under
a change of coordinates. O

23.2. Stokes’ Theorem.

Theorem 23.3(Stokes’ Theorem)Letw be an(n — 1)-form on a manifold with boundary/ of
dimensiom. Then|, dw = [, w.

Remark: 0 happily switches places (jJumps up or jumps down).

Zen: The significance of Stokes’ Theorem is that a topologicatajpen o is related to an analytic
operationd.

Proof. Take an open covdll/,, } wherelU,, is diffeomorphic to (i)(0,1) x - - - x (0, 1) (U, does not
intersecb M) or (i) (0,1] x (0,1) x---x(0,1) (U,NOM = {x; = 1}). Let{f.} be a partition of
unity subordinate t4U, }. By linearity, it clearly suffices to computg, d(fuw) = [,300. faw,
i.e., assume is supported on onE,,.

We will treat then = 2 case. The generalization is straightforward. Léte an(n — 1)-form of
type (ii). Then on0, 1] x [0, 1] we can writew = f1dz; + fodxs.

1
/ W= frdzy + fodzy = / Ja(1, o) ds.
oM oM 0
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On the other hand,
o= [ (508
- /01 ( 01 g—ﬁdxl) dxs + /01 ( 01 —2—9‘2%) dxy
= /01(f2(1,x2) — f2(0, z9))dx, +/01(f1(x1,0) — fi(x1,1))dxy
_ /01 fo(1, 25)ds

Try to see that > 2 also work in the same way. U

Example: (Green’s Theorem) Leb C R? be a compact domain with smooth boundary, £eis
a 2-dimensional manifold with boundad#§? = . Then

/fdx—i—gdy:/ (@—g) dxdy.
” o \O0r Oy

Example: Considerw defined orR? — {0}:

—y o
w(z,y) = (T n y2) dx + (T n yz) dy.

LetC = {z? + y?> = R?}. Thenz = Rcosf, y = Rsinf, and we compute

/w:27r.
c

Claim: w is not exact! In fact, itv = dn, then

O:/ n:/dn:27r,
aC c

It is easy to show thatw = 0.

a contradiction.
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24. APPLICATIONS OFSTOKES THEOREM

24.1. The Divergence Theorem.

Theorem 24.1.Let() C R? be a compact domain with smooth boundary. Eet (F, Fy, F3) be
a vector field orf2. Then

/didexdydz:/ (n, F)dA,
Q o0

wheren = (nq, ng, n3) is theunit outward normal to)2,
dA = nidy AN dz + nadz A dx + nzdx A dy,
and(-) is the standard inner product.

Let w = Fidydz + Fydzdz + Fsdxdy. Thendw = (div F)dzdydz. It remains to see why
Joqw = [oq(n, F)dA.

Evaluating forms. We explain what it means to tak€wv, . . ., v;), wherew is ak-form andv; are
tangent vectors. Lét’ be a finite-dimensional vector space. There exists a map:

(ANVH X (Vx---xV)=R

(FrA- A e (o)) = Y (=17 fi(os) - falv,),
where the sum ranges over all permutations1of . ., k) ando is the number of transpositions
required for the transpositiqi, . .., k) — (i1, ..., i). Note that this alternating sum is necessary
for the well-definition of the map.

Example. Letw = Fidydz + Fydzdz + Fydzdy. Thenw (2, 2) = —F.

Interior product. We can define the interior product as followis:: A" V* — A" ' V*, iw =
w(v, -+ ...,). (Insertv into the first slot to get & — 1)-form.)

Example. OnR3, letn = dxzdydz. Also letn be the unit normal vector Q2. Then, alon@d) we
can define,,n = nidydz + nodzdx + nzdxdy.

Why is this dA? At any point ofp € 012, take tangent vectors;, v, of 0 so thatn, vy, v,
is an oriented orthonormal basis. Then #rea formdA should evaluate td on v, v,. Since
n(n,v1,v2) = 1 (sincen is just the determinant), we see thiat = i,,7.

Explanation of (n, FYdA = Fidydz + Fydzdxr + Fsdxdy. Also note thatipn = Fidydz + .. ..
But now,ign(vy, ve) = n(F,vi,ve) = n((n, F)n, v, ve) = (n, F')dA (by Gram-Schmidt).

24.2. Evaluating cohomology classeslLet M be a compact, oriented manifold (without bound-
ary) of dimensiom.

Proposition 24.2. There exists a well-defined, nonzero mapH™(M) — R.
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Proof. Givenw € Q"(M), we mapw — [, w. Note that every:-form w is closed. To show the
map is defined on the level of conomology,debe an exact form, i.e.y = dn. Then

/w:/dn:/ n = 0.
M M oM

Next we prove the nontriviality of: if w is anorientation form(w is nowhere zero), then
fM w > 0 or < 0, since on each coordinate charts some positive function timege; . . . dz,. O

The proposition shows thdim H" (M) > 1. In fact, we have the following:
Theorem 24.3. H"(M) ~ R.
We omit the proof.

Example. M = S™. ThenH*(S™) = R for i = 0 orn and= 0 for all other:.
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25. Day 24

25.1. Evaluating cohomology classesLet ¢ : M™ — N™ be a smooth map between compact
oriented manifolds of dimensioms andn, respectively, and* : H*(N) — H*(M) the induced
map on cohomology. Let € Q™(N) be a closedn-form. Supposef,, ¢*w # 0. Then¢*w
represents a nonzero elementHri*(M). This implies thafw] is a nonzero cohomology class in
H™(N).

Example. OnR? — {0}, consider the closed 1-form

w(z,y) = (x2 i yz) dx + (T n y2) dy.

We computed|,, ¢*w = 2w, whereg : S' — R* — {0} mapped) — (Rcos#, Rsinf). Since
[¢*w] is a nonzero cohomology classiit(S1), sois[w] € H'(R? — {0}).

Two mapspy, 1 : M — N are(smoothly) homotopiif there existsama@ : M x [0,1] — N
where®(x,t) = ¢ (z).

Proposition 25.1.If ¢y, ¢, : M — N are homotopic and € Q¥(N), k = dim M, is closed, then
Sy Sow = [y diw.

Proof.

djw— | Ppw = / W = / d(P*w) = / ¢*(dw) = 0,
M M d(Mx[0,1]) M M

sincew is closed. O

Example, cont'd. On N = R? — {0}. Sincew is a closed 1-form oW, [, w = [, wif C'andC"
are homotopic. That's why the integral did not depend on &ldéus R of the circle.

25.2. Definition of degree. This material can be found in Guillemin & Pollack.

Lety : M — N be a smooth map between oriented compastanifoldsM andN. Lety € N
be a regular value af. (Recally € N is aregular valueif, for all x € ¢~*(y), df (z) is surjective.
y € N which is not a regular value isa@itical value)

Claim: ¢~!(y) consists of a finite number of preimages. . ., z;.

Proof. Suppose there is an infinite number of preimages. By the comess of)/, there must
be an accumulation poiat = lim, .., z;, which itself must also be in—!(y). However, for every
r € ¢~ Y(y) there exists an open s&t which maps diffeomorphically onto an open set aroynd
Therefore;z could not have been the limit of € ¢~(y). O

The claim implies that for a small enough open Bgtcontainingy, ¢—!(V,) is a finite disjoint
union of open set¥,, ..., U,,, each of which is diffeomorphic to,.
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Definition 25.2. Thedegreeof a mappingp : M — N is the sum of orientation numbetsl for
eachz; in the preimage of a regular valug Here the sign is+1 if the map from a neighborhood
of x; to a neighborhood of is orientation-preserving and 1 otherwise.

Regular values aob do exist:

Theorem 25.3(Sard) Let¢ : M — N be a smooth map. Then the set of critical values bas
measure zero.

A setS C N hasmeasure zerd {U;}:2, is a countable atlas and, for eachc R" ande > 0,
U; NS can be covered by a countable union of rectangle®,| x - - - X [a,, b,] with total volume
e. This actually implies that' itself can be covered by a countable union of rectangles totti

volumee: For U, take rectangles so that the total volume (1)". Adding up over all thé/;, we
gete (3+3+...) ==
Consequently, the set of regular valueg)a$ dense inV.

The proof of Sard’s Theorem will be given next time. We codelwith the following theorem,
which will be explained in a couple of lectures.

Theorem 25.4(Degree Theorem)The degree of a mapping: M — N is well-defined.
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26. PROOF OFSARD’S THEOREM
The proof closely follows that of MilnofTopology from the Differentiable Viewpoint
Recall the statement of Sard’s Theorem.

Theorem 26.1(Sard) Let f : M — N be a smooth map. Then the set of critical valueg bas
measure zero.

By our discussion from last time, suffices to prove Sard’sorém in the following local situa-
tion.

Theorem 26.2.Let f : R™ — R™ be a smooth map. If we sét = {z|rankdf(xz) < n}, then
f(C) has measure zero iR".

Remark 1. The “measure” in the terrmeasure zeroefers to the Lebesgue measure

Remark 2. Open subsets @& have nonzero Lebesgue measure.
Proof. We will prove the theorem for = 1, i.e., f : R™ — R. The general case is similar.

Define the following subsets @

C1 = {xERm of :O’VZ},
0%—
Cr = {zx € R™| all partial derivatives off up to and including ordet vanish atz}.

ThenclearlyC' =C; > Cy; D Cs.. ..

Strategy.

(1) Showf(C; — C5) has measure zero.
(2) Showf(Cy — Cr11) has measure zero.
(3) Fork large enoughi > n), f(C}) has measure zero.

Step 1. Letz € C; — (5. We want to show that there exists a neighborh®odf x for which
(C1 — Cy) NV has measure zero. (This suffices because if we can €gverC, with countably
many such/’’s, the total measure af';, — C, is zero, as seen from the argument used last time,

right after the statement of Theorem 25.3.) Hefé, = --- = ;2L = 0, but some%afzj # 0.

OTm

Without loss of generality assung% # 0. Then consider the map : V > =z — R™,
(X1, ..., Tm) — (%,@, ..., Zy). Nearz, h : V — V' is a local diffeomorphism, as can be seen
easily by computing the Jacobian. Clearly, the criticalealoff : V' — R are the same as the
critical values off o h=1 : V' — R, but if (Z4,...,1,,) are coordinates of”’, then the critical
values of f o h~! are the same as the critical valuesfof h=! : {#; = 0} — R. We can then
induct on the dimensiom.

Note. Under a diffeomorphism, the Lebesgue meagucbanges by a positive smooth functipn
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Step 2.Similar to Step 1.

Step 3.Let0 € C, k > n. Supposef : [—d,0] X ...[—d,d] — R. Then Taylor's theorem (with
remainder) gives us:

f(z+h) = f(z) + R(z; h),
where|R(x; h) < Clh[k+t forall x € C, N [-§,6]™ andx + h € [6, §]™.

We subdividg0, 1]™ into cubes of lengthi. Then there are roughly- cubes. Consider one such
cube@ which nontrivially intersect€’,. Then its volume i9™, whereas its image has length on
the order of magnitude af**+! from Taylor’s theorem. Adding up the total volume of the iraag
we havegimd’““, which can be made arbitrarily small by choosingmall. O
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27. DEGREE

Recall the definition of degree: Lét: M — N be a smooth map between compact, oriented
manifolds (without boundary) of dimension By Sard’s Theorem, there exist (a full measure’s
worth of) regular values op. Lety € N be a regular value, and,, ..., x; be the preimages of
y. Thendeg (o) is Zle +1, where the contribution is-1 when¢ is orientation-preserving neay
and—1 is otherwise.

We will explain why the degree is well-defined.

27.1. Cohomological interpretation.

Theorem 27.1.1f M is an oriented, compact-manifold (without boundary), thefi : H"(M) —
R is an isomorphism.

The proof will be given in the following section, but for thiene being let us use this to rein-
terpret the degree¢ : M — N induces the map* : H"(N) — H"(M). Then we have the
commutative diagram:

HMN) -2 H"(M)

| |
R —— R
where the mafR — R is multiplication by some real number

Proposition 27.2. deg ¢ satisfies
(8) P'w = degqb/ w.
M N

Thereforedeg ¢ is the constant of multiplication

Proof. Once we can prove Equation 8 for a suitablef our choice, the proposition follows. Take
w to be supported of, with positive integral. Therf,, ¢*w will be the sum off,, ¢*w. Noting
that¢ is a diffeomorphism front/,,, to V,,, we haverz, Prw = £ ny w, depending on whether the
orientations agree or not. This proves Equation 8. U

27.2. Proof of Theorem 27.1. We have already shown th#t: H™"(M) — R is well-defined. It
suffices to show thdter [ consists of exact-forms. Letw be ann-form with zero integral. Let
{U;} be a cover ofdf which is finite and has the property that evéfyis diffeomorphic toR".
Take a partition of unity f,, } subordinate to a good cover. Then we can splitto the sum . w;,
wherew; is supported insid€;. Note thathi w; may not be zero.

Lemma 27.3.If w is ann-form with compact support and zero integral insi@e, thenw = dn,
wheren has compact support.
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Proof. We will prove this forn = 2. Thenw = f(z,y)dxdy. Defineg(x) = ff"oo f(x,y)dy. By
Fubini's theorem and the hypothesis that = 0, we have[” g(x)dz = 0. DefineG(z,y) =
e(y)g(z), wheres(z) is a bump function with total are Then write:

Yy x
n(x,y) = — (/_ [f(z,t) — G(x,t)]dt) dr + </_ G(t,y)dt) dy.
Clearly,dn = [f(z,y) — G(z,y)|dxdy + G(z,y)dxdy andn has compact support. O

What this means is that we can replageby a cohomologically equivalent-form which is
supported on a small neighborhood of a painte M, i.e., we may assume that is a bump
n-form. The total volume of they; is still zero. Now, engulf all the:; in an open set/ ¢ M
which is diffeomorphic taR™ so thatw is compactly supported ifi and has total area zero. We
use the lemma again to complete the proof of Theorem 27.1.
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28. LIE DERIVATIVES

28.1. Lie derivatives. Firstwe define thenterior producton the linear algebra level, : /\'“ V*—
A1 V* v eV, is given by:

fl/\"‘/\fk'—>Z(—l)l+lf1/\---fl(U)"‘/\fk-
!

Check this is well-defined!
Let X be a vector field o/. Then theinterior productiy : QF(M) — QF~1(M) satisfies the
following properties:
(1) For 1-formsw, ix(w) = w(X).
(2) In general, we obtain the relation:
ix(Oé AN ﬁ) = (ion) A B + (_l)deg(a)a A ’Lxﬁ
Note: we defingy : Q°(M) — Q1 (M) as the zero map.

Now definely = doiy +ixyod: QF(M) — QF(M). Lx is called theLie derivativewith respect
to X.

Proposition 28.1.
(1) If f € Q°(M), thenLxf = d(ixf) + ix(df) = df(X) = X(f). Hence,L : Q°(M) —
Q°(M) satisfies the Leibniz rule.
(2) ﬁx(dW) = d(ﬁxw)
(3) Ly : QF(M) — QF(M) satisfiesCx (a A B) = Lx(a) A B+ a A Lx(B), i.e., the Leibniz
rule.

The proof is a simple computation, and is left for HW.

Hence,L : QF(M) — QF(M) naturally extends the derivatios : Q°(M) — Q°(M). (We will
usually call anything that satisfies the Leibniz rule a “dation”.)

The following is also a source of derivatiofd — QF: Let ¢, : M — M be al-parameter

family of diffeomorphismg.e., there exist® : M x [0, 1] — M smooth such that,(-) wf (-, 1),
t € [0, 1], is a diffeomorphism. Assume in addition that= id. Then

d

%@kw\t:o
is a derivation (verification is easy). ffc Q°(M), then
d d
G0 fli=0 = 2 f(@) |0 = df (Xo) = Xo(f),

where X, is the vector field which corresponds #g (think in terms of the first definition of the
tangent space: at everyc M, we have an arg;(x), t € [—¢, ¢]).

We have the following proposition:
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Proposition 28.2(Cartan formula) Every-< ¢7|,_o : Q" — Q¥ is given byd o iy + iy o d.
Proof. It suffices to check the following:
° %gbj and L x both satisfy the Leibniz rule. (Already verified!)

e 4¢randLy agree oM2’(M). (Yes, they are both vector fields.)
e d commutes with?l ¢; and withC .

The above three properties allow us to do an induction onesegr
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29. HOMOTOPY PROPERTIES

29.1. Homotopy properties of de Rham cohomology.

Proposition 29.1.Let¢, : M — M, t € [0, 1], be a 1-parameter family of diffeomorphisms. Then
¢} induce the same malg* (M) — H*(M) forall t € [0, 1].

Note. If ¢y = id, and we writeX, as the vector field od/ given by¢;(x) : [—¢,¢] — M at the
pointz, then< ¢rw|,o = (d o ix, + ix, o d)w. We can generalize this as follows: L&, be the
vector field onM where the are,(z) : [ty — ¢, to + €] — M is assigned at the poigf, (x) (note

NOT atz). Then

d . .
Eéﬁ:w\tzm = ¢y, (doix, +ix, od)w.

Proof. Consider a closed-form w on M. Then £¢iw|i—y, = ¢}, (d o ix, + ix, o d)w =

d(¢y,ix,,w). Therefore itis exact. Nowy;w —w = Ot %gb:wh:sdt, and the difference is exact as
well. (This is evident by thinking of the integral as a limftRiemann sums.) U

Next, we say two maps,, ¢, : M — N are(smoothly) homotopiif there exists a smooth map
O : M x[0,1] = N with ¢,(-) = O(-,t),t =0, 1. ¢, is said to be th&@omotopyrom ¢, to ¢;.

Proposition 29.2(Homotopy invariance)Supposes, : M — N is a homotopyt € [0, 1]. Then
¢ - H*(N) — H*(M) is independent of

Proof. Considerd : M x R — N. (Itis easy to extend : M x [0,1] - Ntod: M xR — N.)
Then forw € Q%(M) closed, consideR = ®*w. We have inclusions : M — M xR, z — (z,1),
and clearlyp;w = 7). Now take a diffeomorphisn¥; : M x R — M x R, (x,s) — (z,s +1).
Sincei, = U, o4y, iy = ij; o ¥;. By the previous proposition¥f; is independent of. Hence so are
1; and ultimatelyp,. O

29.2. Homotopy equivalence.We say¢ : M — N is ahomotopy equivalencié there exists
1 : N — Msuchthatboty : N — N andy o ¢ : M — M are homotopic tad : N — N and
id : M — M. Using Proposition 29.2, it is easy to show:

Proposition 29.3 (Homotopy equivalence)A homotopy equivalencg : M — N induces an
isomorphismy* : H*(N) — H*(M).

Proof. This is because* o v* = id (by homotopy invariance) and* o ¢* = id. This proves that
¢* andy* are left and right inverses (as linear maps) and are isonsnmsh O

Corollary 29.4 (Poincaré lemma)H%,(R") = 0 if k > 0.

Proof. We will show thatR" is homotopy equivalent t&° = {pt}. Consider maps : R* — R°,
(r1,...,2,) — 0,andy : R® — R", 0 — (0,...,0). Clearly,¢ o9 : R® — R° 0+ 0, is the
identity map. Nexty) o ¢ : R® — R”, (z4,...,z,) — 0is homotopic to the identity map. In fact,
considerF’ : R™ x [0, 1] — R”, ((x1,...,2,),t) = (tzy, ... tey,). O
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Example. Consider a band! x (—1,1). It is homotopy equivalent t&*. We have map® :
St x (=1,1) — S, (0,t) — O andy : St — St x (=1,1), 0 — (0,0). porp : ST — St
isid. Yo : St x (=1,1) = S' x (=1,1)is (0,t) — (6,0) is homotopic toid. In fact, take
F:S'x (=1,1) x [0,1] = St x (=1,1), (0,t,5) — (0,ts). Therefore, we have:

H*(S' x (=1,1)) ~ H*(S")

Example. Similarly, H*(M x R") ~ H*(M). More generally, ifF is a vector bundle ovet/,
thenH*(E) ~ H*(M).

29.3. Extended example: surface of genug. Consider a surfackE of genusgy. If you remove a
disk from X, you are left with a bouquet &fg bands. You can now use Mayer-Vietoris witha
disk andV" a bouquet oRg bands.

29.4. Euler characteristic. Let M be ann-dimensional manifold. Then we define the Euler
characteristic of\/ to be:

n

X(M) =) " (=1)' dim Hip(M).

=0
Examples.
(1) x(R") = 1.
(2) x(S?)=1+0+1=2.

(5%)
(3) x(T?)=1—-2+1=0,
(4) x(genusg surface = 2 — 2g.

Note. For compact surfaces, the Euler characteristic is giveméylassical formul&% — F + F,
whereV is the number of verticedy is the number of edges, ardis the number of faces of a
polyhedron representing the surface.

HW: Prove that ifo — C; — Cy, — --- — C, — 0 is an exact sequence, then
k

> (-1)'dim C; = 0.

1=1
Proposition 29.5.1f M = U UV, thenx(M) = x(U) + x(V) — x(UNV).

Proof. Use the Mayer-Vietoris sequence and add up the dimensisimg) the above HW. O
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30. VECTOR FIELDS
Recall avector fieldonU C M is a section o' M defined ovel/.

30.1. Lie brackets. Given two vector fields andY on M viewed as derivations at eaple M,
we can define its Lie brackéX, Y| = XY — Y X, i.e,, for f € C>*(M),

(X, Y](f) = X(Y ) =Y (X[).
Proposition 30.1. [X, Y] is also a derivation, hence is a vector field.
Proof. This is a local computation. Tak = 3°, a;52- andY = Y bj%. Then:
B 0 of 0 of
[X7Y]<f) - ;alaxi (;bjaxj> ;bjaxj (Zalaxz>

ob; Of da; Of
izj i 8@ 8xj ; bj 8.Tj 8@

In other words,

Properties of Lie brackets.
(1) (Anticommutativity)| X, Y] = —[Y, X].
(2) (Jacobiidentity)X,[Y, Z]| + [Y, [Z, X]]| + [Z,[X,Y]] = 0.
() [f X, gY] = fg[X. Y]+ fX(9)Y — gV (f)X.

These properties are easy to verify, and are left as exsrcise

30.2. Fundamental Theorem of Ordinary Differential Equations. The Fundamental Theorem
of Ordinary Differential Equations is the following:

Theorem 30.2.Given a vector fieldl on a manifold}/ andp € M, there exist an open s&t > p,
e > 0, and a smooth mag : U x (—¢,¢) — M such that if we set,(t) = ®(z,t), z € U, then
7.(0) = = and~,(t) is an arc through: whose tangent vector ats X (v,(t)).

Locally, take coordinates;, ..., z,. If X =>"" | ai(x)a%i and we writez(t) = v,(t), then
) = (aralt), - an(r(t)),

We omit the proof of this theorem.

Definition 30.3. A curvey : (a,b) — M is anintegral curveof X if i—z = X(v(t)).

Remarks.
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(1) By definition,~,(t) are integral curves oK. If v : (=6,6) — M is another integral
curve of X with v(0) = z, then~(t) = 7.(t) on(—¢,¢) N (—6,0). Therefore, the flow
®: U x (—¢,e) — M is unique on the domain of definition.

(2) If M is compact (without boundary) andis a vector field onV/, then there exists a global
flow ® : M x R — M with ¢g = id. SinceM is compact, the finite covering property
ensures that we may choosé¢o work for all the open set§. If we know that there is a
flow for a short time:, we can repeat the flow and obtain a flow for an arbitrarily longg.

(3) However, if M is not compact, then there are vector fieklsvhich do not admit global
short-time flowsb : M x (—e,¢) — M. (See the example below.)

(4) 500, = ¢oyy @ndep; ' = ¢_,. In particular, on a compaadt/, {¢;},cr forms a 1-parameter
groupof diffeomorphisms.

Example.On M =R — {0} considerX = 2. The vector fieldX, considered as a vector field on
R, clearly integrates t® : R xR — R, (z,t) — z +t. However, wher{ 0} is removed, no matter
how small are you take, there isn@ : (R — {0}) x (—¢,¢) - R — {0}.

Corollary 30.4. SupposeX (p) # 0. Then there exists a coordinate system ngauch that

o]
Proof. If M is n-dimensional, choose am — 1)-manifold ¥ (defined in a neighborhood ¢
which is transverse t&X. (HereX is transverseo X if 7> and X (z) spanT,M at allz € 3..)
(Why does such & exist?) Now take) : > x (—¢,e) — M given by® restricted ta-. SinceX is
transverse toX, v is a diffeomorphism neas by the inverse function theorem. In the coordinate

system® x (—¢,¢), X is clearly 2. O
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31. VECTOR FIELDS ANDLIE DERIVATIVES
31.1. Pullback.
Proposition 31.1.Let f : M — N be a smooth map and € Q*(NV). Then we have:
fro(@) (X, .. Xy) = w(f(2) (X1 LX)
Proof. It suffices to show this for 1-formég. Then:

(f*dg)(X) =d(go f)(X) = X(go f) = f. X(9),

by definition of the pushforward of . If we write this in coordinates, then

dg
dg = —dy;
g p ayi
and 90 &
f d.g - ayz ax]d 70
SO
Z dg 0y;
8% y; Oz’
whereas

( ) Z 83/2 (Z 8.75 8yl> N ; y; 8xj. ]

31.2. Lie derivatives. Let X be a vector field onV/. Then there exist a local or global flow
O : M x (—e,e) = M, ¢s(x) = ®(x,t), such thaty(x) = x. We defined thé.ie derivativel
on formsw as: p
Lxw = Eéﬁ:w\t:o-
Lie derivatives can be defined on vector fieldsas well:
d

LxY = E(Cb—t)*yhzo-

Here, vector fields cannot usually be pulled back, but forfl@ainorphisme, there is a suitable
substitute, namelyp—1),.

Ultimately, it is easy to see thaly can be defined on any tensor of the tyRe7*M © A\' TM.

Properties of L x.
(1) Lxf=XFf.
(2) ,CX(A) = (dOiX +ZX Od)(,d
(3) ,CX((A)(Xl, S ,Xk)) = (,CX(U)(Xl, S ,Xk) -+ Ziw(Xl, S ,,CXXZ', S ,Xk)
(4) LxY = [X,Y].
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(1), (2) are already proven. (3) is left for homework. Useg@sition 31.1 above. We will do
(4), assuming (1), (2), (3). We compute:

XY() = £Lx(Vf)

= Lx(df(Y))

= (Lxdf)(Y)+df(LxY)

= (do Lxf)Y +df(LxY)
= dX())Y + (LxY)([)
= Y(X(f)) + (LxY)(f)

Therefore(LxY)f = X(Y(f)) = Y(X(f)) = [X, Y](f).

31.3. Interpretation of LxY = [X,Y]. As before,X, Y may not have global flows, but for
simplicity let us assume they do. Let : M — M, s € R, be the 1-parameter group of diffeomor-
phisms generated by andvy, : M — M, t € R, be the 1-parameter group of diffeomorphisms
generated by". Noting thatY (z) = lim,_,o @)=z e have

,CXy(l')

t

iy
lim (¢—sowto¢s(x) —l’) - (wt(x) —l’)
5,t—0 st
lim G_soPo ¢8(1’) - ’(/)t(l')
5,t—0 st
-1 _
lim, ¢ (wt 0 97" 0 0 du(x) x)
s,t—0 st
oy Vo0 oo dula) —
5,6—0 st

Hence, the Lie brackéX, Y| measures the infinitesimal discrepancy when you flamits along
X, t units alongY’, —s units alongX and finally—¢ units alongy’.
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32. Day 31
32.1. Relationship betweend and [, ].
Proposition 32.1.1f § € Q'(M) and X, Y € X(M), then
dO(X,Y) = XO(Y) — YO(X) — 6([X, Y]).

Proof.
dQ(X, Y) = Zylxde = 'iy(,CX —do ’Lx)9
= iy (Lx0 —d(0(X)))
= (Lx0)Y —YO(X)
= XO0Y)-YO0(X)—-0(X,Y]),
by using

Lx(0(Y)) = (Lx0)Y +0([X, Y]).

More generally, foro € QF(M) and X, ..., Xy € X(M):

dw(X1, .. Xppr) = D (D)X (WXL, Xy, X))
+ Z(—l)i+jw([Xi,Xj],X1, cey 5(\1'7 e ,5{;, e 7Xk+1)-

1<j
Heref(\i means omit the term witl;. The proof is for HW.

32.2. Distributions. Recall that if X' is a vector field withX (p) # 0, then locally neap there

exists an open set with coordinates, . . ., z,) whereX = a%- Can we generalize this? K, Y
are two vector fields such that(p), Y (p) span a 2-dimensional subspacelpf/, then the span

of X (x) andY (z) is a 2-plane field for every in a neighborhood of.

Definition 32.2. Let M be ann-dimensional manifold.

(1) A k-dimensionatistributionD is a smooth choice of &-dimensional subspace 6}/ at
every poinp € M. By asmooth choiceve mean there exigtlinearly independent vector
fields X1, ..., X which sparD, locally nearp.

(2) Anintegral submanifoldV of M is a submanifold wherd, N C D, at everyp € N.
dim N is not necessarilfim D, butdim N < dim D.

(3) D is anintegrable distributiorif there is a coordinate systef,...,z,} near every
p € M such thatD = Span{;Z, ..., ;2-}. Equivalently,D is integrableif there locally
exist functionsfy, . .., f,_x such that{ f; = const, ..., f,_r = const} are integral sub-

manifolds ofD and thef; are independent, i.edf; A - - - A df,,_i # 0.
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Dually, we can define &-dimensional distribution o/ (of dimensionn) locally by prescribing
n — k linearly independent 1-forms,, ..., w,_s.

Example: OnR3, letw = dz. ThenD = kerw = Span{a%, a%}- Theintegral surfacegsurfaces
everywhere tangent tB) arez = const. D is an integrable 2-plane field distribution.

Example: OnR3, considew = dz + (zdy — ydz). ThenD = Kerw = Span{xa% + ya%, ya% —
w4 + 4} D is called acontact distributionand is not integrable.

For 2-plane fields inR? integrability amounts to: Can you find a functignsuch thatf = const
are everywhere tangent 10?

First calculatev A dw = 2dzdydz # 0. ThenD is not integrable for the following reason: If
D = R{z%, ;% }, thenwis of the formfdzz5. Now, dw = dfdzs andwAdw = fdzsAdf Adas = 0.
This gives a contradiction. Therefore, the contact 2-pfeeié distribution is not integrable.
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33. FROBENIUS THEOREM

Let M be ann-dimensional manifold. A distributio® of rank k£ is a rankk subbundle of
T M. Locally, D is defined as the span of independent vector fidlds . ., X, or as the kernel of
independent 1-formsy, . .., w, 4.

Theorem 33.1(Frobenius’ Theorem)A distributionD C T'M of rankk is integrable if and only
ifforall X,Y e I'(D), [X,Y] € I'(D).

33.1. Proof of Frobenius’ Theorem. SupposeD C T M is integrable. Then there exist co-
ordinateszs, ...z, so thatD = Span{;2,..., ;2 }. HenceX = Y0 a;(x);> andY =

> bj(w) 5%, and

) Dz,

k
o 8()3 8 8ai 8
=303 ( ] &Ci) e T(D).

Suppose for allX,Y € I'(D), [X,Y] € I'(D). We will find coordinatesry, ..., z, so that
D= Span{a%, e 85’ }. Note that all our computations are local, so we restrict/te= R". We
will first do a slightly easier situation.

Proposition 33.2.Let X1, ..., X, be independent vector fields with = Span{ X1, ..., X;}. If
[X;, X;] = 0forall ¢, j, thenD is integrable.

Proof. We will deal with the case whekm D = 2 andM R3. SupposeX Y] = 0. Using the
fundamental theorem of ODE’s, we can write= 2. ThenY = Y7 | b -, and[X, Y] =0

implies thatS™ = 0, i.e.,b; = b; (1’2,1’3) (there is no dependence an). Now takeY’ — Y —
hX = b2(:c2, .Tg)am + b3 (o, .T3) . If we project toR? with coordinatesr,, .CL’3, thenY” can be
integrated to7,2, after a possible change of coordinates. Therefbre; Span{-2- B E)%} O

Still assuminglim D = 2 andM = R3, supposéX, Y] = AX + BY. Without loss of generality,
X = a% andY = bga% + bga%. Then,

oy 0 Ay 0 0 9 9
91, 005 02, 02~ “om T By, T By

This implies: A = 0, % = Bb,, g—ﬁ = Bbs. Hence,

(X, Y] =

t= t=
b2 _ f(x27 x3>€ft:ozl B(t7m27m3)dt7 b3 — g(,’L‘27 .’L‘3>€ft:011 B(t,rz,ZES)dt_

ThereforeY = efB(f(xQ,xg)ax +g(x2,x3)ax ), and by rescaling” we getY”’ = f(xg,xg)aim+
g(xa, .133) . As before, now” can be integrated to glv§L

HW: Write out a general proof.
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33.2. Restatement in terms of forms. If D has rankk on M of dimensionn, then dually there
exist 1-formsuy, . .., w,_x such thalD = {w; = --- = w,_ = 0}.
Proposition 33.3. D is integrable if and only iflw; = Z?:‘f 0;; A\ w;, whereg;; are 1-forms.
Proof. We use the identity
9 dw(X,Y) = Xw(Y) - Yw(X) —w([X,Y]).
First supposelw; = >_"" 0;; A w;. Then for sections(, Y of D,
dw;(X,Y) = Xw; (V) = Ywi(X) —wi([X,Y]) = —wi([ X, Y]).

On the other handjw;(X,Y’) = 0. Hencew;([X,Y]) = 0 for all ¢, which implies tha{.X, Y] is a
section ofD.
Next, suppos® is integrable. Complete,, . .., w,_; into a basis by adding,, ..., 7. Then

k n—k
dwoy = Y aijeos Awy+ ) D b Awj + 3 eimi A
i<j i=1 j=1 <J

Using Equation 9, forX, Y sections ofD, dw;(X,Y) = 0. Taking X1, ..., X} dual ton,, ..., n,
we find thatdw; (X, , X;) = ¢,s (or —cy,). This proves that all the;; are zero. O
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34. CONNECTIONS

34.1. Definition. Let E be a rankk vector bundle ove/ and lets be a section of£. s may
be local (i.e., inl'(E,U)) or global (i.e., in[’(E, M)). Also let X be a vector field. We want to
differentiates atp € M in the direction ofX (p) € T, M.

Definition 34.1. A connectioror covariant derivativey assigns to every vector field € X(M)
a differential operatoiVy : I'(E') — I'(E) which satisfies:

(1) Vxs is R-linear in s, i.e.,VX(clsl + 0282) =c1Vxs) +caVxssy if C1,Co € R.
(2) VxsisC>(M)-linearin X, i.e.,,Vixi,vs = fVxs+ gVys.
(3) (Leibnizrule)Vx(fs) = (Xf)s+ fVxs.

Note: The definition of connection is tensorial i (condition (2)), so(V xs)(p) depends ors
nearp but only onX at p.

34.2. Flat connections. We will now present the first example of a connection.

A vector bundleF of rankk is said to bdrivial or parallelizableif there exist sections;, . . ., s; €
I'(E, M) which spankE, at everyp € M. Although not every vector bundle is parallelizable,
locally every vector bundle is trivial sindB|;; ~ U x R*. We will now construct connections on
trivial bundles.

Write any sectiors ass = ) . f;s;, wheref; € C°>°(M). Then define

Vs =Y (Xfi)si=(Xfi)s1 4+ (Xfi)si € [(E).
This connection is usually calledflat connection

HW: Check that this satisfies the axioms of a connection.

Note thatVys; = 0 for all X € X(M). Sectionss satisfying such a property are said to be
covariant constant

Important remark: We can define a connectidnfor each trivialization®|; = U x R¥, and there
is nothing canonical about the connectionabove. (It depends on the choice of trivialization.)
The space of connections is a large space (to be made morseplager).

Proposition 34.2.Any two covariant constant frames . . ., s, andsy, . . ., 5, differ by an element
of GL(k,R).
Proof. Let sy, ..., 35, be another covariant constant frame, i\éxs; = 0. Since we can write

Si = Z fijsj,
J
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with f;; € C>~(M), we have:
0=Vxs;, = Z Vx(fijs5)
j

- Z[(Xfij)sﬁrfmvxsj]
— Z(Xf,-j)sj.

J

This proves thak f;; = 0 for all X and hencef;; = const.

Therefore, a flat connection determines a covariant conftame { s,
of GL(k,R).

U

..., Sk} up to an element
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35. MORE ON CONNECTIONS
35.1. Preliminaries on vector bundles. Let £ be a vector bundle ove¥/ and¢ : N — M be a
smooth map. Then we can define fhdlback bundle)~' £ over N as follows:
(1) Thefiber(¢~'E), overn € N is the fiberE,,, overg(n) € M.

(2) There exist sufficiently small open sétsc N, sothaip(V) C U andyy : E|y = U xR¥,
The trivializationp= ! E|y, ~ V x R* is induced from this.

Next, if £ andF’ are vector bundles ovél/, then we can defin& @ F as follows:

(1) The fiber(E @ F),, overm € M is E,,, ® F,,.

(2) TakeU C M small enough so that|;, = U x R andF|y = U x R'. Then we get

(E® F)|ly ~U x (RF@RY).
E ® F is defined similarly.
35.2. Existence. Let M be ann-dimensional manifold and’ be a rankk vector bundle oven/.
Recall a connectioV is a way of differentiating sections @ in the direction of a vector fiel .
Vx :T'(FE) = T(F),
Vx(fs)=(Xf)s+ fVxs.

Definition 35.1. A connectionV on E is flat if there exists an open covégt/,} of M such that
E|y, admits a covariant constant frame, . . . | si.
Proposition 35.2. Connections exist on any vector bundlever M.

Note that if £’ is parallelizable we have already defined connections ¢ioba E. The key point
is to pass from local to global whehi is not globally trivial.

Let V' andV"” be two connections of|;;. Let us see whethér’ + V” is a connection.
(Vi + VX)(fs) = Vi(fs)+ Vk(fs)
= (Xf)s+ fVis+ (X[f)s+ fVis
= 2(X[f)s+ f(Vx + V5)s.
This is not quite a connection, sin2eX f) should beX f instead. However, a simple modification
presents itself:

Lemma 35.3. Suppose\;, s € C°(U) satisfies\; + A\, = 1. Then\; V' + A\, V" is a connection
on E|U

Proof. HW. O

Proof of Proposition 35.2Let {U,} be an open cover such that;, is trivial. Let V* be a flat
connection onk |y, associated to some trivialization. Next lef,} be a partition of unity sub-
ordinate to{U,}. Then form)_  f,V*. By the previous lemma, the Leibniz rule is satisfied.
O
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Remark: Although each of the pieceég” is flat before patching, the patching destroys flatness.
There is no guarantee that (even locally) there exist sg£tin . . ., s, which are covariant con-
stant. In fact, for a generic connection, there is not eveinglescovariant constant section. One
way of measuring the failure of the existence of covariamistant sections is thaurvature

35.3. The space of connectionsGiven two connection¥ andV’, we compute their difference:
(Vx = V)(fs) = f(Vx = Vi)s.
Therefore, the difference of two connectionsdaasorialin s.

Locally, take sectionsy, ..., s, (not necessarily covariant constant). Th@ny — V)s;, =
> aijsj, where(a;;) is ak x k matrix of functions. In other word$sy — V'’ can be represented
by a matrixA = (A4;;) of 1-formsA,;. Herea;; = A;;(X). Hence, locally it makes sense to write:

V=d+ A
Heres = Y f;s; corresponds t¢f, . .., fx)* and more precisely
V(fi, o f) =df, o )"+ A )T
Globally,V—V'is asection of *M ® End(E). HereEnd(E) = Hom(E, E). The space of such

sections is often written &3'( End(F)) and a section is called a “1-form with valuesiimd(E)".
This proves:

Proposition 35.4. The space of connections @his an affine spac@'(End(E)).

Remark: We view Q!(End(F)) not as a vector space (which has a preferred zero element) but
rather as an affine space, which is the same thing exceptddack of a preferred zero element.
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36. QURVATURE
Let E — M be arank- vector bundle and be a connection o#&.
Definition 36.1. ThecurvatureRy (or simply R) of a connectiorV is given by:
R(X,Y) = [Vx,Vy] - V[X,Y] =VxVy —VyVy — V[X,Y}u
or
R(X,Y)s = [Vx,Vy]s = V[xys.

Proposition 36.2.
(1) R(X,Y)sis tensorial, i.e.(C>°(M)-linear, in each ofX, Y, ands.
(2) R(X,Y) = —R(Y, X).

Proof. (2) is easy. For (1), we will prove thd(X,Y") is tensorial ins and leave the verification
for X andY as HW.

R(X,Y)(fs) = (VxVy —=VyVx)(fs) = Vixy(fs)
= Vx((Yf)s+ fVys) = Vy(X[f)s+ fVxs) = (([X,Y]f)s + fVxy)s)
= fR(X,Y)s

O
Proposition 36.3. The flat connectiolVys = > (X fx)sx hasR = 0. (Heresy, ..., s, trivializes
E|U ands = Z kak)

Proof. We useX = -2,V = 2.
) x; T
choices.

SinceR(X,Y) is tensorial, it suffices to compute it for our

o 0
R<8—%,8—%)8 = ;(Vagivagj_vagjvaii)fksk

of of
- Z[va (5) v (5n)

S O fi 0 fi
= - S — 0.
8.752‘81’3' 81’383}2

O

36.1. Interpretations of curvature. Think of V asd + A in local coordinates if necessary. We
have a sequence:

QE) S QYE) S QX E) — ...
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The first map is covariant differentiation (interpretedybtly differently). It turns out that this
sequence is not a chain complex, i¥.p V # 0 usually. In fact the obstruction to this being a
chain complex is the curvature. Let us locally write:

VoVs=(d+A)(d+ A)s=(d*+Ad+dA+ ANA)s = (dA+ AN A)s.
Proposition 36.4. R =dA+ AN A)i.e ,R(X,Y)s = (dA+ AN A)(X,Y)s.
0

Proof. It suffices to prove the proposition fof = %, Y = 5, ands = s, wheresy, ..., s, isa

J
local frame forE|y;. A is anr x r matrix of 1-forms(A};dx,). (We will use the Einstein summation
convention — if the same index appears twice we assume imsm&ad over this index.) Then we
compute:
J M?@ i J
(20) V%V Sk = V%(Sm/lmk) = 8§, —2% + 5, A A

o
dx; axi nm* ‘mk

The computation of the rest is left for HW. O
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37. REMANNIAN METRICS, LEVI-CIVITA

37.1. Leftovers from last time. Last time we defined the curvatufe, of a connectiorivV. Lo-
cally, if V is given byd + A, thenR = dA + A A A.

Theorem 37.1.V is a flat connection if and only iRy, = 0.

We have already shown the easy directionVlis flat, thenRy = 0. The other direction will
be omitted for now (probably will be given next semestemngsia “good proof” will take us a bit
far afield. Our only commentis thd@ = dA+ AN A =0o0ordA = A A Alooks a lot like the
Frobenius integrability condition given in terms of forms.

Corollary 37.2. Let E' be a rankr vector bundle oveR andV be a connection o’. ThenV is
flat.

Proof. This is because all 2-forms dhare zero. O

Remark: There are lots of connections which are not flat, since it sy ¢a find A so thatd A +
ANA#NO.

37.2. Riemannian metrics.

Definition 37.3. A Riemannian metri¢, ) or g on M is a positive definite symmetric bilinear form
(or inner product)g(z) : T, M x T, M — R which is smooth in: € M.

Recall: A bilinear form(,) : V x V' — R is positive definitef (v,v) > 0 and(v,v) = 0 if and
only if v = 0. (,) is symmetridf (v, w) = (w,v).

Example: OnRR" take thestandard Euclidean metrig <%, %) = ¢;;. This is usually written as
g = >_;dr; ® dz;. Any other Riemannian metric dR" can be written ag(z) = > _,; g;j(v)dz; ®
dl’j, Wheregl-j(x) = gﬂ(ﬂf)

Proposition 37.4. Every manifoldV/ admits a Riemannian metric.

Proof. Let {U,} be an open cover so th&t, ~ R". On eachl/,, we take the standard Euclidean
metricg,. Now let{ .} be a partition of unity subordinate {@/, }. Then)_  f.g. is the desired
metric. O

The pair(M, g) of a manifoldM together with a Riemannian metgon M is called aRiemannian
manifold.

Leti: N — (M, g) be an embedding or immersion. Then thduced Riemannian metri¢g on
N is defined as follows:

i*g(x)(v,w) = g(i(x)) (i, iw),
wherev, w € T, N. The injectivity ofi, is required for the positive definiteness.
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37.3. Levi-Civita connections. Connections of'M — M have extra structure becauseand
Y are the same type of object in the expressiony . In fact, we can define thirsion

To(X,Y)=VxY - VyX —[X,Y].
Proposition 37.5. 7 (X, Y) is tensorial inX andY.

This is an easy exercise and is left for HW. (Note that theamotif torsion does not depend at all
on the Riemannian metric.) We s&Yis torsion-freeif Ty, = 0.

Definition 37.6. V is compatiblewith ¢ if X(Y, Z) = (VxY, Z) + (Y,VxZ). HereX,Y, Z €
X(M).

Theorem 37.7.Let (M, g) be a Riemannian manifold. Then there exists a unique toifsémn
connection which is compatible with

Proof. For any vector fields, Y, Z, we have:

(11) X(Y,Z) = (VxY,Z) + Y,V Z),
(12) Y(X,2) = (Vy X, Z) + (X, Vy Z),
(13) Z(X,Y) = (V;X,Y) + (X,V,Y).

Taking (11)+ (12) — (13), we get:
(14) 2(VxY, Z) +([Y, X]. 2) + (X, 2] Y) + ([Y. 2], X) = X(¥, Z) + Y (X, Z) — Z(X.Y),
and solving for(VxY, Z), we get:

(15) (VxY, Z) = %(<[X> Y, 2) +(12, X1, V) +([2, Y], X) + X(V, 2) + Y (X, Z) = Z(X,Y)).

Itis clear that the values of Equation 15 deternfihdt remains to show that Equation 15 indeed
defines a connection which satisfies the torsion-free angathility conditions. It is clear that
(VxY,Z) = (Vy X, Z)whenX,Y, Z are of the forma%, and that Equation 11 can be recovered
from Equation 15. The details are left for HW. O

The unique torsion-free, compatible connection is calfed_evi-Civita connectioffior (M, g).
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38. HAPE OPERATOR

Let X be a surface embedded in the standard EuclidBang), and letg be the induced metric
on . We will denote the Levi-Civita connection di®?, g) by V and the Levi-Civita connection
on(3,g) by V.

Claim: V satisfiesvaiﬁ = 0.
z; J

The verification is easy. The claim implies tHét Y is simply £V (y(t))|;—o, Wherey(t) is the
arc representing’ at a given point.

What we will do today is valid for hypersurface@:(— 1)-dimensional submanifolds)/ inside
(N, g) of dimension, but we will restrict our attention t&/ = R? for simplicity.

Definition 38.1. Let X, Y be vector fields oR? which are tangent t&, and let N be theunit
normal vector field ta insideR3. Theshape operatds S(X,Y) = (VxY, N). In other words,
S(X,Y) is the projection in theV-direction of VY.

Proposition 38.2. 5(X, Y) is tensorial inX, Y and is symmetric.

Proof. S(X,Y) = S(Y, X) follows from the torsion-free condition and the fact that Y] is
tangent ta-. Now,

S(fX,Y) =(VxY,N) = (fVxY,N) = fS(X,Y).
Tensoriality inY” is immediate from the symmetric condition. U

Remark: The shape operator is usually called sieeond fundamental forim classical differential
geometry and measures how curved a surface is. (In casegourawus what thérst fundamental
formis, it's simply the induced Riemannian metric.)

Also observe thab (X,Y) = (VxY,N) = (VxN,Y), by using the fact thatY, N) = 0 (since
N is a normal vector anti” is tangent ta-).

38.1. Induced connection vs. Levi-Civita. If X,Y € X(M), we can write:
VxY =VL4Y + S(X,Y)N,

whereV% Y denotes the projection & xY onto7'Y.

Proposition 38.3. V" =V, i.e., V" is the Levi-Civita connection ¢, 7).

Proof. We have defined/%Y = VyY — S(X,Y)N. Itis easy to verify thalv" satisfies the
properties of a connection an
V" is torsion-free:

VAY —VEX = (VxY —S(X,Y)N) - (VyX — S(Y,X)N)
= VyxYV - VyX
= [X,Y]
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V" is compatible withy:
XY, Z) = (VxY,Z)+(Y,VxZ)
= (V&Y. Z) +(Y,VX2),
since(N, X) = 0 for any vector fieldV on X. O
It seems miraculous that somehow the induced connectiobdsiaCivita connection. Classically,

the induced covariant derivative came first, and Levi-@igcihme as an abstraction of the covariant
derivative.
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39. GaUusS THEOREMA EGREGIUM

Let (X, 9) be a 2-dimensional Riemannian submanifold of the standadtidean(R?, g). The
shape operator is a symmetric bilinear form:

S:T,Y x T, — R,
whereN is a unit normal to:, X, Y are vectors irf,X which are extended to an arbitrary vector
field tangent ta2, andV is the Levi-Civita connection fofR?, ). We can represeri(z), » € %,
as a matrix by taking an orthonormal basgis, e»} at 7, X and taking the entrieS(e;, e;). The
trace of this matrix is called themean curvaturand the determinant is called teealar curvature
or theGauf3ian curvature

Denote byV the Levi-Civita connection fop andV the Levi-Civita connection fof. Also
write R = Ry andR for Re.

Theorem 39.1(Gaul3’ Theorema Egregiumlf X, Y are vector fields o, then

What this says is that the right-hand side, an extrinsic tityafdepends on the embedding into 3-
space) is equal to the left-hand side, an intrinsic quatityy depends on the Riemannian metric
g and not on the particular embedding ifitd). Therefore, the scalar curvature is expressed purely
in terms of the curvature of the induced metric.

Proof. Let N be the unit normal vector ta.
(VxVyY, X) = X(VyY, X)— (VyY,VxX)
= X(VyY —S(Y,Y)N,X) — (VyY —S(Y,Y)N,VxX — S(X, X)N)
= X(VyY, X) —(VyY,VxX)+ (S(X,X)N,VyY)
= (VxVyY X)) + S(X, X)S(Y,Y).
Similarly,
(VyVxY,X) = (VyVxV,X) - S(X,Y)?,

(VixnY, X) = (Vix Y, X).
Finally,

(RIX,Y)Y,X) = (RIX,Y)Y,X)+S(X,X)S(Y,Y) - S(X,Y)?
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40. BULER CLASS

40.1. Compatible connections.Let E be a rankk vector bundle over a manifold/. A fiber
metricis a family of positive definite inner products),. : £, x E, — R which varies smoothly
with respect tar € M. A connectionV is compatiblewith (,) if X (s, s2) = (Vxs1,$2) +
(s1, Vxso), for all vector fieldsX andsy, sy € T'(E).

Remark: We can view the Riemannian metgon M as a fiber metric of' M — M. When we
think of T"M as a vector bundle ovér/, we forget the fact that’' M/ was derived from\/.

LetU C M be an open set over whidhis trivializable, and le{ sy, ss, . . ., s, } be an orthonormal
frame of £ overU. An orthonormal frame can be obtained by starting from saa®é of £ over
U and applying the Gram-Schmidt orthogonalization process.

With respecttd sy, . .., sy} we can writeV = d+ A, whereA is ak x k matrix with entries which
are 1-forms orv.

Lemma 40.1. A is a skew-symmetric matrix, i.ed] = —A.

Proof. If we write A = (Afjdxk), then we hav&aisj = siAj’j.
Tk

0
a—%<8i7sj> = <V%Si,8j> + <8i,V%SJ‘>,
so we have
k _ k
Aj = — A
O
Lemma 40.2.Let{s),..., s}, } be another orthonormal frame fdr overU. If g : U — SO(k) is

the transformation sending coordinates with respect; tto coordinates with respect tg (by left
multiplication), then the connection matrix transforms as— ¢g~'dg + g~ 'Ag.

Proof.

g d+A)g = g ldg+g lgd+g " Ag
= d+ (g 'dg+ g~ Ag).
You may want to check that ifi is skew-symmetric and is orthogonal, theg—'dg + g1 Ag is
also skew-symmetric. O

40.2. Rank 2 case. Suppose from now on thdt has rank over M of arbitrary dimension. Then
Ay (the connection matrix ovér with respect to some trivialization) is given by

o 0 A21
w9, ).
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Then the curvature matri®;; is

Ry = dAy + Ay A Ay = ( e “’OU),

wherewy; is the 2-formd A, .

Theorem 40.3.There is a global closed 2-form which coincides withu;; on each open séf.
Hence a connectio¥ on E gives rise to an elememb]| € H32,(M). This cohomology class is
independent of the choice of connectidrcompatible with(, ), and hence is an invariant of the
vector bundleZ. It is called theEuler clasof £ and is denoted(E).

Proof. We need to show that on overlapsN V, wy = wy. If g : UNV — SO(2) is the
orthogonal transformation taking fromto V', then we computé& with respect to the connection
1-form g=tdg + g~ Ayg. Itis not hard to see that we still get

. 0 Wy
(0 ).

Now, two different connection¥ andV’ have difference i)' (End(FE)). (Moreover, they have
values in2 x 2 skew-symmetric matrices.) It is not hard to see that if wé jpigt the upper right
hand corner of the matrix on each local coordinate chaithen they coincide and yield a global
1-form «, and the difference betwedty;, and Ry will be the exact formic. O

Example: For the Levi-Civita connectioW on a surfacé>:, ) — (R?, g), we have, locally,

. 0 Iﬂgl/\eg
fo = ( it Al 0 )

wherex is the scalar curvaturée,, e, } is an orthonormal frame, anfd, 6, } is dual to the frame
(called thedual coframé. (The fact thatx is the scalar curvature is the content of the Theorema
Egregium!)

40.3. The Gau3-Bonnet Theorem.Let (M, g) be an oriented Riemannian manifold of dimension
n. Then there exists a naturally defined volume favmwvhich has the following property: At
x € M, letey, ..., e, be an oriented orthonormal basis f6rM. Thenw(x)(es,...,e,) = 1. If
we change the choice of orthonormal basis by multiplyingdbg SO(n), then we have a change
of det(A), which is still 1. Thereforey is well-defined.

For surfacegy:, g), we have an area formA.

Theorem 40.4(GauR-Bonnet)LetY: be a compact submanifold of Euclidean spéRe, ). Then,
for one of the orientations of,

/E kdA = 27X ().

Here « is the scalar curvaturedA is the area form foig induced from(R3, ), and x(X) is the
Euler characteristic of.
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TheEuler characteristiof a compact manifold/ of dimension. is:
X(M) = "(=1)" dim Hip(M).
=0
Note that a compact surfage(without boundary) of genughasy(3) = 2 — 2g¢.

Proof. Notice thatxdA is simply <0, A 6, above in the Example, and hence the Euler class is
e(TM) = [rdA]. In order to evaluatd,, kdA, we therefore need to compufgw for the connec-
tion of our choice ori’>> compatible withg, by using Theorem 40.3.

In what follows we will frequently identifySO(2) with the unit circleS! = {¢?|0 € [0, 27]} in

C via

cosf —sin6 o o

sinf)  cos@ €

We will do a sample computation in the case of the spli&te Let S? be the union of two

regionsU = {|z| < 1} andV = {|w| < 1} identified viaz = 1/w along their boundaries.
Here z,w are complex coordinates. (Note tHatandV" are not open sets, but it doesn't really
matter....) If we trivializel'>> on U andV using the natural trivialization frorA'C, then the gluing
mapg : UNV — SO(2) is given byf — ¥ If we set Ay to be identically zero, then
0  2df
_ -1 -1 _ 1 _
Av =g dg+g9- Avg =g dg = 55

matter how we extend; to the interior ofU, we have the following by Stokes’ Theorem:

/ wy = / 2df = 4 = 27x(S?).
U ouU

Now let X be a compact surface of genggwithout boundary). Then we can remoyannuli
St x [0, 1] from ¥ so thats becomes a disk’ with 2g — 1 holes. We make! flat on the annuli,
and see what this induces dh A computation similar to the one above gives the desireth .
(Check this!!) O

alongoU (after transforming vig). No



