Sample problems for midterm exam

- (1) Let $\mathbf{v} = (1, 2, 3)$ and $\mathbf{w} = (1, 1, 0)$.
 - (a) Find the unit vector in the same direction as \mathbf{v} .
 - (b) Find the angle between the vectors \mathbf{v} and \mathbf{w} .
 - (c) Let \mathcal{L}_1 be the line through (0,0,0) in the direction of \mathbf{v} and \mathcal{L}_2 be the line through (-1,0,3) in the direction of \mathbf{w} . Write down the parametric equations of \mathcal{L}_1 and \mathcal{L}_2 . Then determine whether these lines intersect.
- (2) Find an equation of the plane through the points (1, 1, 1), (0, 1, 1), and (-1, -1, -1).
- (3) Find the volume of the parallelepiped spanned by $\mathbf{u} = (2, 2, 1)$, $\mathbf{v} = (1, 0, 3)$, and $\mathbf{w} = (0, -4, 0)$.
- (4) Given the vectors $\mathbf{a} = (4, -1, 5)$ and $\mathbf{b} = (2, 1, 1)$, find the decomposition $\mathbf{a} = \mathbf{a}_{\parallel \mathbf{b}} + \mathbf{a}_{\perp \mathbf{b}}$.
- (5) Prove that the vectors (1, 4, 7), (2, 5, 8), and (3, 6, 9) are parallel to the same plane. Find an equation of such a plane.
- (6) Let \mathcal{L} be the intersection of the planes x y z = 1 and 2x + 3y + z = 2. Find parametric equations for the line \mathcal{L} .
- (7) Find the distance from the point Q = (1, 1, 1) to the plane 2x + y + 5z = 2.
- (8) Let C be a curve parametrized by $x(t) = \sin t$, $y(t) = 3\cos t$. Sketch this curve. Find all points on the curve at which the tangent line to the curve is parallel to the line y = x.
- (9) Find the location at t = 3 of a particle whose path satisfies $\mathbf{r}'(t) = (2t \frac{1}{(t+1)^2}, 2t 4)$ and $\mathbf{r}(0) = (3, 8)$.
- (10) The curve $\mathbf{r}(t) = (e^t \cos 4t, e^t \sin 4t)$ has the property that the angle ψ between the position vector and the tangent vector is constant. Find the angle ψ .
- (11) Using the same curve $\mathbf{r}(t) = (e^t \cos 4t, e^t \sin 4t)$, evaluate $s(t) = \int_{-\infty}^t |\mathbf{r}'(u)| du$. (It is convenient to take the lower limit $-\infty$ because $\mathbf{r}(-\infty) = (0,0)$.) Then find an arc length parametrization of $\mathbf{r}(t)$.
- (12) Compute the curvature function of the parametrization $\mathbf{r}(t) = (a \cos t, b \sin t)$ of the ellipse $(\frac{x}{a})^2 + (\frac{y}{b})^2 = 1$.
- (13) Find the curvature of $\mathbf{r}(t) = (\cosh t, \sinh t, t)$ at t = 0.
- (14) A ball is thrown from the ground at the angle of $\frac{\pi}{6}$ with the ground at the initial velocity of 10 m/s. The gravitational acceleration is 9.8 m/s². Find how long it takes before the ball hits the ground again.
- (15) Sketch the surfaces in Exercises 25–38 from Section 13.6.
- (16) The temperature in 3-space is given by $T(x, y, z) = x^2 y^2 z$. Draw isotherms corresponding to the temperatures T = -1, 0, 1.