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This note is a beginner version of the beginner’s introduction to Fukaya
category [1]. Some parts are also based on [2-4].

1 Lagrangian Floer Cohomology

In this note we assume that the background symplectic manifold (M,w) is
exact, i.e. w = df. Roughly speaking, we want to study Lagrangian sub-
manifolds in M and their intersection theory. Here we just consider exact
Lagrangians L, i.e. |, = df for some function f € C*(L,R).

Example For a compact real analytic smooth manifold X, consider the
cotangent bundle M = T*X, then there is a canonical exact symplectic
form w = df, where # is the canonical Liouville 1-form locally given by
6 = > .pidg;. Now for a submanifold Y C X, assign a defining function
m: X — Ry for 9Y C X, then we have the standard Lagrangian:

Ly;=T:X + Ty CT°X

where f = logm and I'y is the graph of df. Clearly Ly s depends only on
fly. Since locally 6 = ). p;dg; and p; = g—qf_, 0 = dF', where F is the pullback
of f from Y to Ly . Therefore Ly, is exact.

1.1 Floer complex

Now we introduce the Floer complex. Roughly speaking, for each pair of
Lagrangians (Lo, L1), we define a cochain complex C'F'(Lg, L), which is freely



generated by intersection points of Ly and L; over some field K, together with
a differential d : CF (Lo, L) — CF (Lo, L1)[1].

Naturally there arise some issues: We want a well-defined Floer coho-
mology HF(Lg, L) = Kerd/Imd, so we need d* = 0; If Ly and L; are not
transversal, we have to perturb them by Hamiltonian isotopy so that the
Floer complex is well defined; Also, we want to give CF(Lg, L1) a grading.

For now simply assume Ly, L; are compact and transversal, then define
the Floer differential by counting J-holomorphic strips in M with boundary
in Lo and L; connecting p and ¢q. Then the coefficient of ¢ in dp is given by
that number:

Definition 1 (Floer differential)

d(p) = > (#HM(p, ¢; [ul, J))q, (1)

gex(Lo,L1),ind([u])=1

More precisely, we are counting the space of maps u : R x 0,1] — M
which solves the Cauchy-Riemann equation d;u = 0:

o

Os ot
u(s,0) € Ly and u(s,1) € Ly,

lim wu(s,t) =p, lim u(s,t) =g, (3)

s—+400

+ J(u) 0, (2)

where J is any almost complex structure compatible with w. Fix a homotopy
class [u] € my(M, Lo U Ly), then let #M(p, q; [u], J) be the moduli space of
all solutions in [u]. Let #M(p,q; [u],J) be #M(p,q;[u], J) quotiented by
reparametrization of the domain, which in this case is the 1-dimensional
translation of s.

The above boundary Cauchy-Riemann problem is linearized to be Fred-
holm. Denote the linearization of 9; at u by Dj u» then the Fredholm in-
dex is defined by ind([u]) = dimKer Dj,,/ Coker Dj,,,. The dimension of
moduli space #M(p, ¢; [u], J) is ind([u]) if Dj,, is surjective everywhere on
#M (p, q: [u], J). For simplicity we have to believe that for generic J this is
true.

To count signed moduli spaces, orientation is necessary. Here either as-
sume char(K) = 2 or that Ly, Ly are oriented and spin, then orientation is
guaranteed.



1.2 Grading and Maslov index

Now it is natural to give CF(Lo, L) gradings. To do this, try to assign to
each Lagrangian L a phase function ¢y : L — S'. If 2¢;,(T'M) = 0, the bi-
canonical bundle ALPT* M @ APT* M is trivial, then choose a nonzero section
, define ¢ (p) = HZEZ&QZ”%Z&QZ@H It is easy to check the independence

on basis of T}, L.

We still need to lift the phase function ¢ : L — S to QZL L —- R, so
require that the Maslov class [¢;] € [L, S'] vanishes.
Assume 2¢,(T'M) = 0 and all Maslov classes vanish, then we can define:

Definition 2

deg(p) = (ELO (p) - $L1(p> + )‘(pv Lo, Ll)? <4>

where A(p, Lo, L) accounts for the difference between T,Lo and T,L, lifted
to R by a short path in LGr(T,M). Then the Maslov index is defines as:

ind(u) = deg(q) — deg(p), (5)
where u is any J-holomorphic strip connecting p to q.

For standard Lagrangians Ly s = Ty X + 'y C T*X in T* X, grading is
canonically well-defined:

Proposition 1 The bicanonical bundle AZPT*(T* X)@AZPT*(T*X) is canon-
wcally trivial; The Maslov class [(;SLYJ] = 0. Therefore, there is a canonical
grading of Ly .

It turns out that Maslov index is the same as Fredholm index:

Proposition 2 (A relative version of Riemann-Roch)

an(“) = Z‘ndFredholm(Du)7 (6)

1.3 Compactness

Compactness of M(p,q;[u],J) is given by Gromov compactness theorem.
First assume a uniform energy bound. There are three possible limit behav-
ior: strip breaking, disc bubbling and sphere bubbling. By assumption that
M and L are both exact, the latter two possibilities are eliminated.
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Now by some gluing statement, we can say broken strips correspond to
the boundary of moduli space of strips with ind([u]) = 2:

OM(p,q; [u], J) = H (M(p,r;[u], J) x M(r,q;[u], ])), (7)

[w/]+[w]=[u],réx(Lo,L1)
from which it is easy to see d?> = 0. Moreover, we have

Theorem 1 (Floer) The Floer differnetial is well-defined: d* = 0; The Floer
cohomology HF (Lo, Ly) is independent of J and Hamiltonian isotopies of Ly
and L.

1.4 Transversality

In case Ly, L; do not intersect transversally (for example Ly = L;), try to
perturb one of them by (time-dependent) Hamiltonian isotopy, i.e. choose a
generic Hamiltonian H € C'*([0, 1] x M, R) and let C'F'(Ly, L;) be generated
by points in Ly N (¢F) L.

Equivalently, we may perturb the Cauchy-Riemann equation instead of
Lagrangians:

ou ou
gu o x —
55 T J(t, ) (875 H(t,u)) 0, (8)
u(s,0) € Ly and u(s,1) € Ly,
lirgl u(s,t) and lim wu(s,t) are flow of Xy from Ly to Ly, )
S—r+00 S——00

2 Fukaya category

2.1 Composition map

We start the discussion of Fukaya category by introducing higher composition
maps:

Definition 3 (Higher operations)
pF  CF(Lp_1, L) ® ... ® OF (L1, Ly) ® CF(Lg, Ly) — CF(Lg, Ly)[2 — k],
/’Lk(pka"'apl> - Z (#M(p177pk7q) [U],J))(L

ind([u])=2—k,q€x(Lo,L)

(10)



Figure 1: M(p, ..., ok, ¢; [u], J)

where M(p1, ..., pr, q; [ul], J) is the moduli space of k-pointed J-holomorphic

disk with boundary in Ly, ..., Ly as shown in Figure 1, quotiented by reparametriza-

tion. The Maslov index in the sum comes from

dim M(p1, .., pr, ¢; [u], J) = k — 2 +ind([u]) = k — 2 + deg(q Zdeg i),
(11)

Note that u! = d and (u')? = d> = 0. This can be generalized to k > 1,
which is called A.-relation. Still we consider the limit curve (boundary)
of every 1-dim moduli space M(p1, ..., Pk, q; [u],J). Similar as the case of
k = 1, the limit curve cannot be disc bubbling or sphere bubbling, so the
only possible behavior is nodal discs spliting the k-pointed disc. The signed
sum of all these limit curves is zero, which implies

Proposition 3 (A -relations)

e

—l

k
Z * k+1 l(pk,...,pj+l+17:ul(pj+l7"‘pj+1)7pj7"'7p1) = 07 (12>
=1

<.
I
o

where x = j + deg(p1) + ... + deg(p;).



2.2 Definition of Fuk(M,w)

Definition 4 Let (M,w) be exact with 2¢,(TM) = 0.

Ob(Fuk(M,w)) = {exact Langrangian L with spin structure and graded lift} ,
(13)

For each pair of objects L, L' which need not be transversal, choose time-

dependent perturbation Hp 1 and Jp . Then for every Lo, ..., Ly and J —

holomorphic discs, choose H and L compatible with each pair’s near each
end. Such perturbation exists.

hom(L, L/> == CF(L, L/, HL,L’7 JL,L’)- (14)
Then Fuk(M,w) is the A -category with composition maps given by Defini-
tion 3.

Usually a triangulated category is better so that we can talk about gener-
ators and mapping cones. Therefore we embed Fuk(M,w) into a larger one
TwFuk(M,w), which contains twisted complexes of objects in Fuk(M,w).
Precisely,

Definition 5 TwFuk(M,w)
Ob(TwFuk(M,w)) = (E,§%), (15)

N

where E = @ Lilk;]. 0% € End'(E) is lower trangular differential s.t.
i=1

STk (6F, . 6F) = 0.

k>1
A degree d morphism a in hom(E, E') is just the direct sum of all a;; €
hom®™ =% (B, BY).
Composition maps are given by

e (ag, ..., ay) = Z pltaottik(gk 5% ap, .00 00 ar, 80, .., 80).

J0ye-sJk 20

(16)
Definition 6 (mapping cones) If f € hom®(E, E’) is closed, then

(E,0) ! s (B8




Figure 2: Dehn twist

Example (Dehn twists) Given a Lagrangian sphere S in (M, w), by Wein-
stein, a neighbourhood of S in M is just like 7%S. Now perform Dehn twists
by a Hamiltonian flow H(p,q) = h(||p||) in the complement of zero section
as Figure 2.

Then 7¢(L) is the mapping cone:

Theorem 2 (Seidel)

HF*(S,L)® 5 —=— L

1 l (18)
TS(L)

2.3 Non-compact Lagrangians and perturbation

Here gives an example on dealing with non-compact Lagrangians by [3]. Let
U C X be open, fix a defining function m for X \ U, let f =logm. Let L be
standard Lagrangian given by the graph df. Fix stratification S = {S,} of
X, and let As = U, Tg X C T"X be the corresponding conical Lagrangian.

If L and As intersect at infinity, then their intersections may be non-
compact. To restrict all intersections inside a compact region, need to perturb
L s.t. they are separated at infinity.



Proposition 4 (Nadler-Zaslow) There ezxist n > 0 and § > 0 such that for
all §" € (0, 0], the normalized geodesic flow satisfies

76’<Zm§n> A /_XS =0, (19)

where vg is the flow of Hamiltonian H(x,&) = |&] on T*X \ X.
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