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This note is a beginner version of the beginner’s introduction to Fukaya
category [1]. Some parts are also based on [2–4].

1 Lagrangian Floer Cohomology

In this note we assume that the background symplectic manifold (M,ω) is
exact, i.e. ω = dθ. Roughly speaking, we want to study Lagrangian sub-
manifolds in M and their intersection theory. Here we just consider exact
Lagrangians L, i.e. θ|L = df for some function f ∈ C∞(L,R).

Example For a compact real analytic smooth manifold X, consider the
cotangent bundle M = T ∗X, then there is a canonical exact symplectic
form ω = dθ, where θ is the canonical Liouville 1-form locally given by
θ =

∑
i pidqi. Now for a submanifold Y ⊂ X, assign a defining function

m : X → R≥0 for ∂Y ⊂ X, then we have the standard Lagrangian:

LY,f = T ∗YX + Γdf ⊂ T ∗X

where f = logm and Γdf is the graph of df . Clearly LY,f depends only on
f |Y . Since locally θ =

∑
i pidqi and pi = ∂f

∂qi
, θ = dF , where F is the pullback

of f from Y to LY,f . Therefore LY,f is exact.

1.1 Floer complex

Now we introduce the Floer complex. Roughly speaking, for each pair of
Lagrangians (L0, L1), we define a cochain complex CF (L0, L1), which is freely
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generated by intersection points of L0 and L1 over some field K, together with
a differential d : CF (L0, L1)→ CF (L0, L1)[1].

Naturally there arise some issues: We want a well-defined Floer coho-
mology HF (L0, L1) = Ker d/ Im d, so we need d2 = 0; If L0 and L1 are not
transversal, we have to perturb them by Hamiltonian isotopy so that the
Floer complex is well defined; Also, we want to give CF (L0, L1) a grading.

For now simply assume L0, L1 are compact and transversal, then define
the Floer differential by counting J-holomorphic strips in M with boundary
in L0 and L1 connecting p and q. Then the coefficient of q in dp is given by
that number:

Definition 1 (Floer differential)

d(p) =
∑

q∈χ(L0,L1),ind([u])=1

(#M(p, q; [u], J))q, (1)

More precisely, we are counting the space of maps u : R × [0, 1] → M
which solves the Cauchy-Riemann equation ∂̄Ju = 0:

∂u

∂s
+ J(u)

∂u

∂t
= 0, (2){

u(s, 0) ∈ L0 and u(s, 1) ∈ L1,
lim

s→+∞
u(s, t) = p, lim

s→−∞
u(s, t) = q, (3)

where J is any almost complex structure compatible with ω. Fix a homotopy
class [u] ∈ π2(M,L0 ∪ L1), then let #M̂(p, q; [u], J) be the moduli space of
all solutions in [u]. Let #M(p, q; [u], J) be #M̂(p, q; [u], J) quotiented by
reparametrization of the domain, which in this case is the 1-dimensional
translation of s.

The above boundary Cauchy-Riemann problem is linearized to be Fred-
holm. Denote the linearization of ∂̄J at u by D∂̄Ju, then the Fredholm in-
dex is defined by ind([u]) = dim KerD∂̄Ju/CokerD∂̄Ju. The dimension of

moduli space #M̂(p, q; [u], J) is ind([u]) if D∂̄Ju is surjective everywhere on

#M̂(p, q; [u], J). For simplicity we have to believe that for generic J this is
true.

To count signed moduli spaces, orientation is necessary. Here either as-
sume char(K) = 2 or that L0, L1 are oriented and spin, then orientation is
guaranteed.
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1.2 Grading and Maslov index

Now it is natural to give CF (L0, L1) gradings. To do this, try to assign to
each Lagrangian L a phase function φL : L → S1. If 2c1(TM) = 0, the bi-
canonical bundle Λtop

C T ∗M⊗Λtop
C T ∗M is trivial, then choose a nonzero section

µ, define φL(p) = µ(v1∧...∧vn⊗v1∧...∧vn)
||µ(v1∧...∧vn⊗v1∧...∧vn)|| . It is easy to check the independence

on basis of TpL.

We still need to lift the phase function φL : L → S1 to φ̃L : L → R, so
require that the Maslov class [φL] ∈ [L, S1] vanishes.

Assume 2c1(TM) = 0 and all Maslov classes vanish, then we can define:

Definition 2

deg(p) = φ̃L0(p)− φ̃L1(p) + λ(p, L0, L1), (4)

where λ(p, L0, L1) accounts for the difference between TpL0 and TpL1, lifted
to R by a short path in LGr(TpM). Then the Maslov index is defines as:

ind(u) = deg(q)− deg(p), (5)

where u is any J-holomorphic strip connecting p to q.

For standard Lagrangians LY,f = T ∗YX + Γdf ⊂ T ∗X in T ∗X, grading is
canonically well-defined:

Proposition 1 The bicanonical bundle Λtop
C T ∗(T ∗X)⊗Λtop

C T ∗(T ∗X) is canon-
ically trivial; The Maslov class [φLY,f ] = 0. Therefore, there is a canonical
grading of LY,f .

It turns out that Maslov index is the same as Fredholm index:

Proposition 2 (A relative version of Riemann-Roch)

ind(u) = indFredholm(Du), (6)

1.3 Compactness

Compactness of M(p, q; [u], J) is given by Gromov compactness theorem.
First assume a uniform energy bound. There are three possible limit behav-
ior: strip breaking, disc bubbling and sphere bubbling. By assumption that
M and L are both exact, the latter two possibilities are eliminated.

3



Now by some gluing statement, we can say broken strips correspond to
the boundary of moduli space of strips with ind([u]) = 2:

∂M(p, q; [u], J) =
∐

[u′]+[u′′]=[u],r∈χ(L0,L1)

(M(p, r; [u], J)×M(r, q; [u], J)), (7)

from which it is easy to see d2 = 0. Moreover, we have

Theorem 1 (Floer) The Floer differnetial is well-defined: d2 = 0; The Floer
cohomology HF (L0, L1) is independent of J and Hamiltonian isotopies of L0

and L1.

1.4 Transversality

In case L0, L1 do not intersect transversally (for example L0 = L1), try to
perturb one of them by (time-dependent) Hamiltonian isotopy, i.e. choose a
generic Hamiltonian H ∈ C∞([0, 1]×M,R) and let CF (L0, L1) be generated
by points in L0 ∩ (φ1

H)−1L1.
Equivalently, we may perturb the Cauchy-Riemann equation instead of

Lagrangians:
∂u

∂s
+ J(t, u)

(
∂u

∂t
−XH(t, u)

)
= 0, (8){

u(s, 0) ∈ L0 and u(s, 1) ∈ L1,
lim

s→+∞
u(s, t) and lim

s→−∞
u(s, t) are flow of XH from L0 to L1,

(9)

2 Fukaya category

2.1 Composition map

We start the discussion of Fukaya category by introducing higher composition
maps:

Definition 3 (Higher operations)

µk : CF (Lk−1, Lk)⊗ ...⊗ CF (L1, L2)⊗ CF (L0, L1)→ CF (L0, Lk)[2− k],

µk(pk, ..., p1) =
∑

ind([u])=2−k,q∈χ(L0,Lk)

(#M(p1, ..., pk, q; [u], J))q,

(10)
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Figure 1: M(p1, ..., pk, q; [u], J)

where M(p1, ..., pk, q; [u], J) is the moduli space of k-pointed J-holomorphic
disk with boundary in L0, ..., Lk as shown in Figure 1, quotiented by reparametriza-
tion. The Maslov index in the sum comes from

dimM(p1, ..., pk, q; [u], J) = k − 2 + ind([u]) = k − 2 + deg(q)−
k∑
i=1

deg(pi),

(11)

Note that µ1 = d and (µ1)2 = d2 = 0. This can be generalized to k ≥ 1,
which is called A∞-relation. Still we consider the limit curve (boundary)
of every 1-dim moduli space M(p1, ..., pk, q; [u], J). Similar as the case of
k = 1, the limit curve cannot be disc bubbling or sphere bubbling, so the
only possible behavior is nodal discs spliting the k-pointed disc. The signed
sum of all these limit curves is zero, which implies

Proposition 3 (A∞-relations)

k∑
l=1

k−l∑
j=0

(−1)∗µk+1−l(pk, ..., pj+l+1, µ
l(pj+l, ...pj+1), pj, ..., p1) = 0, (12)

where ∗ = j + deg(p1) + ...+ deg(pj).
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2.2 Definition of Fuk(M,ω)

Definition 4 Let (M,ω) be exact with 2c1(TM) = 0.

Ob(Fuk(M,ω)) = {exact Langrangian L with spin structure and graded lift} ,
(13)

For each pair of objects L,L′ which need not be transversal, choose time-
dependent perturbation HL,L′ and JL,L′. Then for every L0, ..., Lk and J −
holomorphic discs, choose H and L compatible with each pair’s near each
end. Such perturbation exists.

hom(L,L′) = CF (L,L′;HL,L′ , JL,L′). (14)

Then Fuk(M,ω) is the A∞-category with composition maps given by Defini-
tion 3.

Usually a triangulated category is better so that we can talk about gener-
ators and mapping cones. Therefore we embed Fuk(M,ω) into a larger one
TwFuk(M,ω), which contains twisted complexes of objects in Fuk(M,ω).
Precisely,

Definition 5 TwFuk(M,ω)

Ob(TwFuk(M,ω)) = (E, δE), (15)

where E =
N⊕
i=1

Li[ki]. δE ∈ End1(E) is lower trangular differential s.t.∑
k≥1

µk(δE, ..., δE) = 0.

A degree d morphism a in hom(E,E ′) is just the direct sum of all aij ∈
homd+k′j−ki(Ei, E

′
j).

Composition maps are given by

µkTw(ak, ..., a1) =
∑

j0,...,jk≥0

µk+j0+...+jk(δk, ..., δk, ak, ..., δ
1, ..., δ1, a1, δ

0, ..., δ0).

(16)

Definition 6 (mapping cones) If f ∈ hom0(E,E ′) is closed, then

(E, δ) (E ′, δ′)

(
E[1]⊕ E ′,

(
δ 0
f δ′

))
f

(1) (17)
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Figure 2: Dehn twist

Example (Dehn twists) Given a Lagrangian sphere S in (M,ω), by Wein-
stein, a neighbourhood of S in M is just like T ∗S. Now perform Dehn twists
by a Hamiltonian flow H(p, q) = h(||p||) in the complement of zero section
as Figure 2.

Then τS(L) is the mapping cone:

Theorem 2 (Seidel)

HF ∗(S, L)⊗ S L

τS(L)

ev

(1)
(18)

2.3 Non-compact Lagrangians and perturbation

Here gives an example on dealing with non-compact Lagrangians by [3]. Let
U ⊂ X be open, fix a defining function m for X \U , let f = logm. Let L be
standard Lagrangian given by the graph df . Fix stratification S = {Sα} of
X, and let ΛS = ∪αT ∗SαX ⊂ T ∗X be the corresponding conical Lagrangian.

If L and ΛS intersect at infinity, then their intersections may be non-
compact. To restrict all intersections inside a compact region, need to perturb
L s.t. they are separated at infinity.
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Proposition 4 (Nadler-Zaslow) There exist η > 0 and δ > 0 such that for
all δ′ ∈ (0, δ], the normalized geodesic flow satisfies

γδ′(L̄m≤η) ∩ Λ̄S = ∅, (19)

where γδ′ is the flow of Hamiltonian H(x, ξ) = |ξ| on T ∗X \X.
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