## Notes on Fukaya category

### Tianyu Yuan

#### April 2019

This note is a beginner version of the beginner's introduction to Fukaya category [1]. Some parts are also based on [2–4].

## 1 Lagrangian Floer Cohomology

In this note we assume that the background symplectic manifold  $(M, \omega)$  is exact, i.e.  $\omega = d\theta$ . Roughly speaking, we want to study Lagrangian submanifolds in M and their intersection theory. Here we just consider exact Lagrangians L, i.e.  $\theta|_L = df$  for some function  $f \in C^{\infty}(L, \mathbb{R})$ .

**Example** For a compact real analytic smooth manifold X, consider the cotangent bundle  $M = T^*X$ , then there is a canonical exact symplectic form  $\omega = d\theta$ , where  $\theta$  is the canonical Liouville 1-form locally given by  $\theta = \sum_i p_i dq_i$ . Now for a submanifold  $Y \subset X$ , assign a defining function  $m: X \to \mathbb{R}_{\geq 0}$  for  $\partial Y \subset X$ , then we have the standard Lagrangian:

$$L_{Y,f} = T_Y^* X + \Gamma_{df} \subset T^* X$$

where  $f = \log m$  and  $\Gamma_{df}$  is the graph of df. Clearly  $L_{Y,f}$  depends only on  $f|_Y$ . Since locally  $\theta = \sum_i p_i dq_i$  and  $p_i = \frac{\partial f}{\partial q_i}$ ,  $\theta = dF$ , where F is the pullback of f from Y to  $L_{Y,f}$ . Therefore  $L_{Y,f}$  is exact.

### **1.1** Floer complex

Now we introduce the Floer complex. Roughly speaking, for each pair of Lagrangians  $(L_0, L_1)$ , we define a cochain complex  $CF(L_0, L_1)$ , which is freely

generated by intersection points of  $L_0$  and  $L_1$  over some field  $\mathbb{K}$ , together with a differential  $d: CF(L_0, L_1) \to CF(L_0, L_1)[1]$ .

Naturally there arise some issues: We want a well-defined Floer cohomology  $HF(L_0, L_1) = \text{Ker } d/ \text{Im } d$ , so we need  $d^2 = 0$ ; If  $L_0$  and  $L_1$  are not transversal, we have to perturb them by Hamiltonian isotopy so that the Floer complex is well defined; Also, we want to give  $CF(L_0, L_1)$  a grading.

For now simply assume  $L_0$ ,  $L_1$  are compact and transversal, then define the Floer differential by counting *J*-holomorphic strips in *M* with boundary in  $L_0$  and  $L_1$  connecting *p* and *q*. Then the coefficient of *q* in *dp* is given by that number:

**Definition 1** (Floer differential)

$$d(p) = \sum_{q \in \chi(L_0, L_1), ind([u])=1} (\#\mathcal{M}(p, q; [u], J))q,$$
(1)

More precisely, we are counting the space of maps  $u : \mathbb{R} \times [0, 1] \to M$ which solves the Cauchy-Riemann equation  $\bar{\partial}_J u = 0$ :

$$\frac{\partial u}{\partial s} + J(u)\frac{\partial u}{\partial t} = 0,$$
(2)

$$\begin{cases} u(s,0) \in L_0 \text{ and } u(s,1) \in L_1, \\ \lim_{s \to +\infty} u(s,t) = p, \lim_{s \to -\infty} u(s,t) = q, \end{cases}$$
(3)

where J is any almost complex structure compatible with  $\omega$ . Fix a homotopy class  $[u] \in \pi_2(M, L_0 \cup L_1)$ , then let  $\#\hat{\mathcal{M}}(p, q; [u], J)$  be the moduli space of all solutions in [u]. Let  $\#\mathcal{M}(p, q; [u], J)$  be  $\#\hat{\mathcal{M}}(p, q; [u], J)$  quotiented by reparametrization of the domain, which in this case is the 1-dimensional translation of s.

The above boundary Cauchy-Riemann problem is linearized to be Fredholm. Denote the linearization of  $\bar{\partial}_J$  at u by  $D_{\bar{\partial}_J u}$ , then the Fredholm index is defined by  $ind([u]) = \dim \operatorname{Ker} D_{\bar{\partial}_J u}/\operatorname{Coker} D_{\bar{\partial}_J u}$ . The dimension of moduli space  $\#\hat{\mathcal{M}}(p,q;[u],J)$  is ind([u]) if  $D_{\bar{\partial}_J u}$  is surjective everywhere on  $\#\hat{\mathcal{M}}(p,q;[u],J)$ . For simplicity we have to believe that for generic J this is true.

To count signed moduli spaces, orientation is necessary. Here either assume  $char(\mathbb{K}) = 2$  or that  $L_0, L_1$  are oriented and spin, then orientation is guaranteed.

### **1.2** Grading and Maslov index

Now it is natural to give  $CF(L_0, L_1)$  gradings. To do this, try to assign to each Lagrangian L a phase function  $\phi_L : L \to S^1$ . If  $2c_1(TM) = 0$ , the bicanonical bundle  $\Lambda_{\mathbb{C}}^{top}T^*M \otimes \Lambda_{\mathbb{C}}^{top}T^*M$  is trivial, then choose a nonzero section  $\mu$ , define  $\phi_L(p) = \frac{\mu(v_1 \wedge \ldots \wedge v_n \otimes v_1 \wedge \ldots \wedge v_n)}{||\mu(v_1 \wedge \ldots \wedge v_n \otimes v_1 \wedge \ldots \wedge v_n)||}$ . It is easy to check the independence on basis of  $T_pL$ .

We still need to lift the phase function  $\phi_L : L \to S^1$  to  $\phi_L : L \to \mathbb{R}$ , so require that the Maslov class  $[\phi_L] \in [L, S^1]$  vanishes.

Assume  $2c_1(TM) = 0$  and all Maslov classes vanish, then we can define:

#### Definition 2

$$deg(p) = \widetilde{\phi}_{L_0}(p) - \widetilde{\phi}_{L_1}(p) + \lambda(p, L_0, L_1), \qquad (4)$$

where  $\lambda(p, L_0, L_1)$  accounts for the difference between  $T_pL_0$  and  $T_pL_1$ , lifted to  $\mathbb{R}$  by a short path in  $LGr(T_pM)$ . Then the Maslov index is defines as:

$$ind(u) = deg(q) - deg(p), \tag{5}$$

where u is any J-holomorphic strip connecting p to q.

For standard Lagrangians  $L_{Y,f} = T_Y^*X + \Gamma_{df} \subset T^*X$  in  $T^*X$ , grading is canonically well-defined:

**Proposition 1** The bicanonical bundle  $\Lambda_{\mathbb{C}}^{top}T^*(T^*X)\otimes \Lambda_{\mathbb{C}}^{top}T^*(T^*X)$  is canonically trivial; The Maslov class  $[\phi_{L_{Y,f}}] = 0$ . Therefore, there is a canonical grading of  $L_{Y,f}$ .

It turns out that Maslov index is the same as Fredholm index:

**Proposition 2** (A relative version of Riemann-Roch)

$$ind(u) = ind_{Fredholm}(D_u),\tag{6}$$

#### **1.3** Compactness

Compactness of  $\mathcal{M}(p,q;[u],J)$  is given by Gromov compactness theorem. First assume a uniform energy bound. There are three possible limit behavior: strip breaking, disc bubbling and sphere bubbling. By assumption that M and L are both exact, the latter two possibilities are eliminated. Now by some gluing statement, we can say broken strips correspond to the boundary of moduli space of strips with ind([u]) = 2:

$$\partial \overline{\mathcal{M}}(p,q;[u],J) = \prod_{[u']+[u'']=[u],r\in\chi(L_0,L_1)} (\mathcal{M}(p,r;[u],J) \times \mathcal{M}(r,q;[u],J)), \quad (7)$$

from which it is easy to see  $d^2 = 0$ . Moreover, we have

**Theorem 1** (Floer) The Floer differential is well-defined:  $d^2 = 0$ ; The Floer cohomology  $HF(L_0, L_1)$  is independent of J and Hamiltonian isotopies of  $L_0$ and  $L_1$ .

### 1.4 Transversality

In case  $L_0, L_1$  do not intersect transversally (for example  $L_0 = L_1$ ), try to perturb one of them by (time-dependent) Hamiltonian isotopy, i.e. choose a generic Hamiltonian  $H \in C^{\infty}([0, 1] \times M, \mathbb{R})$  and let  $CF(L_0, L_1)$  be generated by points in  $L_0 \cap (\phi_H^1)^{-1}L_1$ .

Equivalently, we may perturb the Cauchy-Riemann equation instead of Lagrangians:

$$\frac{\partial u}{\partial s} + J(t, u) \left(\frac{\partial u}{\partial t} - X_H(t, u)\right) = 0, \tag{8}$$

$$\begin{cases} u(s,0) \in L_0 \text{ and } u(s,1) \in L_1, \\ \lim_{s \to +\infty} u(s,t) \text{ and } \lim_{s \to -\infty} u(s,t) \text{ are flow of } X_H \text{ from } L_0 \text{ to } L_1, \end{cases}$$
(9)

## 2 Fukaya category

#### 2.1 Composition map

We start the discussion of Fukaya category by introducing higher composition maps:

**Definition 3** (Higher operations)

$$\mu^{k}: CF(L_{k-1}, L_{k}) \otimes ... \otimes CF(L_{1}, L_{2}) \otimes CF(L_{0}, L_{1}) \to CF(L_{0}, L_{k})[2-k],$$
  
$$\mu^{k}(p_{k}, ..., p_{1}) = \sum_{ind([u])=2-k, q \in \chi(L_{0}, L_{k})} (\#\mathcal{M}(p_{1}, ..., p_{k}, q; [u], J))q,$$
  
(10)



Figure 1:  $\mathcal{M}(p_1, ..., p_k, q; [u], J)$ 

where  $\mathcal{M}(p_1, ..., p_k, q; [u], J)$  is the moduli space of k-pointed J-holomorphic disk with boundary in  $L_0, ..., L_k$  as shown in Figure 1, quotiented by reparametrization. The Maslov index in the sum comes from

$$\dim \mathcal{M}(p_1, ..., p_k, q; [u], J) = k - 2 + ind([u]) = k - 2 + deg(q) - \sum_{i=1}^k deg(p_i),$$
(11)

Note that  $\mu^1 = d$  and  $(\mu^1)^2 = d^2 = 0$ . This can be generalized to  $k \ge 1$ , which is called  $A_{\infty}$ -relation. Still we consider the limit curve (boundary) of every 1-dim moduli space  $\mathcal{M}(p_1, ..., p_k, q; [u], J)$ . Similar as the case of k = 1, the limit curve cannot be disc bubbling or sphere bubbling, so the only possible behavior is nodal discs spliting the k-pointed disc. The signed sum of all these limit curves is zero, which implies

**Proposition 3** ( $A_{\infty}$ -relations)

$$\sum_{l=1}^{k} \sum_{j=0}^{k-l} (-1)^* \mu^{k+1-l}(p_k, ..., p_{j+l+1}, \mu^l(p_{j+l}, ..., p_{j+1}), p_j, ..., p_1) = 0,$$
(12)

where  $* = j + deg(p_1) + ... + deg(p_j)$ .

## **2.2** Definition of $Fuk(M, \omega)$

**Definition 4** Let  $(M, \omega)$  be exact with  $2c_1(TM) = 0$ .

 $Ob(Fuk(M,\omega)) = \{exact \ Langrangian \ L \ with \ spin \ structure \ and \ graded \ lift\},$ (13)

For each pair of objects L, L' which need not be transversal, choose timedependent perturbation  $H_{L,L'}$  and  $J_{L,L'}$ . Then for every  $L_0, ..., L_k$  and J holomorphic discs, choose H and L compatible with each pair's near each end. Such perturbation exists.

$$hom(L, L') = CF(L, L'; H_{L,L'}, J_{L,L'}).$$
(14)

Then  $Fuk(M, \omega)$  is the  $A_{\infty}$ -category with composition maps given by Definition 3.

Usually a triangulated category is better so that we can talk about generators and mapping cones. Therefore we embed  $Fuk(M, \omega)$  into a larger one  $TwFuk(M, \omega)$ , which contains twisted complexes of objects in  $Fuk(M, \omega)$ . Precisely,

**Definition 5**  $TwFuk(M, \omega)$ 

$$Ob(TwFuk(M,\omega)) = (E,\delta^E),$$
(15)

where  $E = \bigoplus_{i=1}^{N} L_i[k_i]$ .  $\delta^E \in End^1(E)$  is lower trangular differential s.t.  $\sum_{k\geq 1} \mu^k(\delta^E, ..., \delta^E) = 0.$ 

A degree d morphism a in hom(E, E') is just the direct sum of all  $a_{ij} \in hom^{d+k'_j-k_i}(E_i, E'_j)$ .

Composition maps are given by

$$\mu_{Tw}^{k}(a_{k},...,a_{1}) = \sum_{j_{0},...,j_{k} \ge 0} \mu^{k+j_{0}+...+j_{k}}(\delta^{k},...,\delta^{k},a_{k},...,\delta^{1},...,\delta^{1},a_{1},\delta^{0},...,\delta^{0}).$$
(16)

**Definition 6** (mapping cones) If  $f \in hom^0(E, E')$  is closed, then



Figure 2: Dehn twist

**Example** (Dehn twists) Given a Lagrangian sphere S in  $(M, \omega)$ , by Weinstein, a neighbourhood of S in M is just like  $T^*S$ . Now perform Dehn twists by a Hamiltonian flow H(p,q) = h(||p||) in the complement of zero section as Figure 2.

Then  $\tau_S(L)$  is the mapping cone:

Theorem 2 (Seidel)

### 2.3 Non-compact Lagrangians and perturbation

Here gives an example on dealing with non-compact Lagrangians by [3]. Let  $U \subset X$  be open, fix a defining function m for  $X \setminus U$ , let  $f = \log m$ . Let L be standard Lagrangian given by the graph df. Fix stratification  $\mathcal{S} = \{S_{\alpha}\}$  of X, and let  $\Lambda_{\mathcal{S}} = \bigcup_{\alpha} T^*_{S_{\alpha}} X \subset T^* X$  be the corresponding conical Lagrangian.

If L and  $\Lambda_{\mathcal{S}}$  intersect at infinity, then their intersections may be noncompact. To restrict all intersections inside a compact region, need to perturb L s.t. they are separated at infinity. **Proposition 4** (Nadler-Zaslow) There exist  $\eta > 0$  and  $\delta > 0$  such that for all  $\delta' \in (0, \delta]$ , the normalized geodesic flow satisfies

$$\gamma_{\delta'}(\bar{L}_{m \le \eta}) \cap \bar{\Lambda}_{\mathcal{S}} = \emptyset, \tag{19}$$

where  $\gamma_{\delta'}$  is the flow of Hamiltonian  $H(x,\xi) = |\xi|$  on  $T^*X \setminus X$ .

# References

- [1] Denis Auroux. A beginner's introduction to fukaya categories. In *Contact* and symplectic topology, pages 85–136. Springer, 2014.
- [2] Masaki Kashiwara and Pierre Schapira. Sheaves on Manifolds: With a Short History.Les débuts de la théorie des faisceaux. By Christian Houzel, volume 292. Springer Science & Business Media, 2013.
- [3] David Nadler and Eric Zaslow. Constructible sheaves and the fukaya category. *Journal of the American Mathematical Society*, 22(1):233–286, 2009.
- [4] Paul Seidel. Fukaya categories and Picard-Lefschetz theory, volume 10. European Mathematical Society, 2008.