References: 'an intro to symplectic topology through sheaf theory' - Viterbo, KS

- I. Definition of microsupport
 - A. X a manifold, $D^b(X)$ bounded derived category of sheaves (of A-modules) over X.
 - B. Let $j: U \to X$ be an open embedding, $i: Z \to X$ the closed embedding of $Z = X \setminus U$. Let $\mathcal{F} \in D^b(X)$.
 - i. want to make object equal to \mathcal{F} on either U or Z, 0 elsewhere. so, pullback and apply extension by zero functor.
 - ii. let $\mathcal{F}_Z = Ri_*i^{-1}A_X$ denote the sheaf that agrees with \mathcal{F} on Z and is zero elsewhere. (for a generally locally closed embedding, we have $\mathcal{F}_Z = Ri_!i^{-1}\mathcal{F}$, but when i is closed $i_* = i_!$. also, $f_!$ is extension by zero functor for a locally closed embedding)
 - iii. let $\mathcal{F}_U = Rj_!j^*\mathcal{F}$ be the sheaf that agrees with \mathcal{F} on U and is zero elsewhere. have to use $j_!$, consider $U = D^2 0$. since j is an open embedding $j^! = j^*$
 - iv. There are triangles: $i_!i^! \to \mathrm{id} \to j_*j^*$ and $j_!j^! \to \mathrm{id} \to i_*i^*$, yielding LES in relative cohomology. specifically, the second one gives $\mathcal{F}_U \to \mathcal{F} \to \mathcal{F}_Z$
 - C. $Z \subset X$ closed, let Γ_Z denote the functor 'sections with support in Z', so that we have an exact sequence $\Gamma_Z(\mathcal{F}) \to \mathcal{F} \to \mathcal{F}_U = j_! j^* \mathcal{F}$ of sheaves on X. Let $R\Gamma_Z$ be the right derived functor.
 - i. on sections, $\Gamma_Z \mathcal{F}(V) = \{s \in \mathcal{F}(V) | \operatorname{supp}(s) \subset Z\} = \ker(\mathcal{F}(V) \to \mathcal{F}(V \cap U))$
 - ii. Γ_Z is left exact because restriction to U is, the derived functor $R\Gamma_Z$ is relative cohomology, cohomology with supports in Z, local cohomology.
 - iii. $i^! = i^* R \Gamma_Z$
 - iv. $H^*(X, i_!i^!\mathcal{F}) = H^*(Z, i^!\mathcal{F}) = H^*(X, U; \mathcal{F})$
 - v. $\Gamma_Z(\mathcal{F}) = \operatorname{Hom}(A_Z, \mathcal{F})$
 - D. For $\mathcal{F}^{\bullet} \in D^b(X)$, $SS(\mathcal{F}) = \overline{\{(x,p) \in T^*X | (x,p) \text{ satisfies } (*)\}}$
 - i. (*) there exists a function $\varphi : X \to \mathbb{R}$ such that $\varphi(x) = 0, \ d\varphi(x) = p$, and $R\Gamma_{\{x|\varphi(x)\geq 0\}}(\mathcal{F})_x \neq 0$.
 - ii. vanishing of $R\Gamma_Z$ is equivalent to restriction $H^j(U, \mathcal{F}) \to H^j(U \setminus Z, \mathcal{F})$ being an isomorphism, at least for sheaves
- II. properties
 - A. $SS(\mathcal{F})$ is a conic subset of T^*X (closed under multiplication by $\mathbb{R}_{\geq 0}$)
 - B. $SS(\mathcal{F}) \cap 0_X = \operatorname{supp}(\mathcal{F}) \text{ (taking } \varphi = 0)$
 - C. $(x, p) \in SS(\mathcal{F})$ depends only on \mathcal{F} near x
 - D. assume \mathcal{F} is a single sheaf in degree 0, then $R\Gamma_{\{x|\varphi(x)\geq 0\}}(\mathcal{F})_x = 0$ is equivalent to the restriction map $\lim_{x\in U} H^j(U;\mathcal{F}) \to \lim_{x\in U} H^j(U\cap\{\varphi<0\};\mathcal{F})$ is an isomorphism for all j (from the LES associated to the defining SES)

i.
$$R\Gamma^{j}_{\{x|\varphi(x)\geq 0\}}(\mathcal{F}) = \ker(H^{j}(U;\mathcal{F}) \to H^{j}(U \cap \{\varphi < 0\};\mathcal{F}))$$

E. If $\mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to +1$ is a distinguished triangle then $SS(\mathcal{F}_i) \subset SS(\mathcal{F}_j) \cup SS(\mathcal{F}_k)$ and $SS(\mathcal{F}_j)\Delta SS(\mathcal{F}_i) \subset SS(\mathcal{F}_k)$ for any i, j, k = 1, 2, 3

- i. apply $R\Gamma_Z$ to the triangle, $Z = \{y | \psi(y) \ge 0\}$. if two of the terms in the LES vanish, so does the third. If one vanishes, the other two are isomorphic, so one vanishes iff the other does.
- F. $SS(\mathcal{F}) \subset \bigcup_j SS(\mathcal{H}^j(\mathcal{F}))$ (reverse inclusion false in general)
 - i. apply the spectral sequence from $R^p\Gamma_Z(H^q(\mathcal{F})) \to R^{p+q}\Gamma_Z(\mathcal{F})$. if first thing vanishes then so does output
- III. examples
 - A. $SS(\mathcal{F}) = \emptyset$ iff \mathcal{F} is equivalent to the 0 sheaf (has exact stalks)
 - B. $SS(A_X) = 0_X$, $= 0_X$ for any locally constant sheaf. all of the restriction maps are isos (except to \emptyset)
 - C. warm-up calc: Let $Z = [0, \infty)$ and $U = (-\infty, 0)$. What is $H^*(\mathbb{R}; A_Z)$? $H^*(\mathbb{R}; A_U)$?
 - i. A: $H^0(\mathbb{R}; A_Z) = A$, just pushfwd, so get cohomology of Z.
 - ii. $H^1(\mathbb{R}; A_U) = A$, A_U uses $j_!$. In fact, for any locally closed embedding jand i the inclusion of the complement, $H^*(X, U; \mathcal{F}) = H^*(X; j_!j'!\mathcal{F})$. So, we get relative cohomology \mathbb{R} rel U
 - D. What is $SS(A_Z) \cap T_0^* \mathbb{R}$?
 - i. For a small nbhd V of 0, consider the restriction map $H^j(V; A_Z) \to H^j(V \cap \{x < 0\}; A_Z)$. it's $A \to 0$. has kernel, so $(0, dx) \in SS(A_Z)$.
 - ii. replace x by -x, then the restriction map is identity $A \to A$, no kernel, so $(0, -dx) \notin SS(A_Z)$.
 - E. Similarly for U
 - i. $H^j(V; A_U) \to H^j(V \cap \{x < 0\}; A_U)$ is A to A, $(x, dx) \notin SS(A_U)$.
 - ii. $A_U(V) \to A_U(V \cap \{x > 0\})$
 - F. Consider \mathbb{R} stratified with points at -1, 1
 - G. smooth region: $U \subset X$ open, smooth region with smooth boundary ∂U . Let ν denote the exterior normal vector. Let A_U be constant sheaf on U. Then $SS(A_U) = \{(x, p) | x \in U, p = 0, \text{ or } x \in \partial U, p = \lambda \nu(v), \lambda > 0\}$ i.
 - H. Let Z be locally closed, A_Z the constant sheaf on Z. E a f.d. vector space, γ closed convex cone with vertex at 0, let $\gamma^{\circ} = \{\theta \in E^* | \theta(v) \ge 0, v \in \gamma\}$.
 - I. $SS(A_{\gamma}) \cap \pi^{-1}(0) = \gamma^{\circ}$
 - i. uses microlocal cut-off lemma, γ -topology
 - J. X a manifold, M closed submanifold, then $SS(A_M) = T_M^* X$
 - i. everything is local, reduce to X a vector space, M a subspace. then follows from previous
 - K. Assume φ has $d\varphi \neq 0$ on $\{\varphi(x) = 0\}$. Then $SS(A_{\{\varphi(x) \ge 0\}}) = \{(x, \lambda d\varphi) | \lambda \varphi(x) = 0, \lambda \ge 0, \varphi(x) \ge 0\}$ and $SS(A_{\{\varphi(x) > 0\}}) = \{(x, \lambda d\varphi) | \lambda \varphi(x) = 0, \lambda \le 0, \varphi(x) \ge 0\}$
 - i. choose coordinates such that $\{\varphi(x) \ge 0\}$ is a closed half-space, then follows from earlier result.

ii. the open case follow from exact sequence $A_{\{\varphi(x)>0\}} \to A_X \to A_{\{\varphi(x)\leq 0\}}$

- A. Lagrangian correspondences: Lagrangians $\Lambda \subset T^*X \times T^*Y$, induces correspondence from T^*X to T^*Y by:
 - i. let $K = \Delta_{T^*X} \times T^*Y$ be a coisotropic and take $C \subset T^*X$. then $\Lambda \circ C =$ symp reduction of $C \times \Lambda \cap K$.
- B. let $\pi_Y : T^*X \times T^*Y \to T^*Y$ be projection. Let $\Lambda_f = \{(x, \theta, y, \eta) | y = f(x), \theta = \eta \circ df\}$ be the Lagrangian relation associated to f.

- C. Take $f: X \to Y$ a proper map on supp (\mathcal{F}) . Then $SS(Rf_*(\mathcal{F})) \subset \pi_Y(df)^{-1}(SS(\mathcal{F})) =$ $\Lambda_f \circ SS(\mathcal{F})$, equality if f a closed embedding. similarly for $Rf_!$. For f a submersion, $SS(f^{-1}\mathcal{G}) = df(\pi_Y^{-1}(SS(\mathcal{G}))) = \Lambda_f^{-1} \circ SS(\mathcal{G})$.
 - i. Take $\psi: Y \to \mathbb{R}$ with $\psi(f(x)) = 0$ and $p = d\psi(f(x))df(x)$. if $(x, p) \notin df(x)$
 - i. Note that $\Gamma_Z \circ f_* = f_* \circ \Gamma_{f^{-1}(Z)}$. and since f is proper on $\operatorname{supp}(\mathcal{F})$, $(f_*\mathcal{F})_y = \Gamma(f^{-1}(y), \mathcal{F}|_{f^{-1}(y)})$. Thus, $R\Gamma_{\{\psi \ge 0\}}(Rf_*(\mathcal{F}))_y = 0$.
- V. deeper results
 - A. Involutivity Theorem (KS) $SS(\mathcal{F})$ is a cosiotropic subset.
 - B. $SS(\mathcal{F})$ is Lagrangian is equivalent to \mathcal{F} is constructible (KS Thm 8.4.2)