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1. Introduction

These notes were written for a talk on some background material for a seminar on sheaves in
symplectic topology. They cover the basic language of sheaves, derived categories, and dg categories,
at least at level needed for the seminar. In particular, they are based on parts of sections 2.1 and 2.2
of [3]. For precise statements and definitions, details, and proofs, one should certainly consult more
trustworthy references, such as [1] or [2].

Also, all of the following material (sheaves, derived categories, etc.) can be presented using much
more general language. For the most part we will only consider definitions in the context of sheaves
on a manifold.

2. Sheaves

Throughout, X will denote a real-analytic manifold, Vect is the category of complex vector spaces,
and Op(X) is the category with objects open subsets of U and morphisms inclusions. Precisely,

HomOp(X)(U, V ) =

{
pt if U ↪−→ V

∅ otherwise
.

Definition 2.1. A presheaf (of complex vector spaces) on X is a functor F : Op(X)op → Vect.

In more down to earth words, a presheaf is something which associates a vector space to any open
set in X. Since F is a (contravariant) functor, we get a restriction map ρVU : F(V )→ F(U) for every
inclusion U ↪−→ V . An element s of F(U) is a section of F over U . If U ↪−→ V and s is a section of V ,
we will use the notation s |U := ρVU (s).

A sheaf is a presheaf which is subject to some extra constraints, namely, that compatible sections
can be uniquely glued together. Precisely,

Definition 2.2. A sheaf on X is a presheaf F : Op(X)op → Vect satisfying

i. If Ui is an open cover of U and s, t ∈ F(U) satisfy s |Ui
= t |Ui

for all i, then s = t.
ii. If Ui is an open cover of U with si ∈ F(Ui) satisfying si |Ui∩Uj

= sj |Ui∩Uj
, then there is an

s ∈ F(U) such that s |Ui= si for all i.

The standard example of a sheaf is the one which associates to each open set U the space of
continuous functions on U . Briefly, continuous functions defined on open sets which agree on overlaps
can be uniquely glued together to give a continuous function on the whole space, hence axioms i. and
ii. above are satisfied. An example of a presheaf which is not a sheaf is the functor L1 on Rn, which
associates to any open set U the space of integrable measurable functions on U . This functor does
not satisfy axiom ii., since gluing together locally integrable functions does not necessarily produce a
globally integrable function.

A morphism of sheaves F → G is just a natural transformation between the functors.
As a final remark, the sheaves on X form an abelian category. Among many other things, this

means that we can talk about kernels and cokernels of morphisms.
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3. Derived Categories

In this section we define the derived category of sheaves on X. The following construction can be
performed on any abelian category.

Step 1: The category of chain complexes.

Definition 3.1. Let C(X) be the category with the following data: the objects are (co)chain com-
plexes of sheaves, and the morphisms between two complexes of sheaves Fn and Gn are the degree
0 chain maps. We denote the full subcategory of bounded complexes by Cb(X) and likewise C+(X)
and C−(X) for the bounded below and bounded above complexes.

A simple operation on complexes is the shift functor : given a complex (Fn, dnF ) and k ∈ Z, define

(F [k]n, dnF [k]) by F [k]n := Fn+k and dnF [k] := (−1)kdn+k
F .

Another construction with complexes that will be important is the mapping cone of a morphism.

Definition 3.2. Let f : F → G be a morphism of complexes. The mapping cone of f is an object
M(f) in C(X) given by the following data: M(f)n := Fn+1 ⊕ Gn and

dnM(f) :=

(
−dn+1
F 0

fn+1 dnG

)
.

Note that there is a sequence

F f−→ G
(

0
idG

)
−−−−−→M(f)

( idF 0 )−−−−−→ F [1].

Next, we recall the notion of chain homotopy.

Definition 3.3. Two morphisms of complexes f, g : F → G are chain homotopic if there are maps
sn : Fn → Gn−1 such that fn − gn = sn+1 ◦ dnF + dn−1G ◦ sn. A chain homotopy equivalence is a
morphism f such that there is a morphism g in the opposite direction with f ◦ g and g ◦ f both chain
homotopic to the identity.

Step 2: The homotopy category.
Next, we pass to the homotopy category of sheaves on X by considering chain homotopy classes of

morphisms between complexes.

Definition 3.4. Let K(X) be the category with the following data: Ob(K(X)) := Ob(C(X)) and

HomK(X)(F ,G) := HomC(X)(F ,G)
/
∼

where f ∼ g if f and g are chain homotopic. Define Kb(X) by using Cb(X) instead, and likewise for
K−(X) and K+(X).

Another thing one can do in a category of complexes is take cohomology. This is possible roughly
because C(X) is an abelian category, hence has kernels and cokernels. Precisely, H∗ : C(X)→ C(X)
is a functor (the differentials in the complex H∗(F) are all 0). So if f : F → G is a morphism of
complexes, there is an induced morphism H∗(f) : H∗(F)→ H∗(G).

Definition 3.5. A chain map f : F → G in C(X) is a quasi-isomorphism if H∗(f) is an isomor-
phism.

In particular, a chain homotopy equivalence is a quasi-isomorphism, Note that quasi-isomorphism
is not an equivalence relation in general: the complex

· · · → 0→ Z 2−→ Z→ 0→ · · ·
is quasi-isomorphic to the complex

· · · → 0→ 0→ Z/2→ 0→ · · ·
but there is no (nontrivial) map from the latter to the former.
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Step 3: The derived category.
Using the notion of quasi-isomorphism, we can now pass to the derived category of sheaves on

X. Roughly, we will formally invert all of the quasi-isomorphisms in K(X). This is analogous to
the process of localizing a ring by a certain subset, where a-priori non-invertible elements become
invertible.

Here we give a brief and nonconstructive description localizing categories for the sake of time, but
one can be much more explicit about what morphisms in the localized category look like and how
they behave.

For now, here is an unhelpful and approximate definition:

Definition 3.6. Let S be a family of morphisms in a category C. A localization of C by S is a
category CS and a functor Q : C → CS such that Q(s) is an isomorphism for all s ∈ S, and any
functor F : C→ A satisfying the property that F (s) is an isomorphism for all s ∈ S factors uniquely
through Q.

One can show that if a localization of a category exists, it is unique up to equivalence of categories.

Definition 3.7. The derived category of sheaves on X is the localization of K(X) by the set of

quasi-isomorphisms: D(X) := K(X)S where S is the family of quasi-isomorphisms. Db(X) is defined

by using Kb(X), etc.

It is important to note that K(X) and D(X) are not abelian categories. One reason why abelian
categories are nice is because one has results like the snake lemma, and hence the existence of long exact
sequences arising from short exact sequences. Fortunately, K(X) (and D(X)) are triangulated. We
will not define what this means here, but the triangles are sequences of morphisms F → G → H → F [1]

which are isomorphic in K(X) to some mapping cone triangle F ′ f−→ G′ →M(f)→ F [1]. These play
the role of short exact sequences, in that they yield long exact sequences.

4. DG Categories

Derived categories as in the previous section are not well-behaved, for various reasons (see [4]).
One motivation for dg categories is to perform a similar construction but in a way that remedies some
of these issues.

Definition 4.1. A differential graded (dg) category C is a category such that every morphism
set has the structure of a differential graded Z-module.

Explicitly, for any two objects A,B in a dg category we have a decomposition

Hom(A,B) =
⊕
n∈Z

Homn(A,B)

and a map d : Homn(A,B)→ Homn+1(A,B) such that d2 = 0.
Suppose our category is abelian, so that we can make sense of kernels and cokernels and thus

cohomology. For any two objects A and B, Hom∗(A,B) is a cochain complex and so we can consider
Z0(Hom∗(A,B)) and H0(Hom∗(A,B)). Moreover, we can define new categories Z0(C) and H0(C),
the latter being the homotopy category of C, by letting Ob(Z0(C)) = Ob(H0(C)) = Ob(C) and

HomZ0(C)(A,B) = Z0(Hom∗(A,B)) and HomH0(C)(A,B) = H0(Hom∗(A,B)).

The dg category of primary interest to us is the dg category of chain complexes of sheaves on X. This
a category Cdg(X) whose objects are (co)chain complexes, as in C(X). The morphisms in Cdg(X)
are complexes of maps (not necessarily chain maps) of degree n, not just degree 0 chain maps. Given
two complexes F and G, the grading on HomCdg(X)(F ,G) is clear. The differential d in the complex
Hom∗(F ,G) is defined by

d(f) = dG ◦ f − (−1)nf ◦ dF
for f ∈ Homn(F ,G). Note that

Z0(Cdg(X)) = C(X)
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and
H0(Cdg(X)) = K(X).

The point of this section is that there is a dg category Sh(X) such that H0(Sh(X)) = D(X). For
this we will give another unhelpful and imprecise definition.

Definition 4.2. Let C be a dg category and D a full dg subcategory. The dg quotient C/D is a
dg category such that any dg functor C → A such that the induced map H0(C) → H0(A) sends B
to 0 factors through A→ A/B.

Let B be the full subcategory of Cdg(X) of acyclic objects, i.e., objects with 0 cohomology. The
dg derived category of sheaves on X, denoted Sh(X), is the dg quotient Cdg(X)/B. It is then a fact
that H0(Sh(X)) = D(X).
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